JPH06153310A - Brake system for electric automobile - Google Patents

Brake system for electric automobile

Info

Publication number
JPH06153310A
JPH06153310A JP29343792A JP29343792A JPH06153310A JP H06153310 A JPH06153310 A JP H06153310A JP 29343792 A JP29343792 A JP 29343792A JP 29343792 A JP29343792 A JP 29343792A JP H06153310 A JPH06153310 A JP H06153310A
Authority
JP
Japan
Prior art keywords
power
regenerative
brake
target
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29343792A
Other languages
Japanese (ja)
Inventor
Osamu Yoneda
修 米田
Yoshitaka Kanbe
良隆 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29343792A priority Critical patent/JPH06153310A/en
Publication of JPH06153310A publication Critical patent/JPH06153310A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a brake system for electric automobile which can achieve a target deceleration without lowering deceleration. CONSTITUTION:The brake system calculates a target regenerative power of a regenerative brake such that the sum of hydraulic brake regenerative brake power corresponds to a target deceleration of an electric automobile and a target regenerative power is returned to superconducting coils 19, 20. A power consuming section 16 is arranged in parallel with the superconducting coils 19, 20 in order to consume excess regenerative power through resistors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気自動車の制動装置に
関し、油圧ブレーキと回生ブレーキとを用いて制動を行
なう電気自動車の制動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a braking device for an electric vehicle, and more particularly to a braking device for an electric vehicle that performs braking using a hydraulic brake and a regenerative brake.

【0002】[0002]

【従来の技術】従来より、特開平1−185101号公
報に記載の如く、超電導コイルを用いて電力を回生させ
る直流電気車両がある。
2. Description of the Related Art Conventionally, there is a DC electric vehicle that regenerates electric power by using a superconducting coil, as described in Japanese Patent Application Laid-Open No. 1-185101.

【0003】[0003]

【発明が解決しようとする課題】電気自動車で通常の油
圧ブレーキと超電導コイルを用いた回生ブレーキとを併
用し、油圧ブレーキ力と回生ブレーキ力との和で目標減
速度が得られるように回生ブレーキを制御すると、ブレ
ーキング開始時に回生すべき電力量が決定される。しか
し超電導コイルは大きなインダクタンスを有しているた
め、ブレーキング開始時に直ちに回生を行なうことがで
きない。このため、ブレーキング開始時の減速度が低下
してしまうという問題があった。
SUMMARY OF THE INVENTION In an electric vehicle, a normal hydraulic brake and a regenerative brake using a superconducting coil are used together so that a target deceleration can be obtained by the sum of the hydraulic braking force and the regenerative braking force. Is controlled, the amount of electric power to be regenerated at the start of braking is determined. However, since the superconducting coil has a large inductance, regeneration cannot be performed immediately at the start of braking. Therefore, there is a problem that the deceleration at the start of braking is reduced.

【0004】本発明は上記の点に鑑みなされたもので、
目標回生電力を超電導コイルで回生できないとき、回生
できない電力を抵抗で消費させることにより、減速度の
低下なく目標減速度を得ることのできる電気自動車の制
動装置を提供することを目的とする。
The present invention has been made in view of the above points,
An object of the present invention is to provide a braking device for an electric vehicle that can obtain a target deceleration without lowering the deceleration by consuming resistance that cannot be regenerated when the target regenerative power cannot be regenerated by a superconducting coil.

【0005】[0005]

【課題を解決するための手段】本発明の電気自動車の制
動装置は、油圧ブレーキと回生ブレーキとのブレーキ力
の和が電気自動車の目標減速度となるよう上記回生ブレ
ーキの目標回生電力を算出し、上記目標回生電力を超電
導コイルに回生する電気自動車の制動装置であって、上
記超電導コイルと並列に設けられ、上記目標回生電力が
超電導コイルに回生できないとき、上記回生できない電
力を抵抗で消費させる電力消費部を有する。
The braking device for an electric vehicle according to the present invention calculates the target regenerative electric power of the regenerative brake so that the sum of the braking forces of the hydraulic brake and the regenerative brake is the target deceleration of the electric vehicle. A braking device for an electric vehicle that regenerates the target regenerative power to a superconducting coil, and the braking device is provided in parallel with the superconducting coil, and when the target regenerative power cannot be regenerated to the superconducting coil, the non-regenerative power is consumed by a resistor. It has a power consumption unit.

