JPH0614924Y2 - Pouring equipment in continuous casting equipment - Google Patents

Pouring equipment in continuous casting equipment

Info

Publication number
JPH0614924Y2
JPH0614924Y2 JP1988006229U JP622988U JPH0614924Y2 JP H0614924 Y2 JPH0614924 Y2 JP H0614924Y2 JP 1988006229 U JP1988006229 U JP 1988006229U JP 622988 U JP622988 U JP 622988U JP H0614924 Y2 JPH0614924 Y2 JP H0614924Y2
Authority
JP
Japan
Prior art keywords
pouring
flow passage
flow path
molten steel
path portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988006229U
Other languages
Japanese (ja)
Other versions
JPH01114140U (en
Inventor
年克 岡尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1988006229U priority Critical patent/JPH0614924Y2/en
Publication of JPH01114140U publication Critical patent/JPH01114140U/ja
Application granted granted Critical
Publication of JPH0614924Y2 publication Critical patent/JPH0614924Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案はレードルやタンディッシュから連続鋳造設備の
鋳型内に溶鋼を注湯する注湯装置に関する。
TECHNICAL FIELD The present invention relates to a pouring device for pouring molten steel from a ladle or a tundish into a mold of a continuous casting facility.

従来の技術 第9図に示すように、たとえばタンディッシュ21からタ
ンディッシュノズル22を介して鋳型23内に溶鋼24を注湯
する場合、均質な鋳片25を鋳造するために、鋳型23内の
湯面24aは常に一定レベルに保持する必要があり、その
ためタンディッシュノズル22からの注湯量は鋳片25の鋳
造量に等しく調節される。この注湯量を調節するものと
しては、従来からタンディッシュ21内に垂下された棒状
のストッパ26を昇降させることにより、ストッパ26の下
端部でタンディッシュノズル22の入口開口部22aの開度
を調節していた。
2. Description of the Related Art As shown in FIG. 9, for example, when pouring molten steel 24 into a mold 23 from a tundish 21 through a tundish nozzle 22, in order to cast a homogeneous cast piece 25, It is necessary to keep the molten metal surface 24a at a constant level at all times, so that the pouring amount from the tundish nozzle 22 is adjusted to be equal to the casting amount of the slab 25. As a means for adjusting the pouring amount, by vertically moving a rod-shaped stopper 26 suspended in the tundish 21, the opening of the inlet opening 22a of the tundish nozzle 22 is adjusted at the lower end of the stopper 26. Was.

考案が解決しようとする課題 ところが上記構成において、特に薄板連続鋳造の場合に
は鋳造量が少ないため、タンディッシュノズル22をスト
ッパ26により絞り込まねばならないときに、入口開口部
22aとストッパ26下端部の間隙が小さくなり、長時間に
わたる鋳造中に部分的にフロックにより閉塞しやすくな
る。その対策として、一時的にストッパ26を上昇してタ
ンディッシュノズル22を全開し、フロックを除去する
が、そのために鋳型23内の湯面レベル24aが上昇して鋳
造中の鋳片25に悪影響をあたえることになる。
The problem to be solved by the invention is that, in the above-mentioned configuration, particularly in the case of thin plate continuous casting, when the tundish nozzle 22 must be narrowed down by the stopper 26 because the casting amount is small, the inlet opening
The gap between the lower end 22a and the lower end of the stopper 26 becomes small, and it becomes easy for the flocs to partially close during casting for a long time. As a countermeasure, the stopper 26 is temporarily raised to fully open the tundish nozzle 22 to remove the flocs, but the molten metal level 24a in the mold 23 is raised to adversely affect the cast slab 25 during casting. It will be given.

本考案は上記問題を解決するもので、長時間の使用にも
ノズルが閉塞することのない注湯装置を提供することを
目的とする。
The present invention solves the above problem, and an object of the present invention is to provide a pouring device in which the nozzle is not blocked even when used for a long time.

上記問題点を解決するために本考案は、鋳型に溶鋼を注
湯する注湯ノズルを、上部垂直流路部と下部垂直流路部
とこれらにそれぞれ連結される複数段の中間部水平流路
部またはスパイラル状の中間流路部とで構成し、前記中
間部水平流路部またはスパイラル状の中間流路部の周囲
に、これら流路部内の溶鋼に流送方向とは逆方向の力を
与える磁界が発生する電磁コイルを設けた構成としたも
のである。
In order to solve the above problems, the present invention provides a pouring nozzle for pouring molten steel into a mold, an upper vertical flow path portion, a lower vertical flow path portion, and a plurality of intermediate horizontal flow paths connected to these. And a spiral intermediate flow passage part, and a force in the direction opposite to the sending direction is applied to the molten steel in these flow passage parts around the intermediate horizontal flow passage part or the spiral intermediate flow passage part. The configuration is such that an electromagnetic coil that generates a magnetic field is provided.

