JPH06152038A - Method and apparatus for converting optical phase or wavelength - Google Patents

Method and apparatus for converting optical phase or wavelength

Info

Publication number
JPH06152038A
JPH06152038A JP4294191A JP29419192A JPH06152038A JP H06152038 A JPH06152038 A JP H06152038A JP 4294191 A JP4294191 A JP 4294191A JP 29419192 A JP29419192 A JP 29419192A JP H06152038 A JPH06152038 A JP H06152038A
Authority
JP
Japan
Prior art keywords
semiconductor laser
optical
wavelength
type semiconductor
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4294191A
Other languages
Japanese (ja)
Inventor
Akira Takahashi
亮 高橋
Toshiaki Kagawa
俊明 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP4294191A priority Critical patent/JPH06152038A/en
Publication of JPH06152038A publication Critical patent/JPH06152038A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To provide a method capable of changing a phase or a wavelength of a signal pulse of a high bit rate and an apparatus thereof. CONSTITUTION:An optical pulse having at least two wavelengths is generated from a Fabry-Perot type semiconductor laser 11, and ultrashort, light is pulsed through a dispersion shift fiber 12, an optical fiber amplifier 13, a band-pass filter 14 and an anomalous dispersion fiber 15, and the obtained ultrashort light pulsed raw is emitted into a traveling wave type semiconductor laser 16 as excitation light together with signal light 18. Therefore, a decrease in carrier due to an induction amplification of the long wavelength side is replenished with an induction absorption of the short wavelength side, and a carrier density in an active layer is rapidly returned to a steady state, and a phase or a wavelength corresponding to a signal light pulse of a high bit rate can be converted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信号光の位相又は波長
を変化させる光位相又は波長変換方法並びにその装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical phase or wavelength conversion method and apparatus for changing the phase or wavelength of signal light.

【0002】[0002]

【従来の技術】図2は進行波型半導体レーザの一例を示
す断面図である。図中、1はn−InP基板、2はバン
ドギャップ1.1eVのn−InGaAsPクラッド
層、3はバンドギャップ0.8eVのノンドープInG
aAsP活性層、4はバンドギャップ1.1eVのp−
InGaAsPクラッド層、5はp−InGaAsオー
ミックコンタクト層、6はAuGeNi電極、7は導波
路上にストライプ状に形成されたAuZnNi電極、8
は導波路端面に形成されたSiOxの反射防止膜、9は
励起光パルス、10は信号光パルスである。ここで、信
号光強度は励起光強度に比べて極めて小さく、信号光に
よる自由キャリア変動は無視できるものとする。
2. Description of the Related Art FIG. 2 is a sectional view showing an example of a traveling wave type semiconductor laser. In the figure, 1 is an n-InP substrate, 2 is an n-InGaAsP cladding layer having a bandgap of 1.1 eV, and 3 is undoped InG having a bandgap of 0.8 eV.
aAsP active layer, 4 is p- with a band gap of 1.1 eV
InGaAsP clad layer, 5 p-InGaAs ohmic contact layer, 6 AuGeNi electrode, 7 AuZnNi electrode formed in stripes on the waveguide, 8
Is an anti-reflection film of SiOx formed on the end face of the waveguide, 9 is an excitation light pulse, and 10 is a signal light pulse. Here, it is assumed that the signal light intensity is extremely smaller than the pump light intensity and the free carrier fluctuation due to the signal light can be ignored.

【0003】前記電極6−7間には順方向電流が注入さ
れ、活性層3内部には充分な反射分布が形成されている
ため、利得領域内に波長を有する光は増幅を受ける。励
起光パルス9は利得領域内に波長を有しており、活性層
3を導波する際、反転分布からの誘導放出を誘起するた
め、自らは増幅を受けかつ活性層3内部の自由キャリア
を減少させながら伝搬する。このような反転分布の減少
は、自由キャリアプラズマ効果及びバンド間吸収スペク
トルの変化を通じて屈折率の変調をもたらす。このた
め、励起光パルス9と信号光パルス10とを同時に入射
させると、屈折率の変化に伴い、信号光パルス10の位
相又は波長が変化する。
A forward current is injected between the electrodes 6-7, and a sufficient reflection distribution is formed inside the active layer 3. Therefore, light having a wavelength within the gain region is amplified. The pumping light pulse 9 has a wavelength in the gain region, and when guided through the active layer 3, it induces stimulated emission from the population inversion, so that the pumping light pulse 9 itself is amplified and free carriers inside the active layer 3 are amplified. Propagate while decreasing. Such a decrease in population inversion leads to a modulation of the refractive index through the free carrier plasma effect and the change in the band-to-band absorption spectrum. Therefore, when the pumping light pulse 9 and the signal light pulse 10 are made to enter at the same time, the phase or wavelength of the signal light pulse 10 changes as the refractive index changes.

【0004】励起光パルス9による急激なキャリア変動
の時間内に信号光パルス10が存在する時、信号光パル
ス10はその屈折率nの時間変化dn/dtに比例して
波長がシフトする。また、励起光パルス9によるキャリ
ア変動が終了した直後に合わせて信号光パルス10を入
射させると、信号光パルス10は2πΔnL/λだけ位
相が変化する(ここで、Lは共振器長、λは信号光波長
である。)。
When the signal light pulse 10 exists within the time of abrupt carrier fluctuation due to the pumping light pulse 9, the wavelength of the signal light pulse 10 shifts in proportion to the time change dn / dt of the refractive index n thereof. When the signal light pulse 10 is made incident immediately after the carrier fluctuation due to the pumping light pulse 9 is finished, the phase of the signal light pulse 10 changes by 2πΔnL / λ (where L is the resonator length and λ is Signal light wavelength).

【0005】[0005]

【発明が解決しようとする課題】図3(A)(B)(C) は図2
中の点A、B、Cにおける活性層3内の励起光強度及び
キャリア密度の時間的変化を示す。ここで、励起光パル
ス9のパルス幅はキャリア寿命に比べてはるかに短いも
のとする。前述の通り、励起光パルス9は伝搬に伴って
その光強度を増幅させる。さらに、誘導遷移確率はその
電場に比例するため、励起光パルス9は入射端より出力
端で大きなキャリアの減少を引き起こす。減少したキャ
リアは電極からの注入により補充されるわけであるが、
その時のキャリア密度Nの時間変化は、単純にキャリア
寿命が一定であるとすると、 N(t) =Jτs /Qd−ΔNe−t/τs ……(1) で表され、キャリア寿命で決まる時定数を持つ。ここ
で、Jは注入電流密度、τs はキャリア寿命、Qは電荷
素量、dは活性層の厚みである。
Problems to be Solved by the Invention FIGS. 3A, 3B, 3C are shown in FIG.
The changes over time in the excitation light intensity and carrier density in the active layer 3 at points A, B, and C are shown. Here, the pulse width of the excitation light pulse 9 is much shorter than the carrier life. As described above, the excitation light pulse 9 amplifies its light intensity as it propagates. Furthermore, since the induced transition probability is proportional to the electric field, the excitation light pulse 9 causes a large reduction in carriers at the output end rather than the incident end. The reduced carrier is replenished by injection from the electrode,
If the carrier lifetime is simply constant, the time change of the carrier density N at that time is expressed by N (t) = Jτ s / Qd−ΔNe −t / τ s (1) and is determined by the carrier lifetime. It has a time constant. Here, J is the injection current density, τ s is the carrier lifetime, Q is the elementary charge, and d is the thickness of the active layer.

【0006】このため、励起光パルス9が入射される元
の状態に戻るためには数nsの時間を必要とし、高ビッ
トレートの信号光パルス10に対してクロストークの原
因となり、極めて大きな問題となる。また、プロトン打
ち込み等により再結合中心を増大させ、キャリア寿命を
減少させる方法もあるが、式(1) から分かるように一定
電流注入時における反転分布の減少を引き起こす上、そ
れほど顕著な向上が期待できなかった。
Therefore, it takes several ns to return to the original state where the pumping light pulse 9 is incident, which causes crosstalk with respect to the signal light pulse 10 having a high bit rate, which is an extremely serious problem. Becomes There is also a method of increasing the recombination center by implanting protons and reducing the carrier lifetime, but as can be seen from equation (1), it causes a decrease in population inversion at the time of constant current injection, and it is expected to improve significantly. could not.