【0006】[0006]

【作用】本発明においては、目標回生電力が超電導コイ
ルに受け入れ可能な電力を越えたとき、回生できない電
力が抵抗により消費されるため、上記回生できない電力
による回生ブレーキの減速度の低下が防止される。
In the present invention, when the target regenerative electric power exceeds the electric power that can be received by the superconducting coil, the electric power that cannot be regenerated is consumed by the resistance, so that the deceleration of the regenerative brake due to the electric power that cannot be regenerated is prevented from decreasing. It

【0007】[0007]

【実施例】図1は本発明装置の一実施例の回路構成図を
示す。同図中、モータ10はインバータ部11を介して
電圧VB の直流電源12に接続されており、直流電源1
2より電力を供給されて回転し自動車を駆動する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram of an embodiment of the device of the present invention. In the figure, the motor 10 is connected to a DC power supply 12 of a voltage V B via an inverter unit 11, and the DC power supply 1
Powered by 2 to rotate and drive the car.

【0008】インバータ部11は電流制御部14を介し
て平滑部15が接続され、平滑部15には電力消費部1
6及びブリッジ部17,18が並列に接続されている。
ブリッジ部17,18は同一構成で夫々には超電導コイ
ル19,20夫々が接続されている。
The smoothing section 15 is connected to the inverter section 11 via the current control section 14, and the smoothing section 15 is connected to the power consumption section 1.
6 and bridge portions 17 and 18 are connected in parallel.
The bridge portions 17 and 18 have the same structure, and superconducting coils 19 and 20 are connected to the bridge portions 17 and 18, respectively.

【0009】ブリッジ回路17,18は、サイリスタT
h1,Th2を共にオンすることにより超電導コイル1
9に充電を行ない、サイリスタTh1,Th2のいずれ
か一方をオンで他方をオフとすることにより超電導コイ
ル19の電力を保持し、サイリスタTh1,Th2を共
にオフすることにより超電導コイル19の放電を行な
う。
The bridge circuits 17 and 18 are composed of a thyristor T.
By turning on both h1 and Th2, the superconducting coil 1
9 is charged, the power of the superconducting coil 19 is held by turning on one of the thyristors Th1 and Th2 and turning off the other, and the superconducting coil 19 is discharged by turning off both of the thyristors Th1 and Th2. .

【0010】なお、超電導コイル19,20と並列に設
けられたサイリスタTh4と抵抗R3は、機械的なショ
ック等により超電導コイル19,20に常電導転移が発
生したときサイリスタTh4をオンさせて抵抗R3の電
力消費により超電導コイル19,20を保護するために
設けられている。
The thyristor Th4 and the resistor R3 provided in parallel with the superconducting coils 19 and 20 turn on the thyristor Th4 and turn on the resistor R3 when the normal conducting transition occurs in the superconducting coils 19 and 20 due to a mechanical shock or the like. It is provided to protect the superconducting coils 19 and 20 by the power consumption of.

【0011】電源12の電圧は電圧計21で検出されて
制御部22に供給されており、また電流計23,24夫
々で検出した超電導コイル19,20夫々を流れる電流
値も制御部22に供給されている。制御部22は電流制
御部14のスイッチSW1のオン・オフ及びトランジス
タTr1のベース電流を制御すると共に、電力消費部1
6のサイリスタTh3のオン・オフを制御し、またブリ
ッジ部17,18のサイリスタTh1,Th2夫々のオ
ン・オフを制御する。
The voltage of the power source 12 is detected by the voltmeter 21 and supplied to the control unit 22, and the current values flowing through the superconducting coils 19 and 20 detected by the ammeters 23 and 24 are also supplied to the control unit 22. Has been done. The control unit 22 controls on / off of the switch SW1 of the current control unit 14 and the base current of the transistor Tr1, and at the same time, the power consumption unit 1
6 controls the on / off of the thyristor Th3, and controls the on / off of each of the thyristors Th1 and Th2 of the bridge units 17 and 18.

【0012】図2は制御部22が実行する回生制御処理
のフローチャートを示す。この処理はブレーキング開始
と共に実行される。
FIG. 2 shows a flowchart of the regenerative control process executed by the control unit 22. This process is executed when braking is started.

【0013】同図中、ステップS2ではブレーキ踏力F
を入力する。次にステップS4でこのブレーキ踏力Fを
所定値fA と比較する。所定値fA は図3に示す如く回
生ブレーキの最大制動力に対応した踏力であり、所定値
A までのブレーキ踏力Fは回生ブレーキによる制動を
行ない、これを越えるブレーキ踏力は図4に示す如く通
常の油圧ブレーキによる制動を行なう。
In the figure, in step S2, the brake pedal force F
Enter. Next, in step S4, this brake pedal force F is compared with a predetermined value f A. The predetermined value f A is the pedaling force corresponding to the maximum braking force of the regenerative brake as shown in FIG. 3, and the brake pedaling force F up to the predetermined value f A performs braking by the regenerative brake, and the brake pedaling force exceeding this is shown in FIG. As described above, braking is performed by the normal hydraulic brake.

