JPH06152015A - Short pulse optical functional device - Google Patents

Short pulse optical functional device

Info

Publication number
JPH06152015A
JPH06152015A JP30225892A JP30225892A JPH06152015A JP H06152015 A JPH06152015 A JP H06152015A JP 30225892 A JP30225892 A JP 30225892A JP 30225892 A JP30225892 A JP 30225892A JP H06152015 A JPH06152015 A JP H06152015A
Authority
JP
Japan
Prior art keywords
laser
light
pulse
medium
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30225892A
Other languages
Japanese (ja)
Inventor
Yuzo Ishida
祐三 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30225892A priority Critical patent/JPH06152015A/en
Publication of JPH06152015A publication Critical patent/JPH06152015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PURPOSE:To provide a device which stably generates sort pulse light in the femto second area by high power. CONSTITUTION:A Fabry-Perot laser oscillator 11 is provided with laser medium 1, a pair of high-dispersion Brewster prisms 4 and a saturable absorbing pigment jet 5. Continuous light beams 21 are incident on the resonator 11 from an exciting laser light source 12 for excitation, pulse train 22 which is in synchronism with constant continuous mode is generated and amplifying exciting pulse light 23 are projected from an amplifying laser light source 13 for the operation of the high gain amplifying medium. Thus, high power and stable short pulse light 24 in the femto-second area are generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超高速の精密光計測や
光通信、光デバイスの特性評価、超高速物理現象解明の
ための分光測定等の超短時間領域の量子エレクトロニク
ス分野において有用な、ピコ秒(ps=10-12秒)か
らフェムト秒(fs=10-15秒)の短パルス光を高出
力で且つ安定に発生する装置に関するものである。
INDUSTRIAL APPLICABILITY The present invention is useful in the field of quantum electronics in the ultra-short time region such as ultra-high-speed precision optical measurement, optical communication, optical device characteristic evaluation, and ultra-fast physical phenomenon spectroscopic measurement. , A picosecond (ps = 10 −12 seconds) to femtosecond (fs = 10 −15 seconds) short pulse light with high output and stably.

【0002】[0002]

【従来の技術】近年、各種のモード同期法やパルス圧縮
法等の短パルス光の発生技術の発展により、フェムト秒
領域の短パルス光が発生できるようになった。これま
で、このような超短時間領域の短パルス光の発生及びそ
の応用研究は、利得帯域の広い色素レーザーに限られて
いた。
2. Description of the Related Art In recent years, short pulsed light in the femtosecond region can be generated by the development of techniques for generating short pulsed light such as various mode locking methods and pulse compression methods. Until now, the generation of such short-pulse light in the ultra-short time region and its application research have been limited to dye lasers with a wide gain band.

【0003】現時点で得られている最も短いパルス光の
パルス幅は、色素レーザー系による6fsである(R.L.
Fork et al:Opt.Lett.,12,483(1987)参照)。この系で
は、まず、位相補償された衝突モード同期リング色素レ
ーザー(J.A.Valdmanis et al:Opt.Lett.,10,131(1985)
参照)によって、50fs前後の短パルス光を発生させ
る。次に、10fs以下の極短パルス光の発生はピーク
強度の低い通常の発振器からでは困難であるため、銅蒸
気レーザー励起による多重光路(6往復)色素増幅器
(W.H.Knox et al:J.Quant.Electron.,24,388(1988)参
照)やcwQスイッチNd:YAGレーザー励起色素増
幅器(Y.Ishida et al:Optics Commu.,68,295(1988)参
照)によって、ピーク出力を増強する(≧1MW)必要
がある。さらに、前記増幅されたパルス光を、石英光フ
ァイバ中の非線形性(光カー効果)と負分散素子(回折
格子対)とを組み合わせたパルス圧縮器で圧縮する、と
いう方法(H.Nakatuka et al:Phy.Rev.Lett.,47,910(19
81)、同じくW.J.Tomlinson et al:J.Opt.Soc.Am.,Bl,1
(1992)参照)がとられていた。
The pulse width of the shortest pulse light obtained at present is 6 fs by the dye laser system (RL
Fork et al: Opt. Lett., 12, 483 (1987)). In this system, first, a phase-compensated collision mode-locked ring dye laser (JAValdmanis et al: Opt. Lett., 10, 131 (1985)) is used.
The short pulse light of about 50 fs is generated by the reference. Next, since it is difficult to generate ultrashort pulsed light of 10 fs or less from an ordinary oscillator having a low peak intensity, a multiple optical path (6 round trips) dye amplifier (WHKnox et al: J.Quant. ., 24, 388 (1988)) or cwQ-switched Nd: YAG laser pumped dye amplifier (see Y. Ishida et al: Optics Commu., 68, 295 (1988)) to enhance the peak output (≧ 1 MW). Further, the amplified pulsed light is compressed by a pulse compressor that combines nonlinearity (optical Kerr effect) in a quartz optical fiber and a negative dispersion element (diffraction grating pair) (H. Nakatuka et al. : Phy.Rev.Lett., 47,910 (19
81), also WJ Tomlinson et al: J.Opt.Soc.Am., Bl, 1.
(See (1992)).

【0004】[0004]

【発明が解決しようとする課題】ところで、前述した色
素レーザー系においては、レーザー媒質である色素材料
(溶液)の劣化が著しく、レーザー発振器から100f
s以下の短パルス光を安定して維持するには頻繁に色素
溶液を交換し、その都度、極めて注意深い共振器の調整
を行う必要があった。また、利得持続時間の短い(≦5
ns)色素増幅器を用いる限り、被増幅パルス光と励起
パルス光との正確なタイミングの一致(≦1ns)が必
要であり、高出力の短パルス光を安定して得ることが容
易でなく、制御性、信頼性、操作性等において問題があ
った。
By the way, in the above-mentioned dye laser system, the dye material (solution) which is the laser medium is remarkably deteriorated, and the dye material 100 f is emitted from the laser oscillator.
In order to stably maintain the short pulse light of s or less, it was necessary to frequently exchange the dye solution and to adjust the resonator very carefully each time. In addition, the gain duration is short (≤5
ns) As long as a dye amplifier is used, accurate timing coincidence (≦ 1 ns) between the amplified pulsed light and the excitation pulsed light is required, and it is not easy to stably obtain a high-output short pulsed light, and control is possible. There were problems in terms of reliability, reliability and operability.

【0005】本発明は前記従来の問題点に鑑み、フェム
ト秒領域の短パルス光を高出力で且つ安定に発生し得る
装置を提供することを目的とする。
In view of the above-mentioned conventional problems, it is an object of the present invention to provide an apparatus capable of stably generating short pulse light in the femtosecond range with high output.

【0006】[0006]

【課題を解決するための手段】本発明では前記目的を達
成するため、レーザー媒質、位相補償用プリズム対及び
可飽和吸収媒質を含むファブリペロー型レーザー共振器
を被増幅光源とし、増幅用レーザー光源から発生する短
パルス光を前記被増幅光源内のレーザー媒質に集光する
ことによって、該レーザー媒質を高利得増幅媒質として
作用させる短パルス光機能装置を提案する。
In order to achieve the above object, the present invention uses a Fabry-Perot type laser resonator including a laser medium, a pair of phase compensation prisms and a saturable absorption medium as a light source to be amplified, and a laser light source for amplification. It proposes a short pulse light functional device which causes the laser medium to act as a high gain amplification medium by condensing the short pulse light generated from the laser medium in the light source to be amplified.

【0007】[0007]

【作用】本発明によれば、定常的連続モード同期状態の
パルス列を発生しているファブリペロー型レーザー共振
器に、増幅用レーザー光源から発生する短パルス光を集
光してこれを強励起することにより、利得スイッチング
による光増幅作用を引き起こして超短パルス光を発生す
る。
According to the present invention, the short pulse light generated from the laser light source for amplification is focused on the Fabry-Perot type laser resonator which generates the pulse train in the steady continuous mode-locked state, and this is strongly excited. As a result, an optical amplification effect due to gain switching is caused to generate ultrashort pulsed light.

【0008】[0008]

【実施例】以下、図面を参照して本発明を説明する。図
1は本発明の第1の実施例を示すもので、図中、1は連
続モード同期固体ソリトンレーザー媒質、ここではチタ
ンサファイア(Ti:Al23)ロッド(Y.Ishida et
al:Ultrafast Phenomena VII,Springer-Verlag,Berlin,
p.75(1990)、同じくN.Sarukura et al:Opt.Lett.,16,15
3(1991)参照)、2は全反射平面ミラー、3は透過率5
%の出力平面ミラー、4はSF6ガラスからなる位相補
償用の高分散ブリュースタープリズム対、5はHITC
I溶液からなる可飽和吸収色素ジェット、6は水晶板か
らなる波長選択素子、7,8,9,10は凹面ミラーで
あり、これらはファブリペロー型レーザー共振器11を
構成する。また、12は励起用レーザー光源、ここでは
平均出力6Wのcwアルゴンイオンレーザーである。ま
た、13は増幅用レーザー光源、ここでは出力エネルギ
ー約1mJのcwQスイッチNd:YAGレーザ(第2
高調波発生結晶付き)である。また、14は集光レン
ズ、15,16,17はミラーである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a first embodiment of the present invention, in which 1 is a continuous mode-locked solid soliton laser medium, here a titanium sapphire (Ti: Al 2 O 3 ) rod (Y. Ishida et.
al: Ultrafast Phenomena VII, Springer-Verlag, Berlin,
p.75 (1990), also N. Sarukura et al: Opt. Lett., 16,15.
3 (1991)), 2 is a total reflection plane mirror, 3 is a transmittance of 5
% Output plane mirror, 4 is a high dispersion Brewster prism pair made of SF 6 glass for phase compensation, and 5 is HITC
A saturable absorbing dye jet made of I solution, 6 a wavelength selecting element made of a quartz plate, 7, 8, 9, 10 concave mirrors, which constitute a Fabry-Perot type laser resonator 11. Further, 12 is a laser light source for excitation, here a cw argon ion laser having an average output of 6 W. Further, 13 is a laser light source for amplification, here a cwQ-switched Nd: YAG laser (second one with an output energy of about 1 mJ).
With a harmonic generation crystal). Further, 14 is a condenser lens, and 15, 16 and 17 are mirrors.

【0009】前記構成において、ファブリペロー型レー
ザー共振器11は励起用レーザー光源12からの連続光
21で励起され、定常的連続モード同期状態のパルス列
22を発生する。該パルス列22のパルス幅は、高分散
ブリュースタープリズム対4の群速度分散量(プリズム
間隔)を調節することにより、90fsから10psま
で可変できる。モード同期の繰り返し周期は、Tc=2
L/c(約12ns)で与えられる。ここで、Lは共振
器長、cは光速度である。
In the above structure, the Fabry-Perot type laser resonator 11 is excited by the continuous light 21 from the exciting laser light source 12 and generates the pulse train 22 in the steady continuous mode-locked state. The pulse width of the pulse train 22 can be varied from 90 fs to 10 ps by adjusting the group velocity dispersion amount (prism interval) of the high dispersion Brewster prism pair 4. The repetition cycle of mode synchronization is T c = 2
It is given by L / c (about 12 ns). Here, L is the resonator length, and c is the speed of light.

【0010】前記定常的連続モード同期状態のパルス列
22が発生している状態で、増幅用レーザー光源13よ
り発生する増幅用励起パルス光23を集光レンズ(f=
500mm)14及び凹面ミラー10を通して、レーザ
ー媒質1に集光する。この増幅用励起パルス光23とパ
ルス列22はレーザー媒質1中で空間的に一致させる。
増幅用レーザー光源13として用いたcwQスイッチN
d:YAGレーザーはコンパクトで高繰り返し(1〜1
0kHz)のできる固体レーザーであるため、従来、用
いられていた銅蒸気レーザー、エキシマレーザー等よ
り、保守、操作性が大幅に改善される。将来、高出力半
導体レーザーが出現すれば、さらにコンパクトな系にな
る。
In the state where the pulse train 22 in the steady continuous mode synchronization state is generated, the amplification pumping pulse light 23 generated from the amplification laser light source 13 is collected by a condenser lens (f =
(500 mm) 14 and the concave mirror 10 to focus on the laser medium 1. The amplification pump pulse light 23 and the pulse train 22 are spatially matched in the laser medium 1.
CwQ switch N used as amplification laser light source 13
The d: YAG laser is compact and highly repeatable (1 to 1
Since it is a solid-state laser capable of 0 kHz), maintenance and operability are significantly improved as compared with the conventionally used copper vapor laser, excimer laser and the like. If high-power semiconductor lasers emerge in the future, it will become a more compact system.

【0011】励起パワー密度が充分上がってくる(0.
1J/cm2)と、正味利得が生じ、共振器11内を往
復しているパルス列22は、レーザー媒質1を通過する
度に飽和効果が起こるレベルまで指数関数的に増幅され
てゆき、出力パルス光24となる。増幅用励起パルス光
(70ns幅)23が切れた後は、パルス列22は共振
器11内の光子の寿命時間(tc=400ns)で減衰
し、過度的緩和振動(10〜20μs)を経て、元の定
常的連続モード同期状態に回復する。
The pump power density is sufficiently increased (0.
1 J / cm 2 ), a net gain occurs, and the pulse train 22 that reciprocates in the resonator 11 is exponentially amplified to a level at which a saturation effect occurs each time when passing through the laser medium 1, and the output pulse is output. It becomes the light 24. After the pump pulse light for amplification (70 ns width) 23 is cut off, the pulse train 22 is attenuated by the lifetime of photons in the resonator 11 (t c = 400 ns), and undergoes transient relaxation oscillation (10 to 20 μs), The original steady continuous mode synchronization state is restored.

【0012】図2は実際に増幅されたパルス列の包絡線
波形を高速半導体光素子とオシロスコープで測定したも
のである。同図(a)は掃引速度を5μs/div.にして、
増幅された過度応答部分とそれに続く非増幅部分(定常
的連続モード同期状態)全体が分かるようにした波形で
ある。また、同図(b)は掃引速度を200ns/div.に
上げて、増幅された過度応答部分のみを拡大した波形で
ある。励起パワー密度が0.5J/cm2の時、150
倍の増幅度が容易に得られる。また、増幅後、約15μ
sで定常状態に達することが分かる。このことから、5
0kHz以上の高繰り返し増幅ができる。共振器11内
の光強度は外部に取り出されるものより10〜15倍高
い。従って、凹面ミラー9及び10間にキャビティーダ
ンパー素子を挿入すれば、出力をさらに1桁増大でき
る。
FIG. 2 shows the envelope waveform of an actually amplified pulse train measured with a high-speed semiconductor optical device and an oscilloscope. In the figure (a), the sweep speed is set to 5 μs / div.
The waveform is such that the amplified transient response portion and the subsequent non-amplified portion (steady continuous mode-locked state) are all visible. Further, FIG. 6B is a waveform in which the sweep speed is increased to 200 ns / div. And only the amplified transient response portion is enlarged. When the excitation power density is 0.5 J / cm 2 , 150
A double amplification is easily obtained. After amplification, about 15μ
It can be seen that a steady state is reached at s. From this, 5
High repetitive amplification of 0 kHz or more is possible. The light intensity in the resonator 11 is 10 to 15 times higher than that of the light extracted to the outside. Therefore, if a cavity damper element is inserted between the concave mirrors 9 and 10, the output can be further increased by one digit.

【0013】前記過度応答部分と被増幅部分のパルス幅
は第2高調波発生自己相関計で測定した。元のパルス光
が10ps領域の場合は増幅後も広がらない。100f
s以下のパルス光では共振器11内の分散効果と自己位
相変調効果が結合して300fsまで広がるが、この点
は後述するように、位相補償により圧縮できる。
The pulse widths of the transient response portion and the amplified portion were measured by a second harmonic generation autocorrelator. If the original pulsed light is in the 10 ps region, it will not spread even after amplification. 100f
With pulsed light of s or less, the dispersion effect in the resonator 11 and the self-phase modulation effect are combined and spread to 300 fs, but this point can be compressed by phase compensation, as described later.

【0014】同じ増幅媒質を用いても、従来の外部多重
光路(2〜4往復)では同程度の増幅度を得るのに、励
起パワー密度を約1桁(2J/cm2)上げる必要があ
り、本発明装置の高効率動作と有効性が良く示されてい
る。
Even if the same amplifying medium is used, it is necessary to raise the pumping power density by about one digit ( 2 J / cm 2 ) in order to obtain the same degree of amplification in the conventional external multiple optical path (2 to 4 round trips). The high efficiency operation and effectiveness of the device of the present invention are well demonstrated.

【0015】本実施例によれば、レーザー媒質が強励起
されている時間内では増幅媒質として作用することか
ら、従来の外部増幅法である多重光路・多段増幅器(P.
Georges et al:Opt.Lett.,16,144(1991)参照)や、再生
増幅器(J.Squier et al:Opt.Lett.,16,324(1991)参
照)のような複雑な光学系は全く不要となる。そのた
め、被増幅パルス列と励起パルス光とのタイミング制御
系も不要となる。また、本装置ではレーザー媒質に新固
体材料であるチタンサファイア(Ti:Al23)ロッ
ドを用いているため、色素溶液のような劣化の問題もな
い。本レーザー媒質は従来の固体媒質と異なり、色素よ
りさらに広い利得帯域幅(700〜1100nm)及び
高い飽和エネルギー(1J/cm2)を有しているた
め、広帯域波長可変化、短パルス化、高出力化に適して
いる。また、システムの大幅な簡素化によって安定性、
ビーム質の向上、信頼性、操作性、保守性等の問題点が
一挙に解決できる。また、多数の光学素子群(レンズ、
ミラー、偏光素子等)を必要としないため、それらの群
速度分散によるパルス広がり効果、光損失が無視でき、
超短パルス増幅に有利である。
According to this embodiment, since the laser medium acts as an amplifying medium during the time when it is strongly excited, the conventional multi-path / multi-stage amplifier (P.
Georges et al: Opt. Lett., 16, 144 (1991)) and a regenerative amplifier (see J. Squier et al: Opt. Lett., 16, 324 (1991)) do not require any complicated optical system. Therefore, a timing control system for the pulse train to be amplified and the pump pulse light is also unnecessary. Further, in this apparatus, since titanium sapphire (Ti: Al 2 O 3 ) rod, which is a new solid material, is used for the laser medium, there is no problem of deterioration as in the dye solution. Unlike the conventional solid medium, this laser medium has a wider gain bandwidth (700 to 1100 nm) and a higher saturation energy (1 J / cm 2 ) than the dye, and thus has a wide wavelength tunability, a short pulse, and a high pulse width. Suitable for output. In addition, the stability of the system is greatly simplified,
Problems such as improved beam quality, reliability, operability, and maintainability can be solved at once. In addition, a large number of optical elements (lens,
(Mirror, polarizing element, etc.) are not required, so the pulse broadening effect and optical loss due to their group velocity dispersion can be ignored,
It is advantageous for ultrashort pulse amplification.

【0016】図3は本発明の第2の実施例を示すもの
で、図中、第1の実施例と同一構成部分は同一符号をも
って表す。即ち、11はファブリペロー型レーザー共振
器、12は励起用レーザー光源、13は増幅用レーザー
光源、18は音響光学素子、19は位相補償(パルス幅
圧縮)のための回折格子対である。
FIG. 3 shows a second embodiment of the present invention. In the figure, the same components as those of the first embodiment are designated by the same reference numerals. That is, 11 is a Fabry-Perot type laser resonator, 12 is a laser light source for excitation, 13 is a laser light source for amplification, 18 is an acousto-optic device, and 19 is a diffraction grating pair for phase compensation (pulse width compression).

【0017】ファブリペロー型レーザー共振器11の出
力パルス光24は回折格子対19に入れる前に、以下の
ような手順で波形整形する。出力パルス光24は第1の
実施例で述べた増幅用励起パルス光23の繰り返し周波
数に同期して増幅される。増幅持続時間幅はレーザー媒
質1のエネルギー緩和時間及び増幅用励起パルス光23
の幅に依存して変わり、この系の条件下では1〜2μs
(パルスの数にして100〜200個相当)である。こ
の増幅部分だけ抽出するため、増幅幅に相当する電気的
ゲートパルスを高速光検出器(図示せず)から発生さ
せ、これを高速応答する音響光学素子18に印加する。
あるいは電気光学素子を用いた単一パルス抽出器によっ
て、パルス列の中から1本だけ取り出すこともできる。
これによって、出力パルス光24より増幅主要部分を分
離、選択したゲーテッドパルス光25を得ることができ
る。
The output pulsed light 24 of the Fabry-Perot type laser resonator 11 is shaped by the following procedure before entering the diffraction grating pair 19. The output pulsed light 24 is amplified in synchronization with the repetition frequency of the amplification pumping pulsed light 23 described in the first embodiment. The amplification duration is determined by the energy relaxation time of the laser medium 1 and the amplification pump pulse light 23.
It varies depending on the width of 1 to 2 μs under the condition of this system.
(Corresponding to 100 to 200 pulses). In order to extract only this amplified portion, an electrical gate pulse corresponding to the amplification width is generated from a high-speed photodetector (not shown), and this is applied to the acousto-optic element 18 that responds at high speed.
Alternatively, a single pulse extractor using an electro-optical element can be used to extract only one pulse train.
This makes it possible to obtain the gated pulse light 25 in which the main part of amplification is separated from the output pulse light 24 and selected.

【0018】一方、共振器11内を往復する出力パルス
光24は、レーザー媒質1を通過する際、凹面ミラー
9,10で集光されるため、高ピーク強度に達している
(>10GW/cm2)。同程度の光強度を外部増幅器
で得るためには、104倍以上の増幅度が必要である。
媒質内の光電場が強くなると、3次の非線形光学過程で
ある自己位相変調(カー効果)が誘起される。
On the other hand, the output pulsed light 24 reciprocating in the resonator 11 reaches the high peak intensity (> 10 GW / cm) because it is condensed by the concave mirrors 9 and 10 when passing through the laser medium 1. 2 ). In order to obtain the same light intensity with the external amplifier, the amplification degree of 10 4 times or more is required.
When the optical field in the medium becomes strong, self-phase modulation (Kerr effect), which is a third-order nonlinear optical process, is induced.

【0019】また、媒質長(2cm)が短くても共振器
11の往復効果により、その実効長は1〜2桁増すた
め、自己位相変調によるチャーピング(周波数変調)が
強く現れる。その結果、パルス光は充分なスペクトル広
がりを起こす。即ち、従来のような長い光ファイバを用
いて外部で自己位相変調を起こさせることなしに、短い
レーザー媒質1中で同様な作用が効果的に起こせる。し
かも、レーザー媒質1中での応答時間は高速(〜1f
s)である。高ピーク強度の基で広いスペクトル広がり
及びΔν(正の直線チャープ)を積極的に起こし、これ
を位相補償すれば、そのスペクトル広がりの逆数に相当
する超短パルス(10fs以下)がレーザーから直接、
発生可能となる。
Further, even if the medium length (2 cm) is short, the effective length of the resonator 11 increases by 1 to 2 digits due to the reciprocating effect of the resonator 11, so that the chirping (frequency modulation) due to the self-phase modulation strongly appears. As a result, the pulsed light causes sufficient spectral broadening. That is, the same effect can be effectively produced in the short laser medium 1 without causing external self-phase modulation by using a long optical fiber as in the prior art. Moreover, the response time in the laser medium 1 is fast (up to 1 f
s). If a broad spectrum broadening and Δν (positive linear chirp) are positively generated on the basis of high peak intensity and phase compensation is performed, an ultrashort pulse (10 fs or less) corresponding to the reciprocal of the broadening of the spectrum is directly emitted from the laser.
It can occur.

【0020】図4は共振器11から得られた出力パルス
光24(10ps)のスペクトルを示すもので、図中、
31は増幅用レーザー光源13からの光入射がない場
合、32は光入射がある場合をそれぞれ示す。なお、こ
の図では裾の様子を見るため、縦軸は対数目盛りで表示
してある。
FIG. 4 shows the spectrum of the output pulsed light 24 (10 ps) obtained from the resonator 11. In the figure,
Reference numeral 31 indicates a case where no light is incident from the amplification laser light source 13, and 32 indicates a case where light is incident. In this figure, the vertical axis is displayed on a logarithmic scale in order to see the condition of the tail.

【0021】エネルギー増幅度が30倍の場合、増幅後
のパルス光はスペクトル広がり(半値全幅で元の2〜3
倍、Δλ=2.3nm)を起こすとともに、高速応答に
よる正の直線チャープ特性を持つので、図3に示すよう
な負の分散特性を持つ回折格子対(1200l/mm)
19あるいはプリズム対を通過させるだけで、スペクト
ル広がりの逆数まで圧縮後のパルス光26のパルス幅
(tp=Δν-1)は圧縮される。スペクトル広がりに応
じた最適位相補償を行うために、回折格子対19の間隔
を調整する。この結果、フーリエ限界まで圧縮された時
の圧縮比は、約1/30になる。
When the energy amplification degree is 30 times, the pulsed light after amplification has a spectral spread (the original full width at half maximum is 2 to 3).
.Times..times..DELTA..lamda. = 2.3 nm) and has a positive linear chirp characteristic due to high-speed response, so that a diffraction grating pair (1200 l / mm) having a negative dispersion characteristic as shown in FIG.
The pulse width (t p = Δν −1 ) of the pulsed light 26 after compression is compressed to the reciprocal of the spectral spread simply by passing through 19 or a prism pair. The distance between the diffraction grating pair 19 is adjusted in order to perform optimum phase compensation according to the spectrum spread. As a result, the compression ratio when compressed to the Fourier limit becomes about 1/30.

【0022】図5は音響光学素子18により切り出した
ゲーテッドパルス光の一例を示すもので、掃引速度は5
00ns/div.である。図5から、高出力とともに生じ
たチャーピング光パルスを選択的に取出すことができ
た。なお、ゲーテッドパルス光から光ファイバ等の利用
による従来技術により圧縮パルス光が得られる。
FIG. 5 shows an example of gated pulsed light cut out by the acousto-optic device 18, and the sweep speed is 5
It is 00 ns / div. From FIG. 5, it was possible to selectively extract the chirping light pulse generated together with the high output. It should be noted that compressed pulsed light can be obtained from the gated pulsed light by a conventional technique using an optical fiber or the like.

【0023】[0023]

【発明の効果】以上説明したように本発明によれば、1
つのレーザー媒質をレーザー発振器及び増幅器、さらに
高速非線形光学素子として有効に作用させることがで
き、全システムを非常にシンプルにすることができ、従
って、固体・半導体レーザー等、全てのレーザー光源及
びそれらの集積素子に拡張でき、今後、広い波長領域に
わたって高出力な超短パルス光の発生が可能となる。
As described above, according to the present invention, 1
One laser medium can be effectively operated as a laser oscillator and an amplifier, and also as a high-speed nonlinear optical element, and the whole system can be made very simple. Therefore, all laser light sources such as solid-state / semiconductor lasers and their laser sources and their It can be expanded to integrated devices, and in the future it will be possible to generate high-power ultrashort pulsed light over a wide wavelength range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す構成図FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1の装置における出力パルス光の一例を示す
波形図
FIG. 2 is a waveform diagram showing an example of output pulsed light in the device of FIG.

【図3】本発明の第2の実施例を示す構成図FIG. 3 is a configuration diagram showing a second embodiment of the present invention.

【図4】図2の装置により得られた増幅前及び増幅後の
パルス光のスペクトルを示す図
4 is a diagram showing spectra of pulsed light before and after amplification obtained by the apparatus of FIG.

【図5】ゲーテッドパルス光の一例を示す波形図FIG. 5 is a waveform diagram showing an example of gated pulsed light.

【符号の説明】[Explanation of symbols]

1…レーザー媒質、2…全反射平面ミラー、3…出力平
面ミラー、4…高分散ブリュースタープリズム対、5…
可飽和吸収色素ジェット、6…波長選択素子、7,8,
9,10…凹面ミラー、11…ファブリペロー型レーザ
ー共振器、12…励起用レーザー光源、13…増幅用レ
ーザー光源、14…集光レンズ、15,16,17…ミ
ラー、18…音響光学素子、19…回折格子対、21…
連続光、22…被増幅パルス列、23…増幅用励起パル
ス光、24…出力パルス光、25…ゲーテッドパルス
光、26…圧縮パルス光。
1 ... Laser medium, 2 ... Total reflection plane mirror, 3 ... Output plane mirror, 4 ... High dispersion Brewster prism pair, 5 ...
Saturable absorption dye jet, 6 ... Wavelength selection element, 7, 8,
9, 10 ... Concave mirror, 11 ... Fabry-Perot type laser resonator, 12 ... Excitation laser light source, 13 ... Amplification laser light source, 14 ... Condensing lens, 15, 16, 17 ... Mirror, 18 ... Acousto-optic element, 19 ... Diffraction grating pair, 21 ...
Continuous light, 22 ... Pulse train to be amplified, 23 ... Excitation pulse light for amplification, 24 ... Output pulse light, 25 ... Gated pulse light, 26 ... Compressed pulse light.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 レーザー媒質、位相補償用プリズム対及
び可飽和吸収媒質を含むファブリペロー型レーザー共振
器を被増幅光源とし、増幅用レーザー光源から発生する
短パルス光を前記被増幅光源内のレーザー媒質に集光す
ることによって、該レーザー媒質を高利得増幅媒質とし
て作用させることを特徴とする短パルス光機能装置。
1. A Fabry-Perot type laser resonator including a laser medium, a pair of prisms for phase compensation and a saturable absorbing medium is used as a light source to be amplified, and short pulse light generated from the laser light source for amplification is used as a laser in the light source to be amplified. A short pulse light functional device characterized in that the laser medium is caused to act as a high gain amplifying medium by focusing on the medium.
【請求項2】 被増幅光源内のレーザー媒質を高速非線
形光学素子として作用させることを特徴とする請求項1
記載の短パルス光機能装置。
2. The laser medium in the light source to be amplified is caused to act as a high-speed nonlinear optical element.
Short pulse light functional device described.
JP30225892A 1992-11-12 1992-11-12 Short pulse optical functional device Pending JPH06152015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30225892A JPH06152015A (en) 1992-11-12 1992-11-12 Short pulse optical functional device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30225892A JPH06152015A (en) 1992-11-12 1992-11-12 Short pulse optical functional device

Publications (1)

Publication Number Publication Date
JPH06152015A true JPH06152015A (en) 1994-05-31

Family

ID=17906855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30225892A Pending JPH06152015A (en) 1992-11-12 1992-11-12 Short pulse optical functional device

Country Status (1)

Country Link
JP (1) JPH06152015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085446A2 (en) * 2002-04-04 2003-10-16 Lzh Laserzentrum Hannover E.V. Device for amplifying short, particularly ultrashort, laser pulses
US9431785B2 (en) 2014-01-23 2016-08-30 Electronics And Telecommunications Research Institute High power ultra-short laser device
US11695249B2 (en) 2020-12-04 2023-07-04 Electronics And Telecommunications Research Institute Femtosecond pulse laser apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085446A2 (en) * 2002-04-04 2003-10-16 Lzh Laserzentrum Hannover E.V. Device for amplifying short, particularly ultrashort, laser pulses
WO2003085446A3 (en) * 2002-04-04 2004-01-15 Lzh Laserzentrum Hannover Ev Device for amplifying short, particularly ultrashort, laser pulses
US9431785B2 (en) 2014-01-23 2016-08-30 Electronics And Telecommunications Research Institute High power ultra-short laser device
US11695249B2 (en) 2020-12-04 2023-07-04 Electronics And Telecommunications Research Institute Femtosecond pulse laser apparatus
US12003073B2 (en) 2020-12-04 2024-06-04 Electronics And Telecommunications Research Institute Femtosecond pulse laser apparatus

Similar Documents

Publication Publication Date Title
Dubietis et al. Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal
US20020001321A1 (en) Ultrashort-pulse laser machining system employing a parametric amplifier
Rolland et al. Amplification of 70 fs pulses in a high repetition rate XeCl pumped dye laser amplifier
Pessot et al. Chirped pulse amplification of 300 fs pulses in an alexandrite regenerative amplifier
US7924902B2 (en) Highly repetitive laser system having a compact design
Nees et al. Ensuring compactness, reliability, and scalability for the next generation of high-field lasers
Beaud et al. 110 fs Fourier-transform limited gaussian pulses from a Cr: LiSAF regenerative amplifier
JPH06152015A (en) Short pulse optical functional device
JP3171265B2 (en) Solid-state pulse laser device
French Ultrafast solid-state lasers
Clemens et al. Dual picosecond dye lasers synchronously pumped by a mode locked CW YAG laser
Dai Hung et al. Simple generation of 400–700 nm picosecond dye laser pulses with nanosecond laser pumping
Watanabe et al. Subpicosecond UV pulse generation for a multiterawatt KrF laser
Kawano et al. Generation of high-order rotational lines by four-wave Raman mixing using a high-power picosecond Ti: Sapphire laser
Isemann et al. Diode-pumped Cr: LiCAF fs regenerative amplifier system seeded by an Er-doped mode-locked fiber laser
Mataloni et al. High gain amplification of femtosecond pulses with low amplified spontaneous emission in a multipass dye cell
Akhmanov et al. Generation and amplification of ultrashort light pulses using excimer lasers
US6928090B1 (en) Device and process for mode-locking a laser
Nabekawa et al. High-average-power femtosecond KrF excimer laser
JPH02285688A (en) Saturable absorption filter for krf laser
Dai Hung et al. A compact Fabry-Perot tuned 1 ps dye laser
Hung et al. Tunable sub-100 femtosecond dye-laser pulses generated with a nanosecond pulsed pumping
Delfyett et al. Recent advances in high-power ultrafast mode-locked laser diodes
Alcock et al. Generation of 50 ps 308 nm pulses by means of truncated stimulated brillouin scattering
Goldberg et al. Synchronous mode-locked dye lasers for picosecond spectroscopy and nonlinear mixing