【0007】本発明は前述した従来の問題点に鑑み、高
ビットレートの信号光パルスの位相又は波長を変化させ
ることが可能な方法並びにその装置を提供することを目
的とする。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide a method and apparatus capable of changing the phase or wavelength of a signal light pulse having a high bit rate.

【0008】[0008]

【課題を解決するための手段】本発明では前記目的を達
成するため、信号光及び励起光を進行波型半導体レーザ
に同時に入射し、該進行波型半導体レーザの活性層の屈
折率を変化させて前記信号光の位相又は波長を変換させ
る光位相又は波長変換方法において、ファブリペロー型
半導体レーザより多数の縦モードを含みかつ時間軸上で
は単一な光パルスを発生し、該光パルスを群速度の波長
分散が負の分散シフトファイバに通して各縦モードを時
間軸上で分離かつ圧縮し、光パルス列化し、該光パルス
列を光ファイバ増幅器を通して増幅し、バンドパスフィ
ルタを通して雑音を除去するとともに微弱なモード成分
を除去し、さらに該光パルス列を群速度の波長分散が正
の異常分散ファイバに通して超短光パルス列化し、該超
短光パルス列を励起光として進行波型半導体レーザに信
号光と同時に入射する光位相又は波長変換方法を提案す
る。また、信号光及び励起光を進行波型半導体レーザに
同時に入射し、該進行波型半導体レーザの活性層の屈折
率を変化させて前記信号光の位相又は波長を変換させる
光位相又は波長変換装置において、ファブリペロー型半
導体レーザ、群速度の波長分散が負の分散シフトファイ
バ、光ファイバ増幅器、バンドパスフイルタ、群速度の
波長分散が正の異常分散ファイバ及び進行波型半導体レ
ーザを備え、ファブリペロー型半導体レーザより発生さ
せた多数の縦モードを含みかつ時間軸上では単一な光パ
ルスを分散シフトファイバ、光ファイバ増幅器、バンド
パスフィルタ及び異常分散ファイバを順次通して超短光
パルス列化し、得られた超短光パルス列を励起光として
進行波型半導体レーザに信号光と同時に入射するように
なした光位相又は波長変換装置を提案する。
In order to achieve the above object, the present invention changes the refractive index of the active layer of a traveling wave type semiconductor laser by simultaneously injecting signal light and pumping light into the traveling wave type semiconductor laser. In the optical phase or wavelength conversion method for converting the phase or wavelength of the signal light by using a Fabry-Perot type semiconductor laser, a plurality of longitudinal modes are generated and a single optical pulse is generated on the time axis, and the optical pulses are grouped. The longitudinal modes are separated and compressed on the time axis by passing through a dispersion-shifted fiber with negative chromatic dispersion of velocity, converted into an optical pulse train, the optical pulse train is amplified through an optical fiber amplifier, and noise is removed through a bandpass filter. A weak mode component is removed, and the optical pulse train is passed through an anomalous dispersion fiber with positive chromatic dispersion of group velocity to form an ultrashort optical pulse train, and the ultrashort optical pulse train is excited. We propose an optical phase or wavelength conversion method simultaneously incident traveling wave type semiconductor laser to the signal light as the light. Further, an optical phase or wavelength conversion device for simultaneously injecting signal light and pumping light into a traveling wave semiconductor laser and changing the refractive index of the active layer of the traveling wave semiconductor laser to convert the phase or wavelength of the signal light. In which a Fabry-Perot type semiconductor laser, a dispersion shift fiber having a negative group velocity chromatic dispersion, an optical fiber amplifier, a bandpass filter, an anomalous dispersion fiber having a positive group velocity chromatic dispersion, and a traveling wave type semiconductor laser are provided. A single optical pulse containing a large number of longitudinal modes generated from a semiconductor laser on the time axis is passed through a dispersion shift fiber, an optical fiber amplifier, a bandpass filter, and an anomalous dispersion fiber in order to form an ultrashort optical pulse train. The optical phase or wavelength that is made to enter the traveling wave type semiconductor laser at the same time as the signal light using the generated ultrashort optical pulse train as the excitation light. To propose a conversion equipment.

【0009】[0009]

【作用】本発明によれば、ファブリペロー型半導体レー
ザより多数の縦モードを含みかつ時間軸上では単一な光
パルスを発生させ、該光パルスを群速度の波長分散が負
の分散シフトファイバに通して各縦モードを時間軸上で
分離かつ圧縮し、光パルス列化し、該光パルス列を光フ
ァイバ増幅器を通して増幅し、バンドパスフィルタを通
して雑音を除去するとともに微弱なモード成分を除去
し、さらに該光パルス列を群速度の波長分散が正の異常
分散ファイバに通して超短光パルス列化し、該超短光パ
ルス列を励起光として進行波型半導体レーザに信号光と
同時に入射して、長波長側の励起光の誘導増幅によるキ
ャリアの減少を、短波長側の励起光の誘導吸収により補
充し、活性層内キャリア密度を急速に定常状態に戻し
て、従来の電極からのキャリア注入のようにキャリア寿
命で支配されることなしに、高速化を可能とした。
According to the present invention, the Fabry-Perot type semiconductor laser generates a single optical pulse containing a larger number of longitudinal modes on the time axis, and the optical pulse has a negative dispersion chromatic dispersion of the group velocity. Each longitudinal mode is separated and compressed on the time axis through to form an optical pulse train, the optical pulse train is amplified through an optical fiber amplifier, noise is removed through a bandpass filter, and a weak mode component is removed. An optical pulse train is made into an ultrashort optical pulse train by passing through an anomalous dispersion fiber with a positive chromatic dispersion of group velocity, and the ultrashort optical pulse train is made incident on the traveling wave type semiconductor laser at the same time as the signal light as pumping light, and The decrease in carriers due to the induced amplification of the excitation light is replenished by the induced absorption of the excitation light on the short wavelength side, and the carrier density in the active layer is rapidly returned to the steady state. Without being governed by the carrier lifetime as Yaria injection and enables high speed.

【0010】[0010]

【実施例】図1は本発明の一実施例を示すもので、図
中、11はファブリペロー型半導体レーザ、12は群速
度の波長分散が負である正常分散を有する分散シフトフ
ァイバ、13は光ファイバ増幅器、14はバンドパスフ
ィルタ、15は群速度の波長分散が正の異常分散ファイ
バ、16は進行波型半導体レーザ、17は励起光、18
は信号光、19は出力光である。
FIG. 1 shows an embodiment of the present invention, in which 11 is a Fabry-Perot type semiconductor laser, 12 is a dispersion-shifted fiber having a normal dispersion in which the chromatic dispersion of the group velocity is negative, and 13 is An optical fiber amplifier, 14 is a bandpass filter, 15 is an anomalous dispersion fiber with positive chromatic dispersion of group velocity, 16 is a traveling wave type semiconductor laser, 17 is pumping light, 18
Is signal light, and 19 is output light.

【0011】まず、図4に従って本発明を実現する励起
光の作製法を説明する。ファブリペロー型半導体レーザ
11を利得スイッチ法により駆動すると、多数の縦モー
ドを含みかつ時間軸上では単一な光パルス21として出
力される。該光パルス21は正常分散を有する分散シフ
トファイバ12中を伝搬する際、ファイバの群速度分散
により各縦モードの光パルスは長波長側程遠く伝搬する
ため、時間軸上で分離されかつレッドシフトチャープが
補償され圧縮される(22)。
First, a method of producing excitation light for realizing the present invention will be described with reference to FIG. When the Fabry-Perot type semiconductor laser 11 is driven by the gain switch method, it is output as a single optical pulse 21 including many longitudinal modes and on the time axis. When the optical pulse 21 propagates in the dispersion shift fiber 12 having a normal dispersion, the optical pulse of each longitudinal mode propagates farther toward the long wavelength side due to the group velocity dispersion of the fiber, so that it is separated on the time axis and the red shift chirp is generated. Are compensated and compressed (22).

【0012】しかし、これらの各縦モードは活性層の利
得分布を反映し、波長軸上の強度に大きな差異を有する
上、モード間でのモード分配雑音により時間軸上でも揺
らぎが生じる。この光パルス列22を光ファイバ増幅器
13により増幅すると、そこでの利得飽和効果により各
モードの光強度のばらつきは波長軸上及び時間軸上で抑
制される(23)。
However, each of these longitudinal modes reflects the gain distribution of the active layer and has a large difference in intensity on the wavelength axis, and fluctuations also occur on the time axis due to mode distribution noise between modes. When this optical pulse train 22 is amplified by the optical fiber amplifier 13, variations in the light intensity of each mode are suppressed on the wavelength axis and the time axis by the gain saturation effect there (23).

【0013】さらに、バンドパスフィルタ14により、
光ファイバ増幅器13からの自然放出光雑音を除去する
とともに、時間軸上で先端の微弱なモードを捨て去る必
要がある(24)。これは、先端のパルスにより活性層
内部のキャリアを急激に変調させるため、強度が大きい
程好ましいからである。
Further, by the bandpass filter 14,
It is necessary to eliminate spontaneous emission noise from the optical fiber amplifier 13 and to discard the weak mode at the tip on the time axis (24). This is because the pulse at the tip abruptly modulates the carriers inside the active layer, and the higher the intensity, the better.

【0014】この光パルス列24を異常分散ファイバ1
5中に伝搬させると、自己位相変調効果によるプルーシ
フトチャープが発生し、ファイバが有する異常分散との
バランスにより光ソリトンが形成される。各モードの強
度がこのバランスを越えて大きくなると高次ソリトンを
誘起し、それらの干渉により最適長ファイバ端では極め
て細く圧縮されて出力される。さらに、分散シフトファ
イバ12とは分布の符号が逆であり、各モードの間隔も
短縮される。
The optical pulse train 24 is used as an anomalous dispersion fiber 1
Propagation in 5 causes a pull-shift chirp due to the self-phase modulation effect, and an optical soliton is formed in balance with the anomalous dispersion of the fiber. When the intensity of each mode becomes larger than this balance, higher-order solitons are induced, and due to their interference, they are extremely finely compressed and output at the end of the optimum long fiber. Further, the sign of the distribution is opposite to that of the dispersion shift fiber 12, and the interval between the modes is shortened.

【0015】前述したようにして、長波長側から時間軸
上に配列されたパルス幅及びパルス間隔が1ps以下の
励起光パルス列25が形成される。この時、パルス幅及
びパルス間隔は、分散シフトファイバ12及び異常分散
ファイバ15の分散値及び長さにより独立に調整するこ
とが可能である。
As described above, the pumping light pulse train 25 having a pulse width and a pulse interval of 1 ps or less arranged on the time axis from the long wavelength side is formed. At this time, the pulse width and the pulse interval can be independently adjusted by the dispersion value and the length of the dispersion shift fiber 12 and the anomalous dispersion fiber 15.

【0016】次に、前記励起光を用いた波長変換法につ
いて説明する。図5は励起光パルス列の波長とバンドフ
ィリングによる進行波型半導体レーザの利得スペクトル
との対応を示したものである。図5中の挿入図は時間軸
上に分離した光パルス列であるが、それぞれのパルスの
波長はその上の横軸の波長に一致しており、後方のパル
ス程、短波長になっている。
Next, a wavelength conversion method using the excitation light will be described. FIG. 5 shows the correspondence between the wavelength of the pumping light pulse train and the gain spectrum of the traveling wave type semiconductor laser due to band filling. The inset in FIG. 5 is an optical pulse train separated on the time axis. The wavelength of each pulse matches the wavelength on the abscissa above it, and the backward pulse has a shorter wavelength.

【0017】前述したように、励起光の第1パルスは内
部キャリアを増幅過程により消費するため、そのパルス
が導波路中を伝搬すると、キャリア密度分布は図6の上
側に示すようになる。信号光波長がシフトするのは、そ
のキャリア密度の時間変化によるものである。
As described above, since the first pulse of the pumping light consumes the internal carriers by the amplification process, when the pulse propagates in the waveguide, the carrier density distribution becomes as shown in the upper side of FIG. The shift of the signal light wavelength is due to the change over time of the carrier density.

【0018】さて、問題となるのはこのキャリアが消費
された状態から定常状態のキャリア密度の状態へ如何に
高速に復帰させるかである。導波路の入力点付近のA点
ではキャリアの減少が少なく、図5のaのような利得ス
ペクトルを有するため、第2、第3パルスではまだ若干
の利得を有し、吸収されることなく導波路中を伝搬する
が、さらに後方のより短波長のパルスはA点において吸
収される。このため、A点におけるキャリア密度はこの
誘導吸収によるキャリアで補充され、素早く定常状態へ
と移行する。
Now, what matters is how quickly the carrier is returned from the consumed state to the steady state carrier density. At point A near the input point of the waveguide, the decrease of carriers is small and the gain spectrum as shown in a of FIG. 5 is obtained. Therefore, the second and third pulses still have a slight gain and are not absorbed and are guided. A shorter wavelength pulse propagating in the waveguide but further behind is absorbed at point A. Therefore, the carrier density at point A is replenished with carriers due to this induced absorption, and the state rapidly shifts to a steady state.

【0019】B点になると、キャリア密度はかなり減少
し、利得スペクトルは図5のbのようになるため、吸収
される波長が長波長側へと移行し、それまで吸収されな
かったモードが吸収されるようになる。このため、同様
にしてB点におけるキャリア密度も急激に定常状態へと
移行する。C点ではもはや第2パルス以降は吸収される
波長領域に入り、活性層で吸収されるため、出力励起光
は図6の下側のようになる。
At point B, the carrier density is considerably reduced and the gain spectrum is as shown in FIG. 5b, so that the absorbed wavelength shifts to the long wavelength side, and the mode not absorbed up to that point is absorbed. Will be done. Therefore, similarly, the carrier density at point B also rapidly shifts to the steady state. At the point C, the output pumping light is as shown in the lower side of FIG. 6 because it enters the wavelength range where it is absorbed after the second pulse and is absorbed in the active layer.

【0020】このように、第1パルスで消費したキャリ
アを第2パルス以下が補充するわけであるが、全てが導
波路の入力端付近で吸収されるわけではなく、第2パル
ス以降が自らの波長に感応した場所で吸収されるため、
活性層全体で急激に定常状態へ移行するのである。
As described above, the carriers consumed in the first pulse are supplemented by the second pulse and below, but not all are absorbed in the vicinity of the input end of the waveguide, and the second and subsequent pulses are their own. As it is absorbed in the wavelength sensitive area,
The entire active layer rapidly shifts to a steady state.

【0021】[0021]

【発明の効果】以上説明したように本発明によれば、フ
ァブリペロー型半導体レーザより少なくとも2つの波長
を有する光パルスを発生させ、該光パルスを用いること
により冗長なキャリア寿命に支配されることなしに活性
層内のキャリア密度の回復を導波路全体に励起光自身に
引き起こさせるようになしたため、超高速、高繰り返し
信号光パルス列に対して位相又は波長変換を行うことが
できる。
As described above, according to the present invention, a Fabry-Perot type semiconductor laser generates an optical pulse having at least two wavelengths, and by using the optical pulse, the redundant carrier lifetime is controlled. Since the recovery of the carrier density in the active layer is caused in the entire waveguide by the pumping light itself, phase or wavelength conversion can be performed with respect to the ultrahigh-speed, high-repetition signal light pulse train.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光位相又は波長変換装置の一例を示す
構成図
FIG. 1 is a configuration diagram showing an example of an optical phase or wavelength conversion device of the present invention.

【図2】進行波型半導体レーザの一例を示す構成図FIG. 2 is a configuration diagram showing an example of a traveling wave type semiconductor laser.

【図3】図2中の点A、B、Cにおける活性層3内の励
起光強度及びキャリア密度の時間的変化を示す説明図
FIG. 3 is an explanatory diagram showing temporal changes in excitation light intensity and carrier density in the active layer 3 at points A, B, and C in FIG.

【図4】励起光の作製法の説明図FIG. 4 is an explanatory diagram of a method for producing excitation light.

【図5】励起光パルス列の波長と進行波型半導体レーザ
の利得スペクトルと対応関係を示す説明図
FIG. 5 is an explanatory diagram showing a correspondence relationship between a wavelength of a pumping light pulse train and a gain spectrum of a traveling wave type semiconductor laser.

【図6】活性層内のキャリア密度分布及び励起光の伝搬
による強度変化を示す説明図
FIG. 6 is an explanatory diagram showing a carrier density distribution in an active layer and an intensity change due to propagation of excitation light.

【符号の説明】[Explanation of symbols]

11…ファブリペロー型半導体レーザ、12…分散シフ
トファイバ、13…光ファイバ増幅器、14…バンドパ
スフィルタ、15…異常分散ファイバ、16…進行波型
半導体レーザ、17…励起光、18…信号光、19…出
力光。
11 ... Fabry-Perot type semiconductor laser, 12 ... Dispersion shift fiber, 13 ... Optical fiber amplifier, 14 ... Band pass filter, 15 ... Anomalous dispersion fiber, 16 ... Traveling wave type semiconductor laser, 17 ... Excitation light, 18 ... Signal light, 19 ... Output light.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 信号光及び励起光を進行波型半導体レー
ザに同時に入射し、該進行波型半導体レーザの活性層の
屈折率を変化させて前記信号光の位相又は波長を変換さ
せる光位相又は波長変換方法において、 ファブリペロー型半導体レーザより多数の縦モードを含
みかつ時間軸上では単一な光パルスを発生し、 該光パルスを群速度の波長分散が負の分散シフトファイ
バに通して各縦モードを時間軸上で分離かつ圧縮し、光
パルス列化し、 該光パルス列を光ファイバ増幅器を通して増幅し、バン
ドパスフィルタを通して雑音を除去するとともに微弱な
モード成分を除去し、 さらに該光パルス列を群速度の波長分散が正の異常分散
ファイバに通して超短光パルス列化し、 該超短光パルス列を励起光として進行波型半導体レーザ
に信号光と同時に入射することを特徴とする光位相又は
波長変換方法。
1. An optical phase in which signal light and pumping light are simultaneously incident on a traveling wave type semiconductor laser and the refractive index of the active layer of the traveling wave type semiconductor laser is changed to convert the phase or wavelength of the signal light. In the wavelength conversion method, a single optical pulse that includes a larger number of longitudinal modes than the Fabry-Perot semiconductor laser and is generated on the time axis is generated, and the optical pulse is passed through a dispersion-shifted fiber whose group velocity chromatic dispersion is negative. The longitudinal mode is separated and compressed on the time axis to form an optical pulse train, the optical pulse train is amplified through an optical fiber amplifier, noise is removed through a bandpass filter, and weak mode components are removed. An ultra-short optical pulse train is passed through an anomalous dispersion fiber with positive chromatic dispersion of velocity, and the ultra-short optical pulse train is used as pumping light to the traveling wave type semiconductor laser simultaneously with the signal light. Optical phase or wavelength conversion method characterized by morphism.
【請求項2】 信号光及び励起光を進行波型半導体レー
ザに同時に入射し、該進行波型半導体レーザの活性層の
屈折率を変化させて前記信号光の位相又は波長を変換さ
せる光位相又は波長変換装置において、 ファブリペロー型半導体レーザ、群速度の波長分散が負
の分散シフトファイバ、光ファイバ増幅器、バンドパス
フイルタ、群速度の波長分散が正の異常分散ファイバ及
び進行波型半導体レーザを備え、 ファブリペロー型半導体レーザより発生させた多数の縦
モードを含みかつ時間軸上では単一な光パルスを分散シ
フトファイバ、光ファイバ増幅器、バンドパスフィルタ
及び異常分散ファイバを順次通して超短光パルス列化
し、得られた超短光パルス列を励起光として進行波型半
導体レーザに信号光と同時に入射するようになしたこと
を特徴とする光位相又は波長変換装置。
2. An optical phase or an optical phase for simultaneously injecting signal light and pumping light into a traveling wave type semiconductor laser and changing the refractive index of the active layer of the traveling wave type semiconductor laser to convert the phase or wavelength of the signal light. The wavelength converter is equipped with a Fabry-Perot semiconductor laser, a dispersion shift fiber with a negative group velocity chromatic dispersion, an optical fiber amplifier, a bandpass filter, an anomalous dispersion fiber with a positive group velocity chromatic dispersion, and a traveling wave semiconductor laser. , An ultra-short optical pulse train that contains a large number of longitudinal modes generated from a Fabry-Perot semiconductor laser and passes a single optical pulse on the time axis sequentially through a dispersion shift fiber, an optical fiber amplifier, a bandpass filter, and an anomalous dispersion fiber. The resulting ultrashort optical pulse train was made to enter the traveling wave type semiconductor laser at the same time as the signal light as the excitation light. Light phase or wavelength conversion device according to symptoms.
JP4294191A 1992-11-02 1992-11-02 Method and apparatus for converting optical phase or wavelength Pending JPH06152038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4294191A JPH06152038A (en) 1992-11-02 1992-11-02 Method and apparatus for converting optical phase or wavelength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4294191A JPH06152038A (en) 1992-11-02 1992-11-02 Method and apparatus for converting optical phase or wavelength

