JPH06148189A - Magnetic particulate for laser magnetic immunological measurement and its manufacture - Google Patents

Magnetic particulate for laser magnetic immunological measurement and its manufacture

Info

Publication number
JPH06148189A
JPH06148189A JP29620592A JP29620592A JPH06148189A JP H06148189 A JPH06148189 A JP H06148189A JP 29620592 A JP29620592 A JP 29620592A JP 29620592 A JP29620592 A JP 29620592A JP H06148189 A JPH06148189 A JP H06148189A
Authority
JP
Japan
Prior art keywords
magnetic
fine particles
laser
magnetic fine
dextran
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29620592A
Other languages
Japanese (ja)
Inventor
Koichi Arishima
功一 有島
Koichi Fujiwara
幸一 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29620592A priority Critical patent/JPH06148189A/en
Publication of JPH06148189A publication Critical patent/JPH06148189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a magnetic particulate for laser magnetic immunological measurement having strong magnetic characteristic and excellent dispersing property by bonding a plurality of aminated dextran-coated magnetic particulates. CONSTITUTION:A surfactant is added to aminated dextran-coated magnetic particulates and a bifunctional cross-linking agent, mixed and stirred in oil to generate droplets. The cross-linking reaction is caused between the amino groups of aminated dextran in the droplets to mutually bond a plurality of aminated dextran-coated magnetic particulates. The plurally bonded particulates of large particle size remarkably increase the sensitivity in laser magnetic immunology. This reason is considered that the magnetic characteristic per magnetic particulate is proportional to the contained magnetic body quantity, and it can be avoided by the larger particle size that the sucking force of magnetic field is arrested arrested by Brownian movement. Thus, the magnetic particulate of large particle size having strong magnetic characteristic and good dispersing property is applied to laser magnetic immunological measurement, whereby its sensitivity is enhanced, and the reliability can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抗原抗体反応を利用し
た免疫測定法のひとつであるレーザ磁気免疫測定法に使
用するレーザ磁気免疫測定用磁性微粒子およびその作製
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic fine particle for laser magnetic immunoassay used in a laser magnetic immunoassay, which is one of immunoassays utilizing an antigen-antibody reaction, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から知られている抗原抗体反応を利
用した検出法としては、ラジオイムノアッセイ(RI
A)、酵素イムノアッセイ(EIA)、蛍光イムノアッ
セイ(FIA)、レーザイムノアッセイ(LIA)等が
既に実用化されている。これらの方法は、それぞれアイ
ソトープ、酵素、蛍光物質を標識として付加した抗原の
有無を検出する方法である。
2. Description of the Related Art A conventionally known detection method utilizing an antigen-antibody reaction is radioimmunoassay (RI
A), enzyme immunoassay (EIA), fluorescent immunoassay (FIA), laser immunoassay (LIA) and the like have already been put to practical use. These methods are methods for detecting the presence or absence of an antigen to which isotopes, enzymes, and fluorescent substances are added as labels, respectively.

【0003】しかしながら、上記EIA法、FIA法、
LIA法の感度は、10-6gからせいぜい10-10gで
あり、ウイルスの感染初期診断や微量なホルモン検査な
どの抗原そのものを検出する免疫測定においては、感度
不足であり、実用上の問題があった。また、RIA法に
ついては、その感度は10-12gと、超微量分析や抗原
検査をするには充分可能であるが、放射性物質を利用す
るため特殊設備を必要とし、安全性、汎用性、価格等の
点で問題があった。
However, the above EIA method, FIA method,
The sensitivity of the LIA method is 10 -6 g to 10 -10 g at most, and the sensitivity is insufficient in the immunoassay for detecting the antigen itself such as the initial diagnosis of virus infection and a small amount of hormone test, which is a practical problem. was there. In addition, the RIA method has a sensitivity of 10 −12 g, which is sufficient for ultratrace analysis and antigen testing, but requires special equipment because it uses radioactive substances, and therefore safety, versatility, and There was a problem in terms of price, etc.

【0004】そこで本願発明者らは抗原検査が可能な1
-12g以上の感度を有し、かつ汎用性の高い測定法と
してレーザ磁気免疫測定方法を提案してきた。(特開昭
63−79070、特開昭63−106559、特開昭
63−108265、特開昭63−188766、特開
昭63−315951、特開平1−29768など。)
これらの新しい測定方法は、抗原抗体反応後、ポリマビ
ーズに結合した抗原を磁性微粒子で標識し、この磁性微
粒子で標識されたポリマビーズを磁界で水面上に凝集さ
せ、凝集による水面の隆起量をレーザ干渉光の強度で測
定する方法である。よって、上記レーザ磁気免疫測定方
法は磁界による凝集効果とレーザ光の干渉による高感度
変位測定のため、感度はRIA法と同等もしくはそれ以
上の超微量検出が可能である。
Therefore, the inventors of the present application can perform antigen test 1
A laser magnetic immunoassay method has been proposed as a highly versatile assay method having a sensitivity of 0 -12 g or more. (JP-A-63-79070, JP-A-63-106559, JP-A-63-108265, JP-A-63-188766, JP-A-63-315951, JP-A-1-29768, etc.)
In these new measurement methods, after antigen-antibody reaction, the antigen bound to polymer beads is labeled with magnetic fine particles, the polymer beads labeled with the magnetic fine particles are aggregated on the water surface by a magnetic field, and the amount of protrusion of the water surface due to aggregation is laser interference. This is a method of measuring the intensity of light. Therefore, since the above-mentioned laser magnetic immunoassay method is a highly sensitive displacement measurement due to the agglutination effect due to the magnetic field and the interference of the laser light, it is possible to detect an ultratrace amount whose sensitivity is equal to or higher than that of the RIA method.

【0005】ここで、レーザ磁気免疫測定法において、
その感度を左右する重要な要素の一つは、その測定原理
から明らかなように標識材料として用いられている磁性
微粒子である。レーザ磁気免疫測定方法に適用される磁
性微粒子に関しては、Moldayらが米国特許第44527
73号において開示したデキストランで被覆した磁性微
粒子がある。この発明は磁性微粒子の周りがデキストラ
ンで被覆され、デキストランを酸化処理することによっ
て抗体、あるいはその他のタンパク質を結合し、レーザ
磁気免疫測定方法に使用できることを示している。
Here, in the laser magnetic immunoassay method,
One of the important factors that influence the sensitivity is magnetic fine particles used as a labeling material, as is clear from the measurement principle. Regarding magnetic microparticles applied to laser magnetic immunoassay methods, Molday et al., US Pat.
There are magnetic particles coated with dextran disclosed in No. 73. The present invention shows that the magnetic fine particles are coated with dextran, and the dextran can be oxidized to bind an antibody or other protein to be used in a laser magnetic immunoassay method.

【0006】[0006]

【発明が解決しようとする課題】そこで、本願発明者ら
は、この特許を改良し、レーザ磁気免疫測定方法に適用
される磁性微粒子について鋭意検討を重ねてきた。その
結果、磁化率の高い磁性微粒子が得られ、特開平3−1
41119に「磁性微粒子の製造方法」、特開平3−2
42327に「磁性微粒子の製造方法」として特許出願
している。
Therefore, the inventors of the present application have improved this patent and have made earnest studies on magnetic fine particles applied to a laser magnetic immunoassay method. As a result, magnetic fine particles having a high magnetic susceptibility can be obtained.
41119, "Method for producing magnetic fine particles", Japanese Patent Laid-Open No. 3-2.
No. 42327 has filed a patent application as a "method for producing magnetic fine particles".

【0007】これまでの方法で得られた磁性微粒子は電
顕観測の結果、直径10nm以下のマグネタイト複数個
が、直径100nm程度あるいはそれ以下のデキストラ
ンに含有されていることがわかった。しかし、抗原濃度
が低い領域では1個のポリマビーズに結合する抗原量が
少ないため、標識される磁性微粒子量もそれに従い少な
くなり、ポリマビーズ1個に対する磁界による吸引力が
小さくなる。このため、さらに高感度化を図るためには
磁性微粒子の「磁界に対する凝集性」(以下「磁気特
性」と表現する)の向上が望まれていた。
As a result of electron microscopic observation, it was found that a plurality of magnetites having a diameter of 10 nm or less were contained in the dextran having a diameter of about 100 nm or less as a result of the electron microscopic observation. However, since the amount of antigen bound to one polymer bead is small in the region where the antigen concentration is low, the amount of labeled magnetic fine particles also decreases accordingly, and the attraction force by the magnetic field to one polymer bead decreases. Therefore, in order to further increase the sensitivity, it has been desired to improve the “cohesiveness against magnetic field” (hereinafter referred to as “magnetic property”) of the magnetic fine particles.

【0008】磁気特性を向上させる方法としては、
(1)マグネタイトそのものの磁化率を向上させる。
(2)マグネタイトを埋包するデキストランを大きくす
るなどの方法があった。しかし、上記(1)に記載の方
法については、現在の磁化率がほぼ理論限界に近い値が
得られており、材料を変更しない限り、その向上は期待
できない。上記(2)に記載の方法については、これま
でも検討を重ねてきたが、分散性が良く磁性微粒子その
ものの粒径を大きくすることは現在の作製法では困難で
あることが明らかになってきた。よって、本発明は、上
記事情に鑑みてなされたもので、磁気特性が大きく分散
性に優れたレーザ磁気免疫測定用磁性微粒子およびその
作製法の提供を目的とするものである。
As a method for improving magnetic characteristics,
(1) To improve the magnetic susceptibility of magnetite itself.
(2) There was a method such as increasing the size of dextran burying magnetite. However, with the method described in (1) above, the current magnetic susceptibility has been obtained at a value close to the theoretical limit, and improvement cannot be expected unless the material is changed. Although the method described in the above (2) has been studied up to now, it has become clear that it is difficult to increase the particle size of the magnetic fine particles themselves with good dispersibility by the present manufacturing method. It was Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide magnetic fine particles for laser magnetic immunoassay having large magnetic properties and excellent dispersibility, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】請求項1に記載のレーザ
磁気免疫測定用磁性磁性微粒子は、上記課題を解決する
ために、磁性微粒子で標識した抗体で抗原を捕捉後、こ
れを磁界で水面上に凝集させ水面の隆起量をレーザ干渉
光強度で測定するレーザ磁気免疫測定方法における前記
磁性体微粒子は、アミノ化デキストラン被覆磁性微粒子
の複数個が結合してなるものであることを特徴とするも
のである。
In order to solve the above-mentioned problems, the magnetic magnetic fine particles for laser magnetic immunoassay according to claim 1 capture an antigen with an antibody labeled with the magnetic fine particles, and then, this is subjected to a magnetic field on the water surface. The magnetic microparticles in the laser magnetic immunoassay method of agglomerating on top and measuring the amount of protrusion of the water surface by laser interference light intensity are characterized in that a plurality of aminated dextran-coated magnetic microparticles are bound together. It is a thing.

【0010】請求項2に記載のレーザ磁気免疫測定用磁
性微粒子の作製法は、上記課題を解決するために、請求
項1に記載のレーザ磁気免疫測定用磁性微粒子をアミノ
化デキストラン被覆磁性微粒子と2官能性架橋剤を油中
で混合攪拌し液滴を生成後、当該液滴内でアミノ化デキ
ストランのアミノ基間で架橋反応を起こし、アミノ化デ
キストラン被覆磁性微粒子を複数個結合させることによ
り作製することを特徴とするものである。
In order to solve the above-mentioned problems, the method for producing magnetic fine particles for laser magnetic immunoassay according to claim 2 is characterized in that the magnetic fine particles for laser magnetic immunoassay described in claim 1 are aminated dextran-coated magnetic fine particles. Prepared by mixing and stirring a bifunctional cross-linking agent in oil to form droplets, and then causing a cross-linking reaction between the amino groups of aminated dextran in the droplets to bond a plurality of aminated dextran-coated magnetic fine particles. It is characterized by doing.

【0011】請求項3に記載のレーザ磁気免疫測定用磁
性微粒子の作製法は、上記課題を解決するために、請求
項2に記載のレーザ磁気免疫測定用磁性微粒子の作製法
における液滴を生成する際に、アミノ化デキストラン被
覆磁性微粒子と2官能性架橋剤に、さらに界面活性剤を
添加し油中で混合攪拌して、液滴を生成させることを特
徴とするものである。
In order to solve the above-mentioned problems, the method for producing magnetic fine particles for laser magnetic immunoassay according to claim 3 produces droplets in the method for producing magnetic fine particles for laser magnetic immunoassay according to claim 2. In this case, a surfactant is further added to the aminated dextran-coated magnetic fine particles and the bifunctional crosslinking agent, and the mixture is stirred in oil to generate droplets.

【0012】[0012]

【作用】本発明におけるレーザ磁気免疫測定用磁性微粒
子は、アミノ化デキストラン被覆磁性微粒子の複数個が
結合してなるものであり、こうして前記磁性微粒子を複
数個結合させることにより、1個あたりの磁性体量を増
大させ、磁気特性の向上を図ったものである。また、上
記のように磁性微粒子が複数個の結合されてなる本発明
の磁性微粒子は、その大粒化により、磁界による吸引力
がブラウン運動によって阻害されることを回避し、前記
磁気特性の著しい向上を可能としたものである。
The magnetic fine particles for laser magnetic immunoassay of the present invention are composed of a plurality of aminated dextran-coated magnetic fine particles bonded together. It is intended to improve the magnetic properties by increasing the body mass. Further, as described above, the magnetic fine particles of the present invention in which a plurality of magnetic fine particles are bonded together are prevented from being obstructed by the Brownian motion of the attractive force due to the magnetic field due to their large size, and the magnetic properties are remarkably improved. Is made possible.

【0013】また、上記の本発明のレーザ磁気免疫測定
用磁性微粒子の作製法は、アミノ化デキストラン被覆磁
性微粒子と2官能性架橋剤を油中で混合攪拌し液滴を生
成後、当該液滴内でアミノ化デキストランのアミノ基間
で架橋反応を起こすことにより、アミノ化デキストラン
被覆磁性微粒子を複数個結合させてなる、大粒径の本発
明の磁性微粒子の生成を可能としたものであり、上記の
アミノ化デキストラン被覆磁性微粒子と2官能性架橋剤
を油中で混合攪拌し液滴を生成する際に、さらに界面活
性剤を添加することにより、より分散性の良い大粒径の
磁性微粒子を効率良く作製することが可能である。
Further, in the method for producing the magnetic fine particles for laser magnetic immunoassay of the present invention, the aminated dextran-coated magnetic fine particles and the bifunctional crosslinking agent are mixed and stirred in oil to form droplets, and then the droplets are formed. By causing a cross-linking reaction between the amino groups of the aminated dextran within, by binding a plurality of aminated dextran-coated magnetic fine particles, it is possible to produce a large particle size of the magnetic fine particles of the present invention, When the above-mentioned aminated dextran-coated magnetic fine particles and the bifunctional cross-linking agent are mixed and stirred in oil to form liquid droplets, a surfactant is further added to the magnetic fine particles having a large particle size to improve dispersibility. Can be efficiently manufactured.

【0014】従って、上記のように大粒径の分散性の良
好な磁性微粒子をレーザ磁気免疫測定方法に適用するこ
とにより、レーザ磁気免疫測定方法の高感度化を図り、
そのデータの信頼性の高めることができる。
Therefore, by applying the magnetic fine particles having a large particle size and good dispersibility to the laser magnetic immunoassay method as described above, the sensitivity of the laser magnetic immunoassay method can be increased.
The reliability of the data can be increased.

【0015】[0015]

【実施例】以下に、図面を参照しつつ本発明を具体的に
詳細するが、以下に開示する実施例は本発明の単なる一
例にすぎず、本発明の範囲を何等限定するものではな
い。 (実施例1)以下に、本発明における実施例1のレーザ
磁気免疫測定用磁性微粒子の作製法について詳細する。
まず、アミノ化デキストランを以下の方法により合成し
た。平均分子量が4万のファルマシア製デキストラン2
0gを0.05Mのアセテート緩衝液(pH6.5)1
00mlに溶解し、これを2.14gの過ヨウ素酸ナト
リウムで室温にて1.5時間かけて酸化した。酸化した
デキストランは純水で180mlに希釈し、氷酢酸で予
めpH9以上に調整した6Mのジアミノエタン20ml
を23℃で1時間反応させた。反応後、NaBH4で還
元しクエンチングし、さらに、その溶液をニトロセルロ
ース透析膜を用いて4リットルの純水によって1昼夜透
析し、未反応物を除去した。
The present invention will be described in detail below with reference to the drawings, but the embodiments disclosed below are merely examples of the present invention and do not limit the scope of the present invention. (Example 1) Hereinafter, a method for producing magnetic fine particles for laser magnetic immunoassay of Example 1 of the present invention will be described in detail.
First, aminated dextran was synthesized by the following method. Pharmacia Dextran 2 with an average molecular weight of 40,000
0 g of 0.05 M acetate buffer (pH 6.5) 1
It was dissolved in 00 ml and this was oxidized with 2.14 g of sodium periodate at room temperature for 1.5 hours. Oxidized dextran was diluted to 180 ml with pure water and adjusted to pH 9 or higher with glacial acetic acid.
Was reacted at 23 ° C. for 1 hour. After the reaction, the product was reduced with NaBH 4 and quenched, and the solution was dialyzed against 4 liters of pure water for one day using a nitrocellulose dialysis membrane to remove unreacted substances.

【0016】そして、上記のように得られたアミノ化デ
キストランを5ml秤量し、このアミノ化デキストラン
に、塩化第二鉄六水和物0.75gと塩化第一鉄四水和
物0.32gとを混合し、さらにこれに7.5%アンモ
ニア水溶液を室温にて激しく攪拌しながら注意深く1m
l添加する。添加後pHが高まると磁性微粒子が生じ黒
膜を形成する。そして、黒膜生成後、この温度を1時間
で70℃まで徐々に上げ、全量20mlの7.5%アン
モニア水溶液を激しく攪拌しながら添加し、アミノ化デ
キストラン被覆磁性微粒子を作製した。
Then, 5 ml of the aminated dextran obtained as described above was weighed and 0.75 g of ferric chloride hexahydrate and 0.32 g of ferrous chloride tetrahydrate were added to the aminated dextran. Was further mixed with 7.5% aqueous ammonia solution at room temperature with vigorous stirring and carefully 1 m.
l is added. When the pH is increased after the addition, magnetic fine particles are generated to form a black film. After the black film was formed, this temperature was gradually raised to 70 ° C. for 1 hour, and a total of 20 ml of 7.5% aqueous ammonia solution was added with vigorous stirring to prepare aminated dextran-coated magnetic fine particles.

【0017】そこで、以上の方法によって得られたアミ
ノ化磁性微粒子を用いて、本発明の架橋剤による液滴中
での大粒径の磁性微粒子の作製法を以下に詳細する。ま
ず、上記のように作製したアミノ化デキストラン磁性微
粒子(鉄濃度10-6g/ml)をリン酸バッファー溶液
(PBS)により10倍に希釈し、この希釈物1cc
に、Pierce社製Bis(sulfosuccinimidyl)suberate(以
下、BS3と略記する。)を0.5mg溶解する。上記
BS3をより溶解し易くするには、前記BS3をあらかじ
めジメチルホルムアミド30μlに溶解したものを混合
すると良い。
Therefore, the method for producing large-diameter magnetic fine particles in droplets by the crosslinking agent of the present invention using the aminated magnetic fine particles obtained by the above method will be described in detail below. First, aminated dextran magnetic fine particles (iron concentration 10 −6 g / ml) prepared as described above were diluted 10 times with a phosphate buffer solution (PBS), and 1 cc of this dilution
0.5 mg of Bis (sulfosuccinimidyl) suberate (hereinafter abbreviated as BS 3 ) manufactured by Pierce is dissolved in the solution. In order to make the above-mentioned BS 3 more soluble, it is advisable to mix BS 3 previously dissolved in 30 μl of dimethylformamide.

【0018】そして、上記混合物に市販サラダオイル5
0ccと市販界面活性剤 TWEEN 20(0.1%) 500μlを
添加し、ホモジナイザで激しく攪拌して、磁性微粒子を
含む逆ミセル状液滴の懸濁液を作製する。そしてさら
に、この懸濁液を37℃の恒温槽中に静置し30分間架
橋反応させる。その後、エタノールを50cc加えて、
よく振とうさせ、分離ロートで下層(油層)を除き、さ
らにエタノールを50cc加えて、5000rpmで1
0分間遠心分離機にかけ上清を捨てる。この操作を2回
繰り返して、最終的に前記エタノールを0.05%ウシ
血清アルブミン(BSA−HEPES)5ccを含んだ
バッファー溶液に置き換える。
Then, to the above mixture, commercially available salad oil 5
0 cc and 500 μl of a commercially available surfactant TWEEN 20 (0.1%) are added, and the mixture is vigorously stirred with a homogenizer to prepare a suspension of reverse micellar droplets containing magnetic fine particles. Further, this suspension is left to stand in a constant temperature bath at 37 ° C. for 30 minutes for crosslinking reaction. Then add 50 cc of ethanol,
Shake well, remove the lower layer (oil layer) with a separating funnel, add 50 cc of ethanol, and add 1 at 5000 rpm.
Centrifuge for 0 minutes and discard the supernatant. This operation is repeated twice, and finally the ethanol is replaced with a buffer solution containing 0.05% of bovine serum albumin (BSA-HEPES).

【0019】なお、2液を攪拌機で懸濁した時の液滴の
平均粒径は R.Arshady の「Microspheres and Microcaps
ules:A Survey of Manufacturing Techniques.」 (POLYM
ER ENGINEERING AND SCIENCE, VOL. 29. NO. 24, pp174
6-1758) で詳細に検討されて、次式で表わされることが
分かっている。 <d> ∝ k(Dv・R・vd・S)/(Ds・P・
vm・C) ここで、<d>:平均粒径、k:装置定数、Dv:容器
の直径、Ds:攪拌子の直径、R:懸濁液に対する液滴
の体積比、P:攪拌の回転数(またはパワー)、vd:
液滴の粘土、vm:懸濁液の粘土、S:懸濁液と液滴間
の表面張力、C:安定剤の濃度である。
The average particle size of the droplets when the two liquids are suspended by a stirrer is R. Arshady's "Microspheres and Microcaps".
ules: A Survey of Manufacturing Techniques. '' (POLYM
ER ENGINEERING AND SCIENCE, VOL. 29. NO. 24, pp174
6-1758), it is known that it is expressed by the following equation. <D> ∝ k (Dv ・ R ・ vd ・ S) / (Ds ・ P ・
vm · C) where <d>: average particle size, k: device constant, Dv: diameter of container, Ds: diameter of stirrer, R: volume ratio of droplet to suspension, P: rotation of stirring Number (or power), vd:
Droplet clay, vm: suspension clay, S: surface tension between suspension and droplets, C: stabilizer concentration.

【0020】上式から液滴の粒径を決定する材料的因子
は、液滴の粘土、懸濁液の粘土、液滴と懸濁液間の表面
張力である。それ故、本発明においてはアミノ化デキス
トラン被覆磁性微粒子の濃度、使用する油の種類、界面
活性剤の種類、濃度等について幅広い範囲で検討した。
上記の実施例で例示したものはこれらの代表的な種類、
数値であって、これに規定されるものではない。例え
ば、懸濁液となる油は市販サラダオイル以外に胡麻油、
綿実油あるいはトルエン/クロロホルム、シクロヘキサ
ン/クロロホルムなどが使用できる。また、架橋剤はア
ミノ基同士を架橋するものであれば良く、上記BS3
外にもジサクシニミジル スベレートやジチオビス ス
クシニミジルピオネートなどやグルタルアルデヒドを用
いることができる。
The material factors that determine the droplet size from the above equation are the clay of the droplet, the clay of the suspension, and the surface tension between the droplet and the suspension. Therefore, in the present invention, the concentration of aminated dextran-coated magnetic fine particles, the type of oil to be used, the type of surfactant, the concentration, etc. were investigated in a wide range.
The representatives illustrated in the above examples are these representative types,
It is a numerical value and is not regulated by this. For example, the oil that becomes a suspension is sesame oil in addition to commercially available salad oil,
Cottonseed oil, toluene / chloroform, cyclohexane / chloroform, etc. can be used. Further, the cross-linking agent may be any one as long as it cross-links amino groups with each other, and in addition to BS 3 , disuccinimidyl suberate, dithiobissuccinimidyl pionate, or glutaraldehyde can be used.

【0021】そこで、上記のようにして得られた大粒化
磁性微粒子の平均粒径を静的光錯乱法から求めた。表1
は磁性微粒子の平均粒径であって、本発明方法で得られ
た磁性微粒子は従来法の約4倍の粒径を持つことが分か
る。これから本発明方法で作成した磁性微粒子は重合す
る前の磁性微粒子を4の3乗倍程度結合し、大粒化した
ものと考えられる。
Therefore, the average particle size of the large-sized magnetic fine particles obtained as described above was determined by the static optical confusion method. Table 1
Is the average particle size of the magnetic fine particles, and it can be seen that the magnetic fine particles obtained by the method of the present invention have a particle size about 4 times that of the conventional method. From this, it is considered that the magnetic fine particles prepared by the method of the present invention are obtained by combining the magnetic fine particles before the polymerization with about 4 to the third power and increasing the size.

【0022】[0022]

【表1】 [Table 1]

【0023】また、磁気特性はレーザ磁気免疫測定方法
で評価した。レーザ磁気免疫測定方法では、一定の磁界
中で磁性微粒子を水面上の1点に凝集させ、その凝集力
を盛り上がり量に対応したレーザ干渉強度から求める方
法である。このため、一定磁界に対する磁性微粒子の磁
気特性は、磁性微粒子中のマグネタイト量と干渉光強度
の関係で評価できる。
The magnetic characteristics were evaluated by the laser magnetic immunoassay method. The laser magnetic immunoassay method is a method in which magnetic particles are aggregated at one point on the water surface in a constant magnetic field, and the aggregation force is obtained from the laser interference intensity corresponding to the amount of swelling. Therefore, the magnetic characteristics of the magnetic fine particles with respect to a constant magnetic field can be evaluated by the relationship between the amount of magnetite in the magnetic fine particles and the interference light intensity.

【0024】測定結果を図1に示す。(a)は本発明で
得られた大粒径磁性微粒子、(b)は従来の重合方法で
得られた磁性微粒子の測定結果を示している。図1の縦
軸は、干渉光強度、即ち磁気特性の大きさに比例する量
であり、横軸は測定した磁性体の鉄濃度を示している。
図1から明らかなように、本実施例1で得られた大粒径
磁性体は、従来の重合方法で合成された磁性微粒子に比
較して、同一の干渉光強度を得るための磁性体量はほぼ
100分の1である。
The measurement results are shown in FIG. (A) shows the measurement results of large-diameter magnetic fine particles obtained by the present invention, and (b) shows the measurement results of magnetic fine particles obtained by a conventional polymerization method. The vertical axis of FIG. 1 represents the intensity of the interference light, that is, the amount proportional to the magnitude of the magnetic characteristics, and the horizontal axis represents the measured iron concentration of the magnetic substance.
As is clear from FIG. 1, the large-diameter magnetic substance obtained in Example 1 has a magnetic substance amount for obtaining the same interference light intensity as compared with the magnetic fine particles synthesized by the conventional polymerization method. Is almost 1/100.

【0025】以上の結果から、磁性微粒子を大粒化する
ことによって、レーザ磁気免疫測定方法における感度は
飛躍的に増大する効果があることが分かった。これは、
磁性微粒子1個当たりの磁気特性は含有される磁性体量
に比例するためである他に、これまでの重合方法では、
得られる磁性微粒子が100nm以下の粒径であるため
に、磁界による吸引力がブラウン運動によって大きく阻
害されていたことに影響されていたためと考えられる。
From the above results, it was found that increasing the size of the magnetic fine particles has the effect of dramatically increasing the sensitivity in the laser magnetic immunoassay method. this is,
This is because the magnetic property per magnetic fine particle is proportional to the amount of magnetic substance contained, and in the conventional polymerization methods,
It is considered that the magnetic fine particles obtained had a particle size of 100 nm or less, and this was influenced by the fact that the attractive force of the magnetic field was largely hindered by Brownian motion.

【0026】(実施例2)本実施例2においては、腫瘍
マーカの一種であるα−フェトプロティンを用いて、本
発明で得られたレーザ磁気免疫測定用磁性微粒子の免疫
測定における検出感度を測定した。検体調製は、以下の
方法により行なった。まず、抗体を結合したポリマビー
ズ(ビーズ濃度0.2wt%)浮遊液20μl、抗原と
してα−フェトプロテインの希釈液(蛋白濃度10-15
〜10-8g/mlの範囲で10倍希釈、8段階)の各段
階20μlを37℃、2時間反応させた。次に、各反応
液にビオチンを結合した抗α−フェトプロテイン抗体
(抗体濃度0.3mg/ml)を20μl添加し、37
℃で1時間反応させ、未反応ビオチン化抗体をB/F分
離した。
Example 2 In Example 2, the detection sensitivity of the magnetic fine particles for laser magnetic immunoassay obtained in the present invention in the immunoassay was measured using α-fetoprotein, which is one of the tumor markers. did. The sample preparation was performed by the following method. First, 20 μl of an antibody-bound polymer beads (bead concentration: 0.2 wt%) suspension, and a diluted solution of α-fetoprotein as an antigen (protein concentration: 10 −15)
20 μl of each step of 10-fold dilution in the range of -10 −8 g / ml, 8 steps) was reacted at 37 ° C. for 2 hours. Next, 20 μl of anti-α-fetoprotein antibody (antibody concentration 0.3 mg / ml) bound with biotin was added to each reaction solution, and 37
After reacting at 0 ° C. for 1 hour, the unreacted biotinylated antibody was separated by B / F.

【0027】さらに、B/F分離した各反応液に、本発
明で得られた磁性微粒子に予めPierce 社製BS3を用い
てアジピンを結合させたアジピン化磁性微粒子(マグネ
タイト濃度 0.1mg/ml)を20μl添加し、3
7℃で1時間反応させた。そして、反応後に未反応の磁
性微粒子をB/F分離し、30μlの緩衝液で反応物を
回収し測定検体とした。
Further, in each of the B / F separated reaction liquids, adipic magnetic particles (magnetite concentration: 0.1 mg / ml) obtained by previously binding adipine to the magnetic particles obtained in the present invention using BS 3 manufactured by Pierce Co. ) Is added to 20 μl and 3
The reaction was carried out at 7 ° C for 1 hour. Then, after the reaction, the unreacted magnetic fine particles were separated by B / F, and the reaction product was recovered with 30 μl of the buffer solution and used as a measurement sample.

【0028】以上のように得られた各測定検体をレーザ
磁気免疫測定装置で測定し、その干渉光強度を得た。そ
の結果を図2(a)にて示す。一方、従来法で得られた
磁性微粒子を用いて、上記と全く同様の検体を調製し、
レーザ磁気免疫測定装置で測定した干渉光強度を図2
(b)に示す。図2から明らかなように、本発明で得ら
れた大粒径磁性微粒子を用いた検体は、従来の磁性微粒
子を用いた検体に比べ、抗原の低濃度領域での感度が1
桁以上向上していることが分かる。
Each of the measurement specimens obtained as described above was measured by a laser magnetic immunoassay device to obtain the interference light intensity. The result is shown in FIG. On the other hand, using the magnetic fine particles obtained by the conventional method, prepare a specimen exactly the same as above,
Figure 2 shows the interference light intensity measured by the laser magnetic immunoassay system.
It shows in (b). As is clear from FIG. 2, the specimen using the large-diameter magnetic fine particles obtained in the present invention has a sensitivity of 1 in the low concentration region of the antigen as compared with the specimen using the conventional magnetic fine particles.
It can be seen that it has improved by more than an order of magnitude.

【0029】以上のように、本発明によるレーザ磁気免
疫測定用磁性体は、粒径が大きくかつ分散性が良いた
め、これをレーザ磁気免疫測定方法に適用した場合に
は、その感度を著しく向上させることができる。
As described above, since the magnetic material for laser magnetic immunoassay according to the present invention has a large particle size and good dispersibility, when it is applied to the laser magnetic immunoassay method, its sensitivity is remarkably improved. Can be made.

【0030】[0030]

【発明の効果】本発明におけるレーザ磁気免疫測定用磁
性微粒子は、アミノ化デキストラン被覆磁性微粒子の複
数個が結合してなるものであり、こうして前記磁性微粒
子を複数個結合させることにより、1個あたりの磁性体
量を増大させ、磁気特性の向上を図ったものである。ま
た、上記のように磁性微粒子が複数個の結合されてなる
本発明の磁性微粒子は、その大粒化により、磁界による
吸引力がブラウン運動によって阻害されることを回避
し、前記磁気特性の著しい向上を可能としたものであ
る。
INDUSTRIAL APPLICABILITY The magnetic fine particles for laser magnetic immunoassay according to the present invention are composed of a plurality of aminated dextran-coated magnetic fine particles bonded together. The amount of magnetic material is increased to improve the magnetic characteristics. Further, as described above, the magnetic fine particles of the present invention in which a plurality of magnetic fine particles are bonded together are prevented from being obstructed by the Brownian motion of the attractive force due to the magnetic field due to their large size, and the magnetic properties are remarkably improved. Is made possible.

【0031】また、上記の本発明のレーザ磁気免疫測定
用磁性微粒子の作製法は、アミノ化デキストラン被覆磁
性微粒子と2官能性架橋剤を油中で混合攪拌し液滴を生
成後、当該液滴内でアミノ化デキストランのアミノ基間
で架橋反応を起こすことにより、アミノ化デキストラン
被覆磁性微粒子を複数個結合させてなる、大粒径の本発
明の磁性微粒子の生成を可能としたものであり、上記の
アミノ化デキストラン被覆磁性微粒子と2官能性架橋剤
を油中で混合攪拌し液滴を生成する際に、さらに界面活
性剤を添加することにより、より分散性の良い大粒径の
磁性微粒子を効率良く作製することが可能である。
Further, in the above-mentioned method for producing the magnetic fine particles for laser magnetic immunoassay of the present invention, the aminated dextran-coated magnetic fine particles and the bifunctional cross-linking agent are mixed and stirred in oil to form droplets, and then the droplets are formed. By causing a cross-linking reaction between the amino groups of the aminated dextran within, by binding a plurality of aminated dextran-coated magnetic fine particles, it is possible to produce a large particle size of the magnetic fine particles of the present invention, When the above-mentioned aminated dextran-coated magnetic fine particles and the bifunctional cross-linking agent are mixed and stirred in oil to form liquid droplets, a surfactant is further added to the magnetic fine particles having a large particle size to improve dispersibility. Can be efficiently manufactured.

【0032】従って、上記のように大粒径の分散性の良
好な磁性微粒子をレーザ磁気免疫測定方法に適用するこ
とにより、レーザ磁気免疫測定方法の高感度化を図り、
そのデータの信頼性の高めることができる。
Therefore, by applying the magnetic fine particles having a large particle size and good dispersibility as described above to the laser magnetic immunoassay method, the sensitivity of the laser magnetic immunoassay method can be increased.
The reliability of the data can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明における実施例1に基づく磁性
微粒子のマグネタイト量と干渉光強度の関係を示したも
のであって、図中曲線(a)は本発明の作製法で得られ
た大粒径磁性微粒子、(b)は従来法で得られた磁性微
粒子を用いた測定結果である。
FIG. 1 shows the relationship between the amount of magnetite in magnetic particles and the intensity of coherent light based on Example 1 of the present invention, in which curve (a) is obtained by the production method of the present invention. The large-diameter magnetic fine particles and (b) are the measurement results using the magnetic fine particles obtained by the conventional method.

【図2】図2は、本発明における実施例2に基づくα−
フェトプロテイン抗原検出の実験結果であって、図中
(a)は本発明の作製法で得られた大粒磁性微粒子、
(b)は従来法で得られた磁性微粒子を用いた結果を示
している。
FIG. 2 is an α-based on Example 2 of the present invention.
It is an experimental result of the detection of fetoprotein antigen, and (a) in the figure is a large magnetic fine particle obtained by the production method of the present invention,
(B) shows the results using the magnetic fine particles obtained by the conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁性微粒子で標識した抗体で抗原を捕捉
後、これを磁界で水面上に凝集させ水面の隆起量をレー
ザ干渉光強度で測定するレーザ磁気免疫測定方法におけ
る前記磁性微粒子は、アミノ化デキストラン被覆磁性微
粒子の複数個が結合してなるものであることを特徴とす
るレーザ磁気免疫測定用磁性微粒子。
1. The magnetic fine particles in the laser magnetic immunoassay method, wherein an antigen is captured by an antibody labeled with magnetic fine particles, and the antigen is aggregated on the water surface by a magnetic field to measure the amount of protrusion of the water surface by laser interference light intensity. A magnetic fine particle for laser magnetic immunoassay, comprising a plurality of magnetic dextran-coated magnetic fine particles bonded together.
【請求項2】 アミノ化デキストラン被覆磁性微粒子と
2官能性架橋剤を油中で混合攪拌し液滴を生成後、当該
液滴内でアミノ化デキストランのアミノ基間で架橋反応
を起こし、アミノ化デキストラン被覆磁性微粒子を複数
個結合させることを特徴とする請求項1に記載のレーザ
磁気免疫測定用磁性微粒子の作製法。
2. The aminated dextran-coated magnetic fine particles and the bifunctional cross-linking agent are mixed and stirred in oil to form droplets, and then a cross-linking reaction occurs between the amino groups of the aminated dextran in the droplets to aminate. The method for producing magnetic fine particles for laser magnetic immunoassay according to claim 1, wherein a plurality of magnetic fine particles coated with dextran are bonded.
【請求項3】 液滴を生成する際に、アミノ化デキスト
ラン被覆磁性微粒子と2官能性架橋剤に、さらに界面活
性剤を添加し油中で混合攪拌して、液滴を生成させるこ
とを特徴とする請求項2に記載のレーザ磁気免疫測定用
磁性微粒子の作製法。
3. A droplet is formed by adding a surfactant to the aminated dextran-coated magnetic fine particles and the bifunctional cross-linking agent and mixing and stirring in oil when the droplet is formed. The method for producing magnetic fine particles for laser magnetic immunoassay according to claim 2.
JP29620592A 1992-11-05 1992-11-05 Magnetic particulate for laser magnetic immunological measurement and its manufacture Pending JPH06148189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29620592A JPH06148189A (en) 1992-11-05 1992-11-05 Magnetic particulate for laser magnetic immunological measurement and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29620592A JPH06148189A (en) 1992-11-05 1992-11-05 Magnetic particulate for laser magnetic immunological measurement and its manufacture

Publications (1)

Publication Number Publication Date
JPH06148189A true JPH06148189A (en) 1994-05-27

Family

ID=17830537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29620592A Pending JPH06148189A (en) 1992-11-05 1992-11-05 Magnetic particulate for laser magnetic immunological measurement and its manufacture

Country Status (1)

Country Link
JP (1) JPH06148189A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007538380A (en) * 2003-07-10 2007-12-27 ミクロモート パルティケルテヒノロギー ゲーエムベーハー Magnetic nanoparticles with improved magnetic properties
US7632688B2 (en) 2003-04-16 2009-12-15 Sekisui Chemical Co., Ltd. Particle having magnetic material incorporated therein, process for producing the same, particle for immunoassay and method of immunoassay
US11237162B2 (en) 2016-05-24 2022-02-01 Jsr Corporation Composite particles, coated particles, method for producing composite particles, ligand-containing solid phase carrier and method for detecting or separating target substance in sample

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632688B2 (en) 2003-04-16 2009-12-15 Sekisui Chemical Co., Ltd. Particle having magnetic material incorporated therein, process for producing the same, particle for immunoassay and method of immunoassay
JP2007538380A (en) * 2003-07-10 2007-12-27 ミクロモート パルティケルテヒノロギー ゲーエムベーハー Magnetic nanoparticles with improved magnetic properties
JP4649406B2 (en) * 2003-07-10 2011-03-09 ミクロモート パルティケルテヒノロギー ゲーエムベーハー Magnetic nanoparticles with improved magnetic properties
US11237162B2 (en) 2016-05-24 2022-02-01 Jsr Corporation Composite particles, coated particles, method for producing composite particles, ligand-containing solid phase carrier and method for detecting or separating target substance in sample

Similar Documents

Publication Publication Date Title
CA1304006C (en) Particle separation method
Zhang et al. Anodic‐Stripping Voltammetric Immunoassay for Ultrasensitive Detection of Low‐Abundance Proteins Using Quantum Dot Aggregated Hollow Microspheres
US4283382A (en) Fluorescent labels comprising rare earth chelates
US4259313A (en) Fluorescent labels
Liao et al. An ultrasensitive ELISA method for the detection of procalcitonin based on magnetic beads and enzyme-antibody labeled gold nanoparticles
WO2010082681A1 (en) Immuno-latex particles and process for producing same
JP2000503404A (en) Assays using reference microparticles
US4102990A (en) Electrophoretic assay for antigen-antibody reaction based on particle-particle coupling
EP0002963A1 (en) Aqueous stabilized fluorescent labels, proteins labelled therewith and methods of use
EP0070527A1 (en) Method of assaying biologically active substances and labelling agents therefor
JP2004157072A (en) Highly-sensitive magnetic marker used for immunoreaction measurement
Jin et al. Preparation and properties of fluorescent quantum dots microbeads encapsulated in-situ by polyisobornyl methacrylate for immunochromatography
JPH06148189A (en) Magnetic particulate for laser magnetic immunological measurement and its manufacture
JP2005077301A (en) Immunological detection carrier and measuring method
JP2545707B2 (en) Immunological diagnostic reagent
US4792527A (en) Method of assaying biologically active substances and labelling agents therefor
Yuan et al. Carboxyl-functionalized superparamagnetic Fe3O4/poly (St-co-MPS)/SiO2 composite particles for rapid and sensitive immunoassay
CA2157893A1 (en) Immunoassay method utilizing zeta potential and immunoassay kit
JP2004325414A (en) Method and kit for measuring immunity
JP3575548B2 (en) Magnetic fine particles for labeling biological material and method for producing the same
JPH1151938A (en) Immunological latex nephelometry quantifying reagent
JPWO2020095759A1 (en) Method for producing latex particles for measuring anti-streptolysin O antibody
JPH0588787B2 (en)
JP2003344410A (en) Immuno-measurement reagent and immuno-measurement method
JP5048423B2 (en) Agglomeration inspection fine particles