JPH06151799A - One-dimensional photosensor - Google Patents

One-dimensional photosensor

Info

Publication number
JPH06151799A
JPH06151799A JP4143888A JP14388892A JPH06151799A JP H06151799 A JPH06151799 A JP H06151799A JP 4143888 A JP4143888 A JP 4143888A JP 14388892 A JP14388892 A JP 14388892A JP H06151799 A JPH06151799 A JP H06151799A
Authority
JP
Japan
Prior art keywords
light
illumination
photoelectric conversion
windows
irregularity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4143888A
Other languages
Japanese (ja)
Inventor
Katsuyuki Fujikura
克之 藤倉
Yuji Kajiwara
勇次 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4143888A priority Critical patent/JPH06151799A/en
Publication of JPH06151799A publication Critical patent/JPH06151799A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To correct the quantity-of-light distribution of the illumination of a completely contact one-dimensional image sensor and to obtain the uniform photoelectric conversion output characteristics of the sensor. CONSTITUTION:An inclination is given to the aperture ratio of lighting windows 12, which are formed on a transparent glass substrate 11 and are used for taking-in light from an illumination, in the row direction of photoelectric conversion elements 3. In order to make an irregularity in the quantity of light of the illumination allow, the aperture area of the windows 12 is made small at a region having a large quantity of light and the aperture area is inversely made large at a region having a small quantity of light. When the quantity of light of the illumination and the aperture ratio of the windows 12 are assumed V and S, a one-dimensional photosensor is designed so as to hold the relation of VXS=K (a constant), whereby the quantity of light to reach a manuscript surface is held constant. Thereby, the output characteristic of the elements 3 can be made uniform and even though these is some irregularity in the quantity of light of the illumination, this irregularity can be corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一次元光センサに関し、
特に透明基板裏面から照明する完全密着型イメージセン
サに適した一次元光センサに関する。
FIELD OF THE INVENTION The present invention relates to a one-dimensional optical sensor,
In particular, the present invention relates to a one-dimensional optical sensor suitable for a perfect contact image sensor that illuminates from the back surface of a transparent substrate.

【0002】[0002]

【従来の技術】最近、ファクシミリ、イメージスキャナ
などの読み取りデバイスとして、原稿幅と光センサの素
子アレイ幅を1対1に対応させた密着イメージセンサが
実用化されている。密着イメージセンサは縮小結像系の
光路とその微妙な調整を必要とせず、装置の小型化に有
利で、経済性に優れるという特長を有する。
2. Description of the Related Art Recently, as a reading device such as a facsimile or an image scanner, a contact image sensor has been put into practical use in which the document width and the element array width of the optical sensor have a one-to-one correspondence. The contact image sensor does not require an optical path of a reduction imaging system and its fine adjustment, is advantageous in downsizing of the apparatus, and has an advantage of being economical.

【0003】図3(a),(b)に密着型イメージセン
サの基本構造を示す。図に於いて、透明ガラス基板1上
に開口部を有する採光窓2,光電変換素子3が少なくと
も設置され、この上に薄い保護ガラス板4を接着した完
全密着型のイメージセンサである。原稿5は保護ガラス
板4の上を直接接触させ摺動させる。透明ガラス基板1
の下部に設置されたLED7の照明光6が採光窓2を通
して原稿5に当り、その反射光が光電変換素子3に到達
して原稿5の画像信号を電気信号に変え読み出す。原稿
5は完全にイメージセンサに密着しているので、光路長
が短かく、小型に構成できる。光電変換素子3は例えば
8本/mmの密度で一例に並んでいるとすれば、採光窓
2は約100μm×50μmの大きさで、光電変換素子
3に近接し1個あるいは2個形成される。A4判長のイ
メージセンサであれば1728個あれいは3456個の
採光窓2が形成されることになる。
FIGS. 3A and 3B show the basic structure of the contact image sensor. In the figure, it is a perfect contact type image sensor in which at least a daylighting window 2 having an opening portion and a photoelectric conversion element 3 are installed on a transparent glass substrate 1, and a thin protective glass plate 4 is adhered on this. The original 5 is brought into direct contact with and slides on the protective glass plate 4. Transparent glass substrate 1
The illumination light 6 of the LED 7 installed at the lower part of the light strikes the document 5 through the lighting window 2, and the reflected light reaches the photoelectric conversion element 3 to convert the image signal of the document 5 into an electric signal and read it. Since the original 5 is completely in close contact with the image sensor, the optical path length is short and the original 5 can be made compact. For example, if the photoelectric conversion elements 3 are arranged at a density of, for example, 8 / mm, the lighting windows 2 have a size of about 100 μm × 50 μm, and one or two photoelectric conversion elements 3 are formed adjacent to the photoelectric conversion elements 3. . In the case of an image sensor of A4 size, 1728 or 3456 lighting windows 2 are formed.

【0004】[0004]

【発明が解決しようとする課題】このような従来の一次
元光センサに於いて、照明の光源光量分布は、そのまま
原稿面光量分布となり、照明の光量均一性が光センサの
感度ばらつきとなって出力される。出力ばらつきは最終
的に電気的補正をかけて均一化する必要があり、しかも
その補正範囲にも限界がある。
In such a conventional one-dimensional photosensor, the light amount distribution of the light source of the illumination becomes the light amount distribution of the document surface as it is, and the uniformity of the light amount of the illumination becomes the sensitivity variation of the optical sensor. Is output. It is necessary to finally make the output variations uniform by applying electrical correction, and the correction range is also limited.

【0005】通常、照明は低雑音化、小型化のために、
LED照明が用いられるが、LEDは基本的にチップを
実装するためにそのばらつきは全長にわたり±25%以
上の周期的な大きい値となる。さらにこのばらてきを小
さくするためにLEDチップを配列するピッチを小さく
すれば発熱量が大きくなり、光電変換特性に影響を与え
S/N比を小さくし鮮明な画像読み取りが困難になる
上、なによりもLEDチップを多く使用するためにコス
ト高になるという大きな問題があった。
[0005] Normally, in order to reduce noise and size of lighting,
Although LED illumination is used, since the LED is basically mounted on a chip, the variation thereof is a large periodic value of ± 25% or more over the entire length. Further, if the pitch for arranging the LED chips is reduced to reduce this variation, the amount of heat generated increases, which affects the photoelectric conversion characteristics and reduces the S / N ratio, making it difficult to read a clear image. However, there is a big problem that the cost is increased because many LED chips are used.

【0006】[0006]

【課題を解決するための手段】本発明の一次元光センサ
は、一面から照明光を受ける透明基板と、この透明基板
の多面上に形成され各々分離独立して直線上に設置され
た光電変換素子アレイと、この光電変換素子アレイに近
接して配置され、各光電変換素子毎に対応して開口した
採光窓を有する不透明薄膜層とから少なくとも構成され
る一次元光センサに於いて、前記照明光の光量(V)に
対応して、前記各光電変換素子に対応する前記採光窓の
開口率(S)をV×S=K(定数)の関係に選んだ前記
採光窓を備えることを特徴としている。
SUMMARY OF THE INVENTION A one-dimensional photosensor according to the present invention includes a transparent substrate which receives illumination light from one surface, and photoelectric conversions which are formed on multiple surfaces of the transparent substrate and are separately and independently installed on a straight line. In the one-dimensional photosensor, which comprises at least an element array and an opaque thin film layer which is arranged close to the photoelectric conversion element array and has a lighting window opened corresponding to each photoelectric conversion element, According to the light quantity (V) of the light, the aperture ratio (S) of the daylighting window corresponding to each of the photoelectric conversion elements is selected to satisfy the relationship of V × S = K (constant). I am trying.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明す
る。図1(a),(b)は本発明に係る一次元光センサ
の基本構造を示す概略平面図とLED照明の光量分布で
ある。
The present invention will be described below with reference to the drawings. 1A and 1B are a schematic plan view showing a basic structure of a one-dimensional photosensor according to the present invention and a light quantity distribution of LED illumination.

【0008】図において、透明ガラス板からなる透明基
板11の上面に光電変換素子3,採光窓12が一例に、
例えばA4判光センサであれば各1728個並べて隣接
して配置されている。透明基板の裏面には、LED7チ
ップが1列に配列されたLEDアレイが設置され、採光
窓12を通過して透明基板11上面の原稿面を照射す
る。この採光窓12は光電変換素子3と並べて同じ数量
を設置しているので、そのピッチ例えば8本/mmであ
れば0.125mmのピッチで設置される。LED7ア
レイは通常LEDチップを飛び飛びに並べて配置するの
で同図(a)に示したように周期的な光量むらが発生す
る。LED7アレイ1個に対し配置されるピッチにより
そのばらつきは異るが、例えば、±25%以上の大きな
光量むらがどうしても発生する。このために、採光窓1
2の寸法は光量の小さいところでは、可能なかぎり大き
くし、光量の大きいところでは採光窓12の開口を小さ
くするように相対させている。すなわち、平面的に採光
窓の副走査方向の開口寸法を軸方向に対し傾斜を持たせ
てアレイ化しLEDアレイの光量ばらつきを補正してい
る。例えば、最も光量の小さいところは0.125mm
×0.1mmだとすれば、最も光量の大きいところは
0.125mm×0.05mmの開口寸法とする。LE
Dアレイの光量をVとし、採光窓の面積をSとすれば、
V×S=K(定数)の関係を満足するように採光窓の面
積を決めてやれば良い。LEDアレイはLEDチップを
飛び飛びに実装するので、周期的に明暗を繰返す。この
明暗パターンに合わせて採光窓の寸法を決めてやれば原
稿面の光量は原理的に一定な値を示すようになる。光電
変換素子3の出力を電気的に補正する必要まなく、均一
性のある画像光出力が得られる。逆に、多少、LEDア
レイに光量ばらつきがあっても前記の条件が満足できれ
ば可能なかぎりLEDチップを少なくできる。したがっ
て、LEDチップの少ない構成が可能になり、安価なL
EDアレイを構成できる。また、発熱量が少なくなり温
度が高くなりS/Nを劣化させることもなくなる。
In the figure, the photoelectric conversion element 3 and the lighting window 12 are shown as an example on the upper surface of a transparent substrate 11 made of a transparent glass plate.
For example, in the case of an A4 size photosensor, 1728 pieces of each are arranged side by side. On the back surface of the transparent substrate, an LED array in which LED 7 chips are arranged in one row is installed, and the original surface on the upper surface of the transparent substrate 11 is illuminated through the lighting window 12. Since the same number of the lighting windows 12 are installed side by side with the photoelectric conversion elements 3, if the pitch is, for example, 8 lines / mm, they are installed at a pitch of 0.125 mm. In the LED7 array, the LED chips are usually arranged in a line and scattered, so that a periodic light amount unevenness occurs as shown in FIG. Although the variation varies depending on the pitch arranged for one LED7 array, a large light amount unevenness of ± 25% or more, for example, is inevitable. For this purpose, the lighting window 1
The size of 2 is set to be as large as possible in a place where the amount of light is small, and the opening of the lighting window 12 is made small in a place where the amount of light is large. That is, the aperture size of the daylighting window in the sub-scanning direction is planarly arranged with an inclination with respect to the axial direction to form an array, and variations in the light amount of the LED array are corrected. For example, the place with the smallest light intensity is 0.125 mm
If the size is × 0.1 mm, the area with the largest light amount has an opening size of 0.125 mm × 0.05 mm. LE
If the light quantity of the D array is V and the area of the lighting window is S,
The area of the lighting window may be determined so as to satisfy the relationship of V × S = K (constant). Since LED chips are mounted on the LED array in a scattered manner, light and dark are repeated periodically. If the size of the lighting window is determined according to the light-dark pattern, the light amount on the document surface will in principle have a constant value. A uniform image light output can be obtained without the need to electrically correct the output of the photoelectric conversion element 3. On the contrary, the number of LED chips can be reduced as much as possible if the above conditions are satisfied even if the LED array varies in light amount to some extent. Therefore, a configuration with a small number of LED chips is possible, and an inexpensive L
An ED array can be constructed. Further, the amount of heat generation is reduced, the temperature is increased, and the S / N is not deteriorated.

【0009】図2は本発明の第2の実施例を示す平面外
略図である。同図において、採光窓22の外径寸法はす
べて同じ寸法にし、採光窓内部に格子23を設置してい
る。この格子23の密度を軸方向に徐々に変化させ、L
ED照明光量と対応させている。すなわち、LEDアレ
イの光量の大きいところには採光窓内の格子数を多くし
て光量をし、逆に光の小さい所は格子数を少く、あるい
は零にする。
FIG. 2 is an out-of-plane schematic view showing a second embodiment of the present invention. In the figure, the outer diameters of the lighting windows 22 are all the same, and the grating 23 is installed inside the lighting windows. Gradually changing the density of the lattice 23 in the axial direction, L
It corresponds to the amount of ED illumination light. That is, when the amount of light of the LED array is large, the number of gratings in the lighting window is increased to increase the amount of light, and conversely, when the amount of light is small, the number of gratings is decreased or reduced to zero.

【0010】このような構成の一次元光センサは、第1
の実施例に示した効果は同様に得られる他、副走査方向
の採光密寸法は全素子に関して同一であるため、副走査
方向の分解能の劣化は発生しない。全長にわたり例えば
A4判であれば1728素子すべての素子に於いて、感
度の均一性が確保される。なお、上記の実施例において
は採光窓の開口径を可変、または開口寸法を同一にして
格子パターンの密度を可変とし、それぞれ開口面積をL
EDアレイ光量に対応させて変化させている。しかし、
これに限定されず、例えば、採光窓内をメッシュ上にし
たり、2列の採光窓列にしたりそれぞれを組み合わせた
場合でも有効であり、LED光量のばらつきを採光窓の
開口面積で補正すれば均一なLED光量の原稿面照度が
得られるようになる。また、LED照明に限らず、冷陰
極蛍光管など、端部での光を補正する場合にも適用でき
る。
The one-dimensional photosensor having such a structure is
In addition to the same effects as those of the embodiment, since the light-dense dimension in the sub-scanning direction is the same for all the elements, the deterioration of the resolution in the sub-scanning direction does not occur. For example, in the case of A4 size over the entire length, the uniformity of sensitivity is ensured in all 1728 elements. In the above embodiment, the opening diameter of the daylighting window is variable, or the opening size is the same, and the density of the lattice pattern is variable, and the opening area is L.
It is changed according to the light amount of the ED array. But,
The present invention is not limited to this, and it is effective, for example, when the inside of the lighting window is on a mesh, or when two lighting window rows are combined, and each of them is combined, and if the variation of the LED light amount is corrected by the opening area of the lighting window, it is uniform. Thus, the illuminance on the original surface with a large amount of LED light can be obtained. Further, the present invention can be applied not only to LED lighting, but also to the case of correcting light at an end portion such as a cold cathode fluorescent tube.

【0011】[0011]

【発明の効果】以上説明したように本発明は、照明の不
均一性を、透明基板上に設置した採光窓の開口面積を変
化させて対応させて補正均一化したため、S/Nの高
い、補正回路の簡略化が可能になる低価格の一次元光セ
ンサが得られる効果を有する。
As described above, according to the present invention, since the unevenness of illumination is corrected and uniformed by changing the opening area of the lighting window installed on the transparent substrate, the S / N ratio is high. There is an effect that a low-priced one-dimensional optical sensor in which the correction circuit can be simplified can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す平面概略図とLED照
明の光量分布。
FIG. 1 is a schematic plan view showing an embodiment of the present invention and a light quantity distribution of LED lighting.

【図2】本発明の他の実施例を示す平面概略図。FIG. 2 is a schematic plan view showing another embodiment of the present invention.

【図3】従来の密着型イメージセンサの基本構造を示す
断面概略図と平面概略図。
FIG. 3 is a schematic sectional view and a schematic plan view showing the basic structure of a conventional contact image sensor.

【符号の説明】[Explanation of symbols]

1 透明ガラス基板 2,12,22 採光窓 3 光電変換素子 4 保護ガラス基板 5 原稿 6 照明光 7 LED 11 透明基板 23 格子 1 Transparent Glass Substrate 2, 12, 22 Daylighting Window 3 Photoelectric Conversion Element 4 Protective Glass Substrate 5 Original 6 Illumination Light 7 LED 11 Transparent Substrate 23 Lattice

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一面から照明光を受ける透明基板と、こ
の透明基板の他面上に形成され、各々分離独立して直線
状に設置された光電変換素子アレイと、この光電変換素
子アレイに近接して配置され、各光電変換素子毎に対応
して開口した採光窓を有する不透明薄膜層とから少なく
とも構成される一次元光センサに於いて、前記照明光の
光量(V)に対応して、前記各光電変換素子に対応する
前記採光窓の開口率(S)をV×S=(定数)の関係に
選んだ前記採光窓を備えることを特徴とする一次元光セ
ンサ。
1. A transparent substrate that receives illumination light from one surface, a photoelectric conversion element array that is formed on the other surface of the transparent substrate and is linearly installed independently of each other, and is adjacent to the photoelectric conversion element array. In the one-dimensional photosensor at least composed of an opaque thin film layer having a lighting window opened corresponding to each photoelectric conversion element, corresponding to the light quantity (V) of the illumination light, A one-dimensional photosensor comprising the daylighting window in which the aperture ratio (S) of the daylighting window corresponding to each photoelectric conversion element is selected to satisfy the relationship of V × S = (constant).
JP4143888A 1992-06-04 1992-06-04 One-dimensional photosensor Withdrawn JPH06151799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4143888A JPH06151799A (en) 1992-06-04 1992-06-04 One-dimensional photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4143888A JPH06151799A (en) 1992-06-04 1992-06-04 One-dimensional photosensor

Publications (1)

Publication Number Publication Date
JPH06151799A true JPH06151799A (en) 1994-05-31

Family

ID=15349370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4143888A Withdrawn JPH06151799A (en) 1992-06-04 1992-06-04 One-dimensional photosensor

Country Status (1)

Country Link
JP (1) JPH06151799A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165748A (en) * 2008-01-18 2009-07-30 Sony Corp Biometric apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009165748A (en) * 2008-01-18 2009-07-30 Sony Corp Biometric apparatus
JP4640415B2 (en) * 2008-01-18 2011-03-02 ソニー株式会社 Biometric authentication device
US8306287B2 (en) 2008-01-18 2012-11-06 Sony Corporation Biometrics authentication system

Similar Documents

Publication Publication Date Title
US6072171A (en) Linear illumination device
US5101285A (en) Photoelectric conversion device having an improved illuminating system and information processing apparatus mounting the device
JP3202856B2 (en) Image reading device
US6268600B1 (en) Linear illumination device
JP2929550B2 (en) Optical sensor and image reading device
US4232219A (en) Photosensor
JPH07183994A (en) Image reader
JPH03161968A (en) Photoelectric transducer
US4570076A (en) Photoelectric converting device with position-related conversion efficiency
JPH07162586A (en) Light emitting device and contact image sensor unit using it
JPH06151799A (en) One-dimensional photosensor
JPS5846181B2 (en) Close-contact image sensor
JP3801759B2 (en) Linear light source unit
JPS6224984B2 (en)
JP2584773B2 (en) Image reading device
KR930006828B1 (en) Contact type image sensor
JPS60143059A (en) Original reader
JPS63310263A (en) Contact type image reader
JPH0617323Y2 (en) Full contact image sensor
JPH0766947A (en) Picture reader
JPS6117186B2 (en)
JPH10173862A (en) Close contact image sensor
JP2002314060A (en) Image sensor and its manufacturing method
JPS62186655A (en) Large sized original reader
JPS6253068A (en) Reader

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831