Publications (1)

Publication Number Publication Date
JPH06152038A true JPH06152038A (en) 1994-05-31

Family

ID=17804498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4294191A Pending JPH06152038A (en) 1992-11-02 1992-11-02 Method and apparatus for converting optical phase or wavelength

Country Status (1)

Country Link
JP (1) JPH06152038A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327006B1 (en) * 2000-02-07 2002-03-06 박호군 Wavelength converter with increased extinction ratio and conversion bandwidth
KR100470869B1 (en) * 2000-05-23 2005-02-21 주식회사 케이티 Apparatus for converting wavelength of optical signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327006B1 (en) * 2000-02-07 2002-03-06 박호군 Wavelength converter with increased extinction ratio and conversion bandwidth
KR100470869B1 (en) * 2000-05-23 2005-02-21 주식회사 케이티 Apparatus for converting wavelength of optical signal

Similar Documents

Publication Publication Date Title
EP1148666B1 (en) Time-division multiplexed pump wavelengths resulting in ultra broad band, flat, backward pumped raman gain
US6356693B1 (en) Semiconductor optical pulse compression waveguide
EP1056173A2 (en) Method, device and system for waveform shaping of signal light
Futami et al. Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber
Ong et al. Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier
KR100519920B1 (en) High Speed Optical Processing including Saturable Absorber and Gain-Clamped Optical Amplifier
JPH06152038A (en) Method and apparatus for converting optical phase or wavelength
US6323992B1 (en) Wavelength converter and wavelength conversion method
US20040109690A1 (en) Optical control method and device
US20030174393A1 (en) Optical function element and device
JP2986604B2 (en) Semiconductor optical filter, method for controlling selected wavelength thereof, and optical communication system using the same
US6760141B2 (en) Semiconductor optical modulator and semiconductor optical device
EP0812041B1 (en) Optical short pulse reshaping device
JPH06265945A (en) Optical repeater
Lasaosa et al. Traveling-wave photodetectors with high power-bandwidth and gain-bandwidth product performance
JPH08146474A (en) Formation of light pulse and device therefor
JP4653940B2 (en) Light controller for communication
JPH04247676A (en) Surface light-emitting semiconductor mode lock laser
JP3503858B2 (en) Waveguide type optical-optical switch
Singh Semiconductor Optical Amplifier and Its Applications
US6374029B1 (en) Optical device
JP2787898B2 (en) Optical clock pulse generation circuit
JPH0795618B2 (en) Hikari Baraman Soliton Laser
JP2856209B1 (en) Optical pulse compression device and optical pulse transmission device and laser light generation device using the same
JPH1140889A (en) Optical pulse generation apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees