JPH06150912A - Manufacture of battery and electrode plate - Google Patents

Manufacture of battery and electrode plate

Info

Publication number
JPH06150912A
JPH06150912A JP4299512A JP29951292A JPH06150912A JP H06150912 A JPH06150912 A JP H06150912A JP 4299512 A JP4299512 A JP 4299512A JP 29951292 A JP29951292 A JP 29951292A JP H06150912 A JPH06150912 A JP H06150912A
Authority
JP
Japan
Prior art keywords
electrode plate
electrode
plate
diameter
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4299512A
Other languages
Japanese (ja)
Other versions
JP3151971B2 (en
Inventor
Shinji Tsuruya
伸二 鶴谷
Fumio Oo
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29951292A priority Critical patent/JP3151971B2/en
Publication of JPH06150912A publication Critical patent/JPH06150912A/en
Application granted granted Critical
Publication of JP3151971B2 publication Critical patent/JP3151971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To extend lifetime of a cutting die, and reduce production cost, regarding a method for cutting a long-sized electrode plate comprising an active material deposited on a core material of porous metal. CONSTITUTION:An electrode plate 1 is cut with rotary cutters B and C sliding on the top with each other, while being automatically fed on the cutters B and C under rotating motion. Or, When a lug section D is formed for continuously cutting the plate 1, a pair of rotary cutters are constituted to continuously cut the plate 1 in the condition of D1/D2 between 1.5 and 3, provided that D1 is a diameter of one rotary cutter in contact with a metal core material, and D2 is a diameter of the other rotary cutter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活物質を金属多孔質体か
らなる芯体に付着させた長尺状の電極板の製造法、なら
びにこの方法で得られる電極板を備えた電池に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an elongated electrode plate in which an active material is attached to a core made of a metal porous body, and a battery provided with the electrode plate obtained by this method. is there.

【0002】[0002]

【従来の技術】従来、非水電解質電池のぺースト式正極
板あるいは、アルカリ蓄電池のぺースト式負極パンチン
グメタルまたは、ラス状に加工された金属多孔体の芯体
に所定の活物質を充填・圧延させ電極原板を製作し、所
定形状に切断加工して得られる。
2. Description of the Related Art Conventionally, a paste-type positive electrode plate for a non-aqueous electrolyte battery, a paste-type negative electrode punching metal for an alkaline storage battery, or a core of a metal porous body processed into a lath shape is filled with a predetermined active material. It is obtained by rolling the electrode original plate and cutting it into a predetermined shape.

【0003】ここで電極原板の切断加工は、特開昭64
−52376号に記載のように、所定活物質を付着させ
た電極原板をスリット刃と固定刃の間で上下方向のプレ
スによって切断加工したり、あるいはレーザ光線を切断
エネルギーとして使用する試みがあった。
Here, the cutting process of the original electrode plate is described in JP-A-64
As described in JP-A-52376, there has been an attempt to cut an electrode original plate having a predetermined active material attached thereto by a vertical press between a slit blade and a fixed blade, or to use a laser beam as cutting energy. .

【0004】[0004]

【発明が解決しようとする課題】このような従来方法で
は、例えばスリット刃によって切断する場合、刃の磨耗
が激しく、また刃の強度を高めるために金型材を二次加
工して刃の部分の強度を高める必要があり、必然的に金
型コストが高価となり、また製造法上も連続的な工程で
はなくバッチシステムであるため生産コストも割高なも
のになる。また、金型の部分欠損等メンテナンス上にも
多々問題がある。また他の方法としてレーザ光線を使用
して切断する場合、レーザ発振装置が必要となり、巨額
な設備投資が必要となる。また電池用電極原板を切断す
る場合、活物質として金属酸化物、硫化物、ハロゲン化
物、あるいは黒鉛、炭素系の材料が使用されているた
め、レーザ光によって加熱切断されるときに、この近傍
の活物質が酸化されるため活物質の変質、あるいは燃焼
によって活物質の電気化学的容量が減少することが多々
あった。
In such a conventional method, for example, when cutting with a slit blade, the blade is heavily worn, and the die material is secondarily processed in order to increase the strength of the blade, and the blade portion is cut. Since it is necessary to increase the strength, the die cost is inevitably high, and the production cost is high because the manufacturing method is not a continuous process but a batch system. Further, there are many problems in maintenance such as partial damage of the mold. In addition, in the case of cutting by using a laser beam as another method, a laser oscillating device is required and a huge capital investment is required. When cutting the battery electrode original plate, metal oxides, sulfides, halides, graphite, or carbon-based materials are used as the active material, so when cutting by heating with laser light, Since the active material is oxidized, the electrochemical capacity of the active material often decreases due to deterioration or burning of the active material.