【0014】ステップS4でF>fA の場合はステップ
S6で回生のための受電電力Prefに最大電力Pmax を
セットし、F≦fA の場合はステップS8で受電電力P
refに踏力Fの関数から求めた電力y(F)をセットす
る。
When F> f A in step S4, the maximum power Pmax is set to the received power Pref for regeneration in step S6, and when F ≦ f A , the received power Pref in step S8
The electric power y (F) obtained from the function of the pedal effort F is set in ref.

【0015】この後、ステップS10で電圧計21で測
定した電圧V及び電流計23,24で測定したコイル電
流I0 夫々を入力する。次にステップS12で受電電力
Pref が電力I0 ・Vを越えているか否かを判別する。
Thereafter, in step S10, the voltage V measured by the voltmeter 21 and the coil current I 0 measured by the ammeters 23 and 24 are input. Next, in step S12, it is determined whether the received power Pref exceeds the power I 0 · V.

【0016】ここで、超電導コイルの受け入れ可能電力
Wは、電源電圧V,超電導コイルのインダクタンスL,
超電導コイルに流れている電流I0 ,時間tを用いて次
式で表わされる。
Here, the acceptable power W of the superconducting coil is the power supply voltage V, the inductance L of the superconducting coil,
It is expressed by the following equation using the current I 0 flowing in the superconducting coil and the time t.

【0017】[0017]

【数1】 (1) 式は図5に示す如く、時間t=0における受け入れ
可能電力WはV・I0で、その後、時間tと共に増大す
ることを表わしている。
[Number 1] (1) is as shown in FIG. 5, acceptable electric power W at time t = 0 in the V · I 0, then, represents that increases with time t.

【0018】ステップS12でPref >I0 ・Vの場合
は超電導コイル19,20を受電電力Pref を瞬時に受
け入れることができるため、ステップS14に進んでス
イッチSW1をオンし、ステップS16でブリッジ部1
7,18夫々のサイリスタTh1,Th2をオンするデ
ューティ比を計算し、例えばサイリスタTh1をオフと
し、このデューティ比でTh2をオンさせることにより
受電電力Pref を超電導コイル19,20に回生させ、
処理を終了する。
If Pref> I 0 .V in step S12, the superconducting coils 19 and 20 can instantly receive the received power Pref. Therefore, the process proceeds to step S14, the switch SW1 is turned on, and the bridge unit 1 is operated in step S16.
The duty ratio for turning on each of the thyristors Th1 and Th2 is calculated, for example, the thyristor Th1 is turned off, and the received power Pref is regenerated in the superconducting coils 19 and 20 by turning on Th2 at this duty ratio.
The process ends.

【0019】ステップS12でPref ≦I0 ・Vの場合
は受電電力Pref を瞬時に超電導コイル19,20に受
け入れることができないのでステップS18でスイッチ
SW1をオフし、ステップS20で受電電力Pref を回
生するに必要な電流値を流すよう電流制御部14のトラ
ンジスタTr1のベース電流を制御した後、ステップS
22でブリッジ部17,18のサイリスタTh1,Th
2をオンすると共に電力消費部16のサイリスタTh3
をオンして処理を終了する。
If Pref ≤ I 0 · V in step S12, the received power Pref cannot be instantaneously received by the superconducting coils 19 and 20, so the switch SW1 is turned off in step S18, and the received power Pref is regenerated in step S20. After controlling the base current of the transistor Tr1 of the current control unit 14 so that a current value required for
The thyristors Th1 and Th of the bridge portions 17 and 18 at 22
2 is turned on and the thyristor Th3 of the power consumption unit 16 is turned on.
Is turned on to end the process.

【0020】この場合、サイリスタTh1,Th2をオ
ンして超電導コイル19,20に受け入れられる電力は
図5の実線に示す如く時間と共に増加するが、受電電力
Pref は破線に示す如くt1 時点まで超電導コイル1
9,20の受け入れ可能電力を上まわっている。しか
し、電力消費部16のサイリスタTh3をオンすること
により、図5の斜線で示す超電導コイル19,20に受
け入れられない電力は放電抵抗R2を流れることにより
消費される。
In this case, the power received by the superconducting coils 19 and 20 when the thyristors Th1 and Th2 are turned on increases with time as shown by the solid line in FIG. 5, but the received power Pref is superconducting until time t 1 as shown by the broken line. Coil 1
It exceeds the acceptable power of 9,20. However, when the thyristor Th3 of the power consumption unit 16 is turned on, the electric power that cannot be received by the superconducting coils 19 and 20 shown by the diagonal lines in FIG. 5 is consumed by flowing through the discharge resistor R2.

【0021】例えば超電導コイル19,20の合成イン
ダクタンスを10H,充電開始時電流I0 を10A,電
源電圧Vを300 Vとした場合に受電電力Pref を15k
w(=300 V×50A)とする指示を受けると、トラン
ジスタTr1に50Aを通電させる指令を出すと共に、
サイリスタTh1,Th2,Th3をオンする。これに
よって超電導コイル19,20に流れ込む電流は図6の
実線Iに示す如く変化し、抵抗R2で消費される電流は
実線IIに示す如く変化し、この合計は破線IIIに示す如
く50Aとなる。
For example, when the combined inductance of the superconducting coils 19 and 20 is 10 H, the charging start current I 0 is 10 A, and the power supply voltage V is 300 V, the received power Pref is 15 k.
When receiving the instruction to set w (= 300 V × 50 A), the transistor Tr1 is commanded to energize 50 A, and
The thyristors Th1, Th2 and Th3 are turned on. As a result, the current flowing into the superconducting coils 19 and 20 changes as shown by the solid line I in FIG. 6, the current consumed by the resistor R2 changes as shown by the solid line II, and the total becomes 50 A as shown by the broken line III.

【0022】ところで、超電導コイル19のインダクタ
ンスを10Hとし、電流100Aが流れている状態で
は、その貯蔵エネルギーは1/2・10・(100)2
=50KJである。この状態から例えば電圧VB =30
0Vの直流電源12側に電力3KWを放電するには抵抗
R1=0.1Ωとして、この抵抗に平均10Aの電流を
流す必要がある。この場合は例えばサイリスタTh1を
オフしてサイリスタTh2をデューティ比1/Dでデュ
ーティ制御する。
By the way, when the superconducting coil 19 has an inductance of 10 H and a current of 100 A is flowing, the stored energy is 1/2 · 10 · (100) 2
= 50 KJ. From this state, for example, the voltage V B = 30
In order to discharge 3 KW of electric power to the 0V DC power supply 12 side, it is necessary to set the resistance R1 = 0.1Ω and to supply an average current of 10 A to this resistance. In this case, for example, the thyristor Th1 is turned off and the thyristor Th2 is duty-controlled at the duty ratio 1 / D.

【0023】上記のDは超電導コイル19を流れる電流
O 、放電電流IB として次式で決定する。
The above-mentioned D is determined by the following equation as a current I O flowing through the superconducting coil 19 and a discharge current I B.

【0024】D(t)≒IB /IO これによって、デューティ制御なしにサイリスタTh
1,Th2を共にオフした場合は図7(A)の実線Iに
示す如き電流が流れるのに対して、図7(B)の実線II
に示す如く略10Aの電流が流れる。これは図2のステ
ップS16で行なう回生時のデューティ制御も同様であ
る。このように、目標回生電力が超電導コイル19,2
0に受け入れ可能な電力を越えたとき、回生できない電
力が抵抗R2により消費されるため、上記回生できない
電力による回生ブレーキの減速度の低下が防止され、目
標減速度を得ることができる。
[0024] D (t) ≒ I B / I O Thus, thyristors without duty control Th
When both 1 and Th2 are turned off, the current flows as shown by the solid line I in FIG. 7 (A), while the solid line II in FIG. 7 (B) flows.
A current of about 10 A flows as shown in FIG. The same applies to the duty control during regeneration performed in step S16 of FIG. In this way, the target regenerative power is the superconducting coils 19, 2
When the electric power that can be accepted to 0 is exceeded, the electric power that cannot be regenerated is consumed by the resistor R2, so that the deceleration of the regenerative brake due to the electric power that cannot be regenerated is prevented from decreasing and the target deceleration can be obtained.

【0025】[0025]

【発明の効果】上述の如く、本発明の電気自動車の制動
装置によれば、目標回生電力を超電導コイルで回生でき
ないとき、回生できない電力が抵抗で消費され、減速度
の低下なく目標減速度を得ることができ、実用上きわめ
て有用である。
As described above, according to the braking system for an electric vehicle of the present invention, when the target regenerative electric power cannot be regenerated by the superconducting coil, the electric power that cannot be regenerated is consumed by the resistance, and the target deceleration is reduced without a decrease in deceleration. It can be obtained and is extremely useful in practice.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明装置の一実施例の回路構成図である。FIG. 1 is a circuit configuration diagram of an embodiment of a device of the present invention.

【図2】回生制御処理のフローチャートである。FIG. 2 is a flowchart of a regeneration control process.

【図3】ブレーキ特性を示す図である。FIG. 3 is a diagram showing a brake characteristic.

【図4】ブレーキ特性を示す図である。FIG. 4 is a diagram showing a brake characteristic.

【図5】本発明の動作を説明するための図である。FIG. 5 is a diagram for explaining the operation of the present invention.

【図6】本発明の動作を説明するための図である。FIG. 6 is a diagram for explaining the operation of the present invention.

【図7】デューティ制御を説明するための図である。FIG. 7 is a diagram for explaining duty control.

【符号の説明】[Explanation of symbols]

10 モータ 11 インバータ部 12 直流電源 14 電流制御部 15 平滑部 16 電力消費部 17,18 ブリッジ部 19,20 超電導コイル 22 制御部 DESCRIPTION OF SYMBOLS 10 motor 11 inverter part 12 DC power supply 14 current control part 15 smoothing part 16 power consumption part 17,18 bridge part 19,20 superconducting coil 22 control part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 油圧ブレーキと回生ブレーキとのブレー
キ力の和が電気自動車の目標減速度となるよう上記回生
ブレーキの目標回生電力を算出し、上記目標回生電力を
超電導コイルに回生する電気自動車の制動装置であっ
て、 上記超電導コイルと並列に設けられ、上記目標回生電力
が超電導コイルに回生できないとき、上記回生できない
電力を抵抗で消費させる電力消費部を有することを特徴
とする電気自動車の制動装置。
1. A target regenerative power of the regenerative brake is calculated so that the sum of the braking forces of the hydraulic brake and the regenerative brake is the target deceleration of the electric vehicle, and the target regenerative power of the electric vehicle that regenerates the target regenerative power in a superconducting coil. A braking device for an electric vehicle, which is provided in parallel with the superconducting coil and has a power consuming unit that consumes the non-regenerative electric power with a resistor when the target regenerative electric power cannot be regenerated in the superconducting coil. apparatus.
JP29343792A 1992-10-30 1992-10-30 Brake system for electric automobile Pending JPH06153310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29343792A JPH06153310A (en) 1992-10-30 1992-10-30 Brake system for electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29343792A JPH06153310A (en) 1992-10-30 1992-10-30 Brake system for electric automobile

Publications (1)

Publication Number Publication Date
JPH06153310A true JPH06153310A (en) 1994-05-31

Family

ID=17794755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29343792A Pending JPH06153310A (en) 1992-10-30 1992-10-30 Brake system for electric automobile

Country Status (1)

Country Link
JP (1) JPH06153310A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096652A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096652A (en) * 2014-11-14 2016-05-26 トヨタ自動車株式会社 vehicle

Similar Documents

Publication Publication Date Title
JP3330049B2 (en) Electric vehicle control device
US5557181A (en) Brake control apparatus for electric motor vehicle
JP3330050B2 (en) Electric vehicle control device
DE69628637T2 (en) SECURITY MECHANISM FOR AN ELECTRIC VEHICLE
JP3163622B2 (en) Electric car
KR970058982A (en) Vehicle volume. Method and apparatus for controlling power distribution, especially in mixed power vehicles
JP2008211952A (en) Power supply unit
JP2879486B2 (en) Braking and auxiliary power units for internal combustion engines
JP2011030363A (en) Vehicle power supply unit
JP2010213500A (en) Power controller, method, and program
US11850947B2 (en) Motor vehicle
JP2001204137A (en) Feeder circuit for vehicle
JP2003348712A (en) Fixed platform vehicle having charging function
JP3305612B2 (en) Electric vehicle control device
JPH069164A (en) Control method and device of elevator
CN111497617B (en) Power supply system for vehicle
JP3551586B2 (en) Capacitor discharge circuit
JPH06153310A (en) Brake system for electric automobile
JP2020167838A (en) Electric automobile
JP3413448B2 (en) Control device for brake chopper
JP2003047161A (en) Vehicle power supply device
KR100534795B1 (en) Apparatus for driving converter in hybrid electric vehicle and method of controlling the same
JP2888670B2 (en) Elevator regenerative power consumption method
JP2002281689A (en) Charging method and charging device of smoothing capacitor
JP2002281608A (en) Capacitor storage device for use in vehicle