作用 上記構成において、電磁コイルにより回転磁界を発生さ
せ、その磁束が中間部水平流路部またはスパイラル状の
中間流路部中を通過する溶鋼にうず電流を発生させ、磁
束の方向とその電流の方向により溶鋼の流送方向とは逆
方向の力を発生させて溶鋼の流れを阻害することによ
り、ストッパを使用することなく、注湯ノズルの注湯量
を最適に調整することが可能となる。
In the above configuration, a rotating magnetic field is generated by the electromagnetic coil, and its magnetic flux generates an eddy current in the molten steel passing through the intermediate horizontal flow path portion or the spiral intermediate flow path portion, and the direction of the magnetic flux and its current Depending on the direction, a force is generated in the direction opposite to the direction in which the molten steel is flown to inhibit the flow of the molten steel, so that the pouring amount of the pouring nozzle can be optimally adjusted without using a stopper.

実施例 以下本考案の実施例を第1図〜第8図に基づいて説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to FIGS.

第1図〜第4図において、1はタンディッシュ2から一
対のモールドロール3と溶鋼受4とを備えた鋳型5内に
溶鋼10を注湯する注湯ノズルで、この注湯ノズル1は耐
火材で形成され、上端部がタンディッシュ2に接続され
た上部垂直流路部6と、下端部が溶鋼受4内に至る下部
垂直流路部7と、これら流路部6,7の中間で一端が上
部垂直流路部6の下端部に接続されるとともに他端が下
部垂直流路部7の上端部に接続された2段の中間部水平
流路部8a,8bから構成される。前記2段の中間部水
平流路部8a,8bは、共に水平面上でほぼ360°にわ
たる円弧状を一周するように形成される。
1 to 4, reference numeral 1 denotes a pouring nozzle for pouring molten steel 10 from a tundish 2 into a mold 5 having a pair of mold rolls 3 and a molten steel receiver 4, and the pouring nozzle 1 is fireproof. Of the upper vertical flow path portion 6 formed of a material, the upper end portion of which is connected to the tundish 2, the lower vertical flow path portion 7 of which the lower end portion reaches the inside of the molten steel receiver 4, and an intermediate portion between these flow path portions 6 and 7. It is composed of two horizontal intermediate flow passage portions 8a and 8b, one end of which is connected to the lower end portion of the upper vertical flow passage portion 6 and the other end thereof is connected to the upper end portion of the lower vertical flow passage portion 7. The two intermediate horizontal flow passage portions 8a and 8b are formed so as to make a round arc shape extending over approximately 360 ° on a horizontal plane.

9は2段の中間部水平流路部8a,8bの外周部に配設
された電磁コイルで、両中間部水平流路8a,8bを横
切る回転磁界を形成し、両中間部水平流路8a,8b内
の溶鋼10にうず電流を発生させ、両中間部水平流路部8
a,8bの流れ方向とは逆方向の力を発生させるもので
あり、このことにより注湯ノズル1の注湯量が調節可能
である。
Reference numeral 9 denotes an electromagnetic coil arranged on the outer peripheral portions of the two intermediate horizontal flow passages 8a and 8b, which form a rotating magnetic field across the intermediate horizontal flow passages 8a and 8b. , 8b generates an eddy current in the molten steel 10 and the horizontal flow path portion 8 in both middle portions
A force is generated in the direction opposite to the flow direction of a and 8b, whereby the pouring amount of the pouring nozzle 1 can be adjusted.

この基本原理を第5図および第6図により説明する。リ
ング状の導体(溶鋼)11の外周部にN,S一対の磁石12
A,12Bを矢印A方向に回転すれば、導体11を横切る磁束1
3により、導体11にうず電流による電流Iが発生し、こ
の電流Iが磁束13を下方に横切ると、フレミング左手の
法則により、磁石12A,12Bの回転方向である矢印A方向
と同方向の力Fが発生し、導体11は磁石と同一方向に回
転されることになる。このような回転磁界は誘導電動機
と同じ原理で作ることができる。
This basic principle will be described with reference to FIGS. 5 and 6. A pair of N and S magnets 12 is provided on the outer periphery of a ring-shaped conductor (molten steel) 11.
If A and 12B are rotated in the direction of arrow A, the magnetic flux 1 that crosses the conductor 11
Due to 3, an eddy current I is generated in the conductor 11, and when this current I crosses the magnetic flux 13 downward, the force in the same direction as the arrow A direction, which is the rotating direction of the magnets 12A and 12B, is applied by Fleming's left-hand rule. F is generated and the conductor 11 is rotated in the same direction as the magnet. Such a rotating magnetic field can be created by the same principle as an induction motor.

次に、本実施例において流体(溶鋼)の流れを停止させ
る原理について説明する。
Next, the principle of stopping the flow of the fluid (molten steel) in this embodiment will be described.

第7図において、A,b間での流体の持つエネルギーを
圧力水頭:Hのみであるとすると、この圧力水頭:H
に等しいエネルギー、Hを生じさせるような速度:
Vを、2段の水平流路部8a,8bで生じさせるように
すればよい。
In FIG. 7, assuming that the energy of the fluid between A and b is only the pressure head: H 1 , this pressure head: H
Energy equal to 1 , velocity to produce H 2 :
V may be generated in the two horizontal flow passage portions 8a and 8b.

すなわち、 H=P/γ P:流体の圧力、γ:流体の比重量 これを等しくおくと このようなVを発生させるための回転磁界を発生させる
周波数を求めてみると、以下のようになる。
That is, H 1 = P / γ P: fluid pressure, γ: specific weight of fluid If this is set equal The frequency for generating the rotating magnetic field for generating such V is calculated as follows.

ここで、回転磁界の回転数:N(r.p.m)、2段の水平
流路部の周囲に配設れる磁極数:P、磁界発生のため
に加えられる周波数:S(Hz)との関係は である。
Here, the relationship between the rotational speed of the rotating magnetic field: N (rpm), the number of magnetic poles arranged around the two horizontal flow passages: P 0 , and the frequency applied to generate the magnetic field: S (Hz) Is.

また、半径:γ2段水平流路部での速度:Vと回転数:
Nとの関係は である。
In addition, radius: γ Speed in two-stage horizontal flow path: V and rotation speed:
Relationship with N Is.

(1)のV、(2)のNとを(3)に代入すると、加えるべき周
波数Sが求められる。
By substituting V in (1) and N in (2) into (3), the frequency S to be added can be obtained.

ここで具体例についてみると 流路の水頭:h=750mm、溶鋼の比重量:γ=7×103kg
/m32段水平流路部の半径:γ=50mm 磁極数:P=6、g=9.8m/sec2とすると、 しかし、流体は上記回転磁界と一緒に、すなわち回転
数:Nでは回転しない。したがって、実際に加えるべき
周波数:Sは、上記の式で求められた値に効率(0.01%
〜10%の範囲)で除された値となる。
Looking at specific examples, the head of the flow path: h = 750 mm, specific weight of molten steel: γ = 7 x 10 3 kg
/ m 3 Radius of 2-step horizontal flow path: γ = 50 mm Number of magnetic poles: P 0 = 6, g = 9.8 m / sec 2 , However, the fluid does not rotate with the rotating magnetic field, that is, at the rotation speed: N. Therefore, the frequency S that should be actually added is equal to the value (0.01%) calculated by the above equation.
The range is ~ 10%).

ここで効率を1%とすると となる。If the efficiency is 1%, Becomes

上記の効率はノズルの材質、温度に関係し、大きくは磁
束に関係するコイルに流れる電流に影響される。
The above efficiency is related to the material and temperature of the nozzle, and is largely influenced by the current flowing through the coil, which is related to the magnetic flux.

ところで、注湯ノズル1の中間流路部を構成する部分
は、第3図に示すように、上下3分割構造にされてお
り、中央の部分を挿入することにより、容易に水平流路
部の段数を増加させることができる。
By the way, as shown in FIG. 3, the portion of the pouring nozzle 1 which constitutes the intermediate flow passage portion has a vertically divided three-part structure, and by inserting the central portion, the horizontal flow passage portion can be easily formed. The number of stages can be increased.

なお、上記実施例によれば、2段の中間部水平流路部8
a,8bをほぼ360°にわたる円弧状としたが、60°を
超える円弧状であればよく、また3段以上の複数周にわ
たる流路でもよいし、他の実施例として第8図に示した
ようなスパイラル状の中間流路部14でもよい。また、こ
れら中間部を構成する流路部の断面形状は特に限定され
るものではない。
In addition, according to the above-described embodiment, the two-stage intermediate horizontal flow path portion 8 is provided.
Although a and 8b have an arc shape extending over approximately 360 °, they may have an arc shape exceeding 60 °, and may have a flow path extending over a plurality of rounds of three stages or more, and as another embodiment shown in FIG. Such a spiral intermediate flow path portion 14 may be used. Further, the cross-sectional shape of the flow path portion that constitutes these intermediate portions is not particularly limited.

考案の効果 以上に述べたごとく本考案によれば、電磁コイルに流す
周波数と電流とを調節することにより、注湯ノズルの注
湯量を調節できるので、従来のように摩耗による交換頻
度の高いストッパが不必要で経済的である。また流量を
絞る時に発生する逆流が溶鋼中のフロックや壁シエルを
再溶融できるので、注湯ノズルの閉塞が防止でき、安定
した流量調節が行なえる。
Effect of the Invention According to the present invention as described above, since the pouring amount of the pouring nozzle can be adjusted by adjusting the frequency and the current flowing in the electromagnetic coil, the stopper that is frequently replaced due to wear as in the conventional case. Is unnecessary and economical. Further, the backflow generated when the flow rate is reduced can re-melt the flocs and wall shells in the molten steel, so that the pouring nozzle can be prevented from being blocked and the flow rate can be adjusted stably.

また、閉塞や摩耗による流量の変化を監視しながらスト
ッパをコントロールする必要がなくなり、きわめてコン
トロールが容易に行なえる。さらに、中間流路部を複数
段の水平流路またはスパイラル状にしているため、磁界
による逆方向の力を受けやすくなり、溶鋼の流れに対し
て逆方向に回転される力を働くようにして溶鋼流出量を
効果的に制御できるので、場合によっては溶鋼の流出を
止めることができ、溶鋼流の制御範囲が広い。
In addition, it is not necessary to control the stopper while monitoring the change in the flow rate due to blockage or wear, and control is extremely easy. Furthermore, since the intermediate flow path part has a horizontal flow path of multiple stages or a spiral shape, it becomes easier to receive the reverse direction force due to the magnetic field, and the force to rotate in the reverse direction with respect to the flow of molten steel is exerted. Since the outflow amount of molten steel can be effectively controlled, the outflow of molten steel can be stopped in some cases, and the control range of the molten steel flow is wide.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第7図は本考案の一実施例を示し、第1図は2
段に構成された中間部水平流路部を示す斜視図、第2図
は注湯ノズルの全体図、第3図は2段に構成された中間
部水平流路部を示す側面断面図、第4図は第3図に示す
I−I矢視図、第5図および第6図はそれぞれ基本原理
を示す説明図、第7図は実施例の原理を示す概略説明
図、第8図は他の実施例の中間流路部を示す概略斜視
図、第9図は従来の注湯ノズルを示す全体図である。 1……注湯ノズル、2……タンディッシュ、5……鋳
型、6……上部垂直流路部、7……下部垂直流路部、8
……中間部水平流路部、9……電磁コイル、10……溶
鋼、14……スパイラル状の中間流路部。
1 to 7 show an embodiment of the present invention, and FIG.
FIG. 2 is a perspective view showing an intermediate horizontal flow passage portion formed in stages, FIG. 2 is an overall view of a pouring nozzle, and FIG. 3 is a side sectional view showing the intermediate horizontal flow passage portion formed in two stages. FIG. 4 is a view as seen in the direction of arrows I--I shown in FIG. 3, FIGS. 5 and 6 are explanatory views showing the basic principle, respectively, FIG. 7 is a schematic explanatory view showing the principle of the embodiment, and FIG. FIG. 9 is a schematic perspective view showing an intermediate flow path portion of the embodiment, and FIG. 9 is an overall view showing a conventional pouring nozzle. 1 ... Pouring nozzle, 2 ... Tundish, 5 ... Mold, 6 ... Upper vertical channel, 7 ... Lower vertical channel, 8
...... Middle horizontal flow path, 9 ...... electromagnetic coil, 10 ...... molten steel, 14 ...... spiral intermediate flow path.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】鋳型に溶鋼を注湯する注湯ノズルを、上部
垂直流路部と下部垂直流路部とこれらにそれぞれ連結さ
れる複数段の中間部水平流路部とで構成し、前記複数段
の中間部水平流路部の周囲に、水平流路部内の溶鋼に流
送方向とは逆方向の力を与える磁界が発生する電磁コイ
ルを設けたことを特徴とする連続鋳造設備における注湯
装置。
1. A pouring nozzle for pouring molten steel into a mold is constituted by an upper vertical flow passage portion, a lower vertical flow passage portion, and a plurality of intermediate horizontal flow passage portions respectively connected to these, A note in continuous casting equipment characterized in that an electromagnetic coil for generating a magnetic field that gives a force in the direction opposite to the flowing direction to the molten steel in the horizontal flow passage is provided around the intermediate horizontal flow passage in multiple stages. Hot water equipment.
【請求項2】鋳型に溶鋼を注湯する注湯ノズルを、上部
垂直流路部と下部垂直流路部とこれらにそれぞれ連結さ
れるスパイラル状の中間流路部とで構成し、前記スパイ
ラル状の中間流路部の周囲に、その流路部内の溶鋼に流
送方向とは逆方向の力を与える磁界が発生する電磁コイ
ルを設けたことを特徴とする連続鋳造設備における注湯
装置。
2. A pouring nozzle for pouring molten steel into a mold comprises an upper vertical flow path portion, a lower vertical flow path portion, and a spiral intermediate flow path portion connected to each of the upper vertical flow path portion and the lower vertical flow path portion. A pouring device in a continuous casting facility, characterized in that an electromagnetic coil for generating a magnetic field that gives a force in a direction opposite to the flow direction to the molten steel in the flow passage is provided around the intermediate flow passage.
JP1988006229U 1988-01-20 1988-01-20 Pouring equipment in continuous casting equipment Expired - Lifetime JPH0614924Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988006229U JPH0614924Y2 (en) 1988-01-20 1988-01-20 Pouring equipment in continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988006229U JPH0614924Y2 (en) 1988-01-20 1988-01-20 Pouring equipment in continuous casting equipment

Publications (2)

Publication Number Publication Date
JPH01114140U JPH01114140U (en) 1989-08-01
JPH0614924Y2 true JPH0614924Y2 (en) 1994-04-20

Family

ID=31210286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988006229U Expired - Lifetime JPH0614924Y2 (en) 1988-01-20 1988-01-20 Pouring equipment in continuous casting equipment

Country Status (1)

Country Link
JP (1) JPH0614924Y2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310047A (en) * 1986-07-01 1988-01-16 Kawasaki Steel Corp Pouring method for molten metal

Also Published As

Publication number Publication date
JPH01114140U (en) 1989-08-01

Similar Documents

Publication Publication Date Title
US20080164004A1 (en) Method and system of electromagnetic stirring for continuous casting of medium and high carbon steels
US20030106667A1 (en) Method and device for continuous casting of metals in a mold
KR20090033212A (en) Method and apparatus for controlling the flow of molten steel in a mould
US4974661A (en) Sidewall containment of liquid metal with vertical alternating magnetic fields
JP2002508257A (en) Electromagnetic braking device for molten metal in continuous casting mold
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
FR2845626B1 (en) PROCESS FOR CONTROLLING METAL MOVEMENTS IN A BRAMES CONTINUOUS CASTING LINGOTIERE
SE500745C2 (en) Methods and apparatus for casting in mold
JPH0133256Y2 (en)
JPH0614924Y2 (en) Pouring equipment in continuous casting equipment
US6021842A (en) Electromagnetic device for use with a continuous-casting mould
CA1322095C (en) Continuous casting mold arrangement for casting billets and blooms
JPS63165052A (en) Method and device for agitating and braking molten metal
AU771606B2 (en) Equipment for supplying molten metal to a continuous casting ingot mould and method for using same
JPH0647154B2 (en) Pouring device in thin plate continuous casting equipment
JPH0614925Y2 (en) Pouring equipment
JP3125661B2 (en) Steel continuous casting method
JPS63119962A (en) Rolling device for electromagnetic agitation
JPS60184457A (en) Device for adjusting pouring rate of molten steel
Dorricott et al. Asymmetric tundish design and flow control principles in multistrand billet and bloom casters
JPH0796144B2 (en) Casting method in horizontal continuous casting
US6929055B2 (en) Equipment for supplying molten metal to a continuous casting ingot mould
JP2633766B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH0471759A (en) Method for controlling fluidity of molten metal
JP3914092B2 (en) Thin slab continuous casting equipment and continuous casting method