【0005】この問題を解決するため、断面が略H型形
状の一対の回転刃の擦り合せによって電極原板を自動的
に送りながら連続的に切断する製造法、他の方法として
は、断面略H型形状の一対の回転刃の擦り合せによっ
て、ミミ部を設けて電極原板を自動的に送りながら連続
的に切断する方法が試みられているが、この種の電極板
の構成が金属素材からなる金属多孔体と金属酸化物、硫
化物、炭素質からなる電池活物質という物性の全く異な
る材料から構成されているため、一対の回転刃によって
切断する際に、電極原板にかかる負荷は金属多孔体に当
接する回転刃と、電池活物質に当接する回転刃では必要
な加圧力が異なるため、同一径の回転刃で切断しようと
すると、蛇行したり、バリが多発したり寸法の不均一な
電極板を製造することが多々あった。
To solve this problem, a manufacturing method in which the electrode original plate is continuously cut while being automatically fed by rubbing a pair of rotary blades having a substantially H-shaped cross section, as another method, a cross section having a substantially H shape is used. A method has been tried in which a pair of rotary blades having a mold shape are rubbed together to continuously cut the electrode original plate by automatically feeding the electrode original plate, but this type of electrode plate is composed of a metal material. Since it is composed of a material having completely different physical properties such as a metal porous body and a battery active material composed of a metal oxide, a sulfide, and a carbonaceous material, when cutting with a pair of rotary blades, the load applied to the electrode original plate is a metal porous body. Since the required pressure is different between the rotating blade that contacts the blade and the rotating blade that contacts the battery active material, if you try to cut with a blade of the same diameter, the electrode will meander or have many burrs To make a board There were many.

【0006】[0006]

【課題を解決するための手段】この問題を解決するため
本発明は、断面略H型形状の一対の回転刃の擦り合せに
よって電極原板を自動的に送りながら切断する製造法に
おいて、電極原板の金属多孔体に当接する回転刃の径を
他方の面に当接する回転刃の径より大きくする。
In order to solve this problem, the present invention provides a method for manufacturing an electrode original plate in a manufacturing method in which the electrode original plate is automatically fed and cut by rubbing a pair of rotary blades having a substantially H-shaped cross section. The diameter of the rotary blade that contacts the porous metal body is made larger than the diameter of the rotary blade that contacts the other surface.

【0007】より詳しくは金属多孔体に当接する回転刃
の径をD1、他方の回転刃の径をD2としたとき、D1
2=1.5〜3.0となる範囲に設定したものであ
る。
More specifically, when the diameter of the rotary blade contacting the porous metal body is D 1 and the diameter of the other rotary blade is D 2 , D 1 /
It is set in the range of D 2 = 1.5 to 3.0.

【0008】[0008]

【作用】この製造方法により、活物質を充填付着させた
電極原板を回転刃で自動的に送りながら、バリ方向の一
定な電極板が必要な場合、あるいはバリ方向の相違する
電極板で良い場合のいずれにも、連続的に寸法精度を均
一な電極板に切断することが可能となり、製造コストが
安価となる。また連続的に極板を切断して、フープ状に
巻き取り機で巻き取ることが可能となるため、この種の
極板を備えた電池の生産工程に組み込む場合でも、この
フープを電池生産ラインにそのまま供給することによっ
て、電池生産ラインの自動化・合理化も図れる。
With this manufacturing method, when the electrode plate having the active material filled and attached is automatically fed by the rotary blade and the electrode plate having a constant burr direction is required, or when the electrode plates having different burr directions are acceptable. In any of these cases, it is possible to continuously cut the electrode plate with uniform dimensional accuracy, and the manufacturing cost becomes low. In addition, since it is possible to continuously cut the electrode plate and wind it into a hoop with a winder, even if this hoop is incorporated into the production process of a battery equipped with this type of electrode plate, this hoop can be used in a battery production line. It can be automated and rationalized for the battery production line by directly supplying the battery.

【0009】[0009]

【実施例】以下、本発明の一実施例を図2(a)、
(b)とともに説明する。
EXAMPLE An example of the present invention will be described below with reference to FIG.
It will be described together with (b).

【0010】図2(a)は、本発明の回転刃によって電
極原板を切断している状態を示す正面要部断面図であ
る。図2(b)はその側面図である。電極板1は化学・
電解二酸化マンガンを主体に導電材として黒鉛、および
結着剤としてフッ素樹脂を含有したもので、正極の活物
質を構成している。この活物質1aは厚みが金属多孔体
からなる芯体1b、具体的にはラス加工を施したニッケ
ル材に充填している。電極板は所定の巾、所定の取り数
に断面略H型形状の一対の回転刃B、Cによって電極原
板を回転刃で自動的に矢印の方向に送りながら切断加工
される。この方式の場合、隣接する回転刃間にミミ部を
設けていないため、切断加工された極板のバリ方向は極
板の切断位置によって相異なるが、材料歩留まりとして
は良好なものとなる。
FIG. 2 (a) is a sectional view of the main part of the front view showing a state in which the electrode original plate is being cut by the rotary blade of the present invention. FIG. 2B is a side view thereof. Electrode plate 1 is chemical
The main component is electrolytic manganese dioxide, which contains graphite as a conductive material and fluororesin as a binder, and constitutes the active material of the positive electrode. The active material 1a is filled in a core body 1b having a thickness of a metal porous body, specifically, a lath-processed nickel material. The electrode plate is cut by a pair of rotary blades B and C having a substantially H-shaped cross section with a predetermined width and a predetermined number of pieces, while the electrode original plate is automatically fed by the rotary blade in the direction of the arrow. In the case of this method, since the cut portion is not provided between the adjacent rotary blades, the burr direction of the cut electrode plate is different depending on the cutting position of the electrode plate, but the material yield is good.

【0011】図3(a)、(b)は他の発明の実施例を
示すもので、図3(a)は電極原板を切断している状態
を示す正面要部断面図、図3(b)はその側面図であ
る。電極原板の切断時にミミ部を設け、切断加工された
電極板の切断バリ方向がすべて同一方向になる製造法で
ある。この方法を採用するのは、特に電極体からの切断
部におけるバリによってセパレーター等の破損が容易に
生ずるような電池、例えば、セパレーター材料として、
厚みが数十ミクロンの合成樹脂フィルムを使用するよう
な二酸化マンガン・リチウム電池等の場合この方法によ
って製造された電極板を使用することによってセパレー
ターの破損に起因する内部短絡の防止が図れる。
FIGS. 3 (a) and 3 (b) show another embodiment of the invention. FIG. 3 (a) is a front sectional view showing a state in which an electrode original plate is cut, and FIG. ) Is a side view thereof. This is a manufacturing method in which a cut portion is provided when the electrode original plate is cut, and the cutting burr directions of the cut electrode plate are all in the same direction. Adopting this method, in particular, a battery in which a separator or the like is easily damaged by burrs in a cut portion from the electrode body, for example, as a separator material,
In the case of a manganese dioxide / lithium battery or the like which uses a synthetic resin film having a thickness of several tens of microns, an internal short circuit due to breakage of the separator can be prevented by using the electrode plate manufactured by this method.

【0012】図2、3において、同一材からなる一対の
回転刃において回転刃の径は、金属多孔体1bに当接す
る回転刃Cの径をD1、活物質1aに当接回転刃Bの径
をD2とした時D1/D2=1.5〜3となる範囲のもの
で構成されている。なおD1/D2=1.5〜3としたの
は諸種実験した結果から見出したもので、この種の電池
の電極板の寸法、材料構成のものであれば問題なく適用
できる。またこの種の実験結果は電極板の寸法として
は、厚みが0.2〜0.6mm、巾15〜45mm、金属多
孔体としては、厚みが0.05〜0.2mm、巾100〜
250mmで材料としてニッケル、アルミ、銅、鉄、ステ
ンレス、チタンあるいはこれらの合金で、活物質として
は前述したような、二酸化マンガン、クロム、鉄、コバ
ルト、モリブデン等の金属酸化物、ハロゲン化物、硫化
物、あるいはこれらの複合酸化物、フッ化黒煙、活性炭
等の炭素材料であれば同様の効果があることが判明して
いる。なお、D1/D2=1.5〜3が適当な理由として
は、1.5以下であれば、金属芯体部分に回転刃が当接
する際に、金属同志が接触するため、固定圧力が弱まり
すべりの現象が生じ、電極原板を直線的に切断すること
ができない。3以上であれば固定圧力が大きすぎるた
め、金属芯体が圧縮変形し、表面硬化の現象を生じる回
転刃との密着界面で逃げの現象が発生し、密着力が逆に
低下するため電極板を直線的に切断することが困難とな
るものと考えられる。
2 and 3, the diameter of the rotary blade of a pair of rotary blades made of the same material is D 1 which is the diameter of the rotary blade C which abuts the porous metal body 1b, and the diameter of the rotary blade B which abuts the active material 1a. When the diameter is D 2 , it is configured such that D 1 / D 2 = 1.5 to 3. The fact that D 1 / D 2 = 1.5 to 3 was found from the results of various experiments, and it can be applied without any problem as long as it has the dimensions and material configuration of the electrode plate of this type of battery. The results of this type of experiment show that the electrode plate has a thickness of 0.2 to 0.6 mm and a width of 15 to 45 mm, and a porous metal body has a thickness of 0.05 to 0.2 mm and a width of 100 to 100 mm.
At 250 mm, the material is nickel, aluminum, copper, iron, stainless steel, titanium or an alloy thereof, and the active material is the metal oxide, halide, sulfide of manganese dioxide, chromium, iron, cobalt, molybdenum, etc. as described above. It has been found that the same effect can be obtained by using a carbon material such as a substance, a complex oxide thereof, black fluorinated smoke, or activated carbon. The reason why D 1 / D 2 = 1.5 to 3 is appropriate is that if the ratio is 1.5 or less, when the rotary blade comes into contact with the metal core body, the metals come into contact with each other, so that the fixing pressure is fixed. However, the phenomenon of slippage occurs and the electrode original plate cannot be cut linearly. If it is 3 or more, the fixing pressure is too large, the metal core is compressed and deformed, and the phenomenon of escape occurs at the contact interface with the rotating blade that causes the phenomenon of surface hardening, and the adhesion force decreases conversely, so the electrode plate It is thought that it will be difficult to cut straight lines.

【0013】図1は、本発明の具体的な実効を比較する
ために構成した二酸化マンガン・リチウム電池を示し、
1は二酸化マンガンを主活物質とする正極合剤をニッケ
ルのラス板からなる極板芯体に充填した電極原板を図3
に示す本発明の方法で所定の寸法に切断した後、乾燥さ
せたものである。4は芯体1と同材質からなる正極リー
ド板で、芯体にスポット溶接したものである。負極板2
は金属リチウムからなり、その片面には負極集電体5が
反応効率を考慮して電極体Aを構成したときに電極体の
最外周に位置するように圧着されている。セパレーター
3はその厚みが、25〜50μmのポリエチレン、ポリ
プロピレンからなる微孔性フィルムシートからなり正・
負極板1、2よりもやや幅の広い帯状に裁断したもので
ある。
FIG. 1 shows a manganese dioxide lithium battery constructed to compare the specific effects of the present invention.
Reference numeral 1 shows an electrode original plate in which a positive electrode mixture containing manganese dioxide as a main active material is filled in an electrode plate core body made of a nickel lath plate.
After being cut to a predetermined size by the method of the present invention shown in FIG. Reference numeral 4 is a positive electrode lead plate made of the same material as the core body 1, which is spot-welded to the core body. Negative electrode plate 2
Is made of metallic lithium, and the negative electrode current collector 5 is pressure-bonded to one surface of the negative electrode current collector 5 so as to be located at the outermost periphery of the electrode body when the electrode body A is formed in consideration of reaction efficiency. The separator 3 is made of a microporous film sheet made of polyethylene or polypropylene having a thickness of 25 to 50 μm.
It is cut into a strip shape that is slightly wider than the negative electrode plates 1 and 2.

【0014】本実施例では厚みが28μmのポリエチレ
ン微孔膜を使用した。次にこれらの正・負極板1、2を
渦巻状に巻回し電極体Aを構成し、電極体から突出して
いる正極リード板4を内側に折り曲げ、負極集電体5は
そのリード部を下部絶縁板7を介して電極体の内径方向
に折り曲げる。その後ケース8に前記極板体を挿入し、
上部絶縁板6を装着して、ケース8の上部に内径方向に
突出させた段部を形成させる。ポリカーボネイト等を溶
媒とし、溶質として過塩素酸リチウムを用いた有機電解
液を注入し、封口板9を装着してケース8の開口部をカ
シメ封口することによって本発明に係わる電池の組み立
てを完了する。
In this example, a polyethylene microporous membrane having a thickness of 28 μm was used. Next, the positive and negative electrode plates 1 and 2 are spirally wound to form an electrode body A, and the positive electrode lead plate 4 protruding from the electrode body is bent inward, and the negative electrode current collector 5 has its lead portion at the bottom. The electrode body is bent through the insulating plate 7 in the inner diameter direction. After that, insert the electrode plate body into the case 8,
The upper insulating plate 6 is attached, and a step portion that projects in the inner diameter direction is formed on the upper portion of the case 8. The assembly of the battery according to the present invention is completed by injecting an organic electrolytic solution using lithium perchlorate as a solute and using polycarbonate as a solvent, attaching a sealing plate 9 and caulking and sealing the opening of the case 8. .

【0015】ここで、図3に示す方法で自動的に送りな
がら本発明の範囲にある一対の回転刃による製造法と比
較例の範囲の製造法で得られた正極極板を使用して、前
述の二酸化マンガン・リチウム電池をそれぞれ5000
個製造し、本発明品と比較品の内部短絡発生数および、
常温において1000Ωの抵抗放電試験を実施したとき
の放電容量の平均値(N=10)と最大・最小実容量値
を比較した。結果を表1に示す。
Here, using the positive electrode plate obtained by the manufacturing method with a pair of rotary blades within the scope of the present invention and the manufacturing method within the range of the comparative example while automatically feeding by the method shown in FIG. Each of the above manganese dioxide / lithium batteries is 5000
Individually manufactured, the number of internal short circuit occurrence of the product of the present invention and the comparative product,
The average value (N = 10) of the discharge capacities when the resistance discharge test of 1000Ω was performed at room temperature and the maximum and minimum actual capacity values were compared. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】また図2、図3に示すミミ部有無の本発明
の切断加工方法と従来のスリット刃と固定刃によるプレ
ス方式による切断加工方法の場合の金型の命数を比較し
た結果を表2に示す。なお、実験に供した金型の材料と
しては、いずれも通常のハイス鋼で実施した。
Table 2 shows the results of comparing the lives of the dies in the cutting method of the present invention with or without a spot shown in FIGS. 2 and 3 and the conventional cutting method using the slit blade and the fixed blade. Shown in. As the material of the mold used in the experiment, ordinary high-speed steel was used.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】以上のように本発明によれば、電極原板
を所定間隔の回転切り刃によって任意の極板幅に連続し
て切断加工できるとともに、回転刃と回転刃の間にミミ
部を設けるような設定で電極板を切断することによっ
て、切断バリが同一方向に形成するような極板を連続的
に製造でき、特に切断バリによって、悪影響を及ぼすよ
うな電池系の極板切断において極めて有効である。ま
た、金型の命数、およびこの種の極板を使用して、他方
の活物質からなる極板をセパレーターを介して巻回した
電極体を使用して構成される電池の製造工程の合理化が
図れるものである。
As described above, according to the present invention, the electrode original plate can be continuously cut to a desired electrode plate width by the rotary cutting blades at the predetermined intervals, and the mime portion is formed between the rotary blades. By cutting the electrode plate with the setting as provided, it is possible to continuously manufacture an electrode plate in which cutting burrs are formed in the same direction, and especially when cutting the electrode plate of the battery system that adversely affects the cutting burr. It is valid. Also, the life of the mold and the rationalization of the manufacturing process of the battery configured by using the electrode plate in which the other electrode plate made of the active material is wound around the separator using the electrode plate of this type can be achieved. It can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で得られた電極板を使用した電池
の断面図
FIG. 1 is a sectional view of a battery using an electrode plate obtained by the method of the present invention.

【図2】(a)本発明の電極原板の切断状態を示す正面
要部断面図 (b)本発明の電極原板の切断状態を示す側面図
FIG. 2 (a) is a sectional view of an essential part of the front surface showing a cut state of an electrode base plate of the present invention. (B) A side view showing a cut state of the electrode base plate of the present invention.

【図3】(a)本発明の他の方法による、電極原板の切
断状態を示す正面要部断面図 (b)本発明の他の方法による、電極原板の切断状態を
示す側面図
FIG. 3 (a) is a sectional view of a front main part showing a cut state of an electrode original plate according to another method of the present invention. (B) A side view showing a cut state of an electrode original plate according to another method of the present invention.

【符号の説明】[Explanation of symbols]

1 正極板 1a 正極活物質 1b 金属多孔体(芯体) 2 負極板 3 セパレーター 4 正極リード板 5 負極集電体 6 上部絶縁板 7 下部絶縁板 8 ケース 9 封口板 A 電極体 B 回転刃 C 〃 D ミミ部 DESCRIPTION OF SYMBOLS 1 Positive electrode plate 1a Positive electrode active material 1b Metal porous body (core body) 2 Negative electrode plate 3 Separator 4 Positive electrode lead plate 5 Negative electrode current collector 6 Upper insulating plate 7 Lower insulating plate 8 Case 9 Sealing plate A Electrode body B Rotating blade C〃 D Mimi part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】活物質を金属多孔体からなる芯体に付着さ
せた長尺状の電極板を、断面略H型形状の一対の回転刃
の擦り合せによって、連続的に送りながら切断する電極
板の製造法であって、金属多孔体に接する回転刃の径を
他方の回転刃の径に較べ大きくしたことを特徴とする電
極板の製造法。
1. An electrode for cutting a long electrode plate, in which an active material is attached to a core made of a porous metal, by continuously rubbing a pair of rotary blades having a substantially H-shaped cross section while being fed. A method of manufacturing an electrode plate, wherein a diameter of a rotary blade in contact with the porous metal body is made larger than a diameter of the other rotary blade.
【請求項2】活物質を金属多孔体からなる芯体に付着さ
せた長尺状の電極板を、断面略H型形状の一対の回転刃
の擦り合せによって、ミミ部を設けて連続的に切断する
電極板の製造法であって、金属多孔体に接する回転刃の
径を他方の回転刃の径に較べ大きくしたことを特徴とす
る電極板の製造法。
2. A long electrode plate having an active material adhered to a core made of a porous metal material is continuously rubbed with a pair of rotary blades having a substantially H-shaped cross section so as to form a mime portion. A manufacturing method of an electrode plate to be cut, wherein a diameter of a rotary blade in contact with the porous metal body is made larger than a diameter of the other rotary blade.
【請求項3】金属多孔体に当接する回転刃の径をD1
活物質に当接する回転刃の径をD2とした時、D1/D2
=1.5〜3.0である請求項1、2記載の電極板の製
造法。
3. The diameter of the rotary blade which comes into contact with the porous metal body is D 1 ,
When the diameter of the rotary blade that contacts the active material is D 2 , D 1 / D 2
= 1.5-3.0, The manufacturing method of the electrode plate of Claim 1 or 2.
【請求項4】請求項1、2、3、の方法で得られた電極
板と他方の活物質からなる電極板とをセパレーターを介
して渦巻状に巻回した電極群を備えた電池。
4. A battery provided with an electrode group in which the electrode plate obtained by the method according to any one of claims 1, 2, and 3 and the other electrode plate made of an active material are spirally wound with a separator interposed therebetween.
JP29951292A 1992-11-10 1992-11-10 Manufacturing method of battery and electrode plate Expired - Fee Related JP3151971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29951292A JP3151971B2 (en) 1992-11-10 1992-11-10 Manufacturing method of battery and electrode plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29951292A JP3151971B2 (en) 1992-11-10 1992-11-10 Manufacturing method of battery and electrode plate

Publications (2)

Publication Number Publication Date
JPH06150912A true JPH06150912A (en) 1994-05-31
JP3151971B2 JP3151971B2 (en) 2001-04-03

Family

ID=17873550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29951292A Expired - Fee Related JP3151971B2 (en) 1992-11-10 1992-11-10 Manufacturing method of battery and electrode plate

Country Status (1)

Country Link
JP (1) JP3151971B2 (en)

Also Published As

Publication number Publication date
JP3151971B2 (en) 2001-04-03

Similar Documents

Publication Publication Date Title
US6132900A (en) Method of production of non-aqueous electrolyte battery and seal plate thereof
EP0710995B1 (en) Electrode plate for battery and process for producing the same
JP4207451B2 (en) Cylindrical lithium ion secondary battery and manufacturing method thereof
JP4817871B2 (en) battery
JP6505859B2 (en) Nonaqueous electrolyte secondary battery
CN102017237A (en) Negative electrode plate for nonaqueous battery, electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
CN102017272A (en) Electrode group for nonaqueous battery and method for producing same, and tubular nonaqueous secondary battery and method for manufacturing same
CN113921765B (en) Cylindrical lithium battery and preparation method thereof
US20100255358A1 (en) Cylindrical battery and manufacturing method thereof
US20140030568A1 (en) Cylindrical secondary battery
JP2002270148A (en) Manufacturing method of cylinder sealing type lithium secondary battery and lithium secondary battery
JP2001126708A (en) Method of manufacturing nonaqueous electrolyte battery
CN114388743B (en) Optimized preparation method of cylindrical lithium ion battery pole group
JPH06150912A (en) Manufacture of battery and electrode plate
JP4498772B2 (en) Alkaline storage battery and its manufacturing method
JP2008218133A (en) Nonaqueous secondary battery and manufacturing method therefor
JP2001307686A (en) Battery can, its manufacturing method and battery
JPH05314966A (en) Manufacture of battery and electrode plate
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JP4698159B2 (en) Sealed battery and manufacturing method thereof
JP3764912B2 (en) Non-sintered electrode for alkaline storage battery, and alkaline storage battery using this electrode
JPH11242961A (en) Manufacture of nonaqueous electrolyte battery
JP2006049237A (en) Anode material for lithium ion battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery
JPH06215755A (en) Thin type battery and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees