JPH06148134A - Glass electrode type trace sodium ion measuring device - Google Patents

Glass electrode type trace sodium ion measuring device

Info

Publication number
JPH06148134A
JPH06148134A JP4300967A JP30096792A JPH06148134A JP H06148134 A JPH06148134 A JP H06148134A JP 4300967 A JP4300967 A JP 4300967A JP 30096792 A JP30096792 A JP 30096792A JP H06148134 A JPH06148134 A JP H06148134A
Authority
JP
Japan
Prior art keywords
sodium ion
function
ppb
calibrated
glass electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4300967A
Other languages
Japanese (ja)
Inventor
Sumiyuki Fushiki
純之 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP4300967A priority Critical patent/JPH06148134A/en
Publication of JPH06148134A publication Critical patent/JPH06148134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To precisely measure even a low ion concentration showing nonlinear characteristic by selecting either one of functions calibrated in an area where the index of sodium ion concentration and electromotive voltage show a proportional relation and an area where they show no proportional relation. CONSTITUTION:A sodium ion electrode 2, a comparing electrode 3, and a temperature compensating electrode 4 are inserted into a cell chamber 1. A sample- mixed sample water is charged therein at measuring, and a calibrating solution is charged at calibration. An instructing par 5 has first and second arithmetic parts. The boundary of areas where the index of sodium ion concentration and electromotive voltage show a proportional relation and show no proportional relation is set to 0.1ppb, and the electromotive voltage in the intersection between the line calibrated with this value or more and the line calibrated with an index less than it is taken as a threshold. When the measured voltage is larger than the threshold, the first arithmetic part is used, and when it is less than the threshold, the second arithmetic part is used. The first arithmetic part uses the function calibrated with 0.1ppb or more, and the second arithmetic part uses the function calibrated with the index less than 0.1ppb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス電極式微量ナト
リウムイオン測定装置において、従来の0.1ppb以
上の値を精度良く測定するだけでなく、非線形特性を示
す0.1ppb未満の低いイオン濃度もある程度の精度
をもって測定する場合に利用することができるガラス電
極式微量ナトリウムイオン測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention not only accurately measures a value of 0.1 ppb or more in a conventional glass electrode type trace amount sodium ion measuring apparatus, but also exhibits a low ion concentration of less than 0.1 ppb showing a non-linear characteristic. Also relates to a glass electrode type trace amount sodium ion measuring device which can be used when measuring with a certain degree of accuracy.

【0002】[0002]

【従来の技術】近年、火力発電所、あるいは原子力発電
所の復水系における水質の要求は色々の意味で厳しくな
っており、その要求に従い復水中のイオン濃度もより微
量なものの測定も必要となってきた。
2. Description of the Related Art In recent years, water quality requirements in condensate systems of thermal power plants or nuclear power plants have become strict in various senses, and in accordance with the demands, it is necessary to measure ion concentrations in the condensate in even smaller amounts. Came.

【0003】ナトリウムイオンに関しても、復水脱塩装
置出口の値として、0.01〜0.1ppbの範囲の値
を知ることが必要となってきている。
As for the sodium ion, it is necessary to know the value in the range of 0.01 to 0.1 ppb as the value at the outlet of the condensate demineralizer.

【0004】数ppb〜数100ppbの高い濃度の測
定は発電所における主蒸気冷却用海水の熱交換器からの
海水リークの判定に用いられ、0.1ppb以下のナト
リウムイオン濃度は火力発電所においては、タービンス
ケールの付着状況を監視するための指標として、またP
WR型原子力発電所においてはアルカリ脆化を防止する
ための管理値として利用される。つまり、ナトリウムイ
オン濃度としては、数100ppb〜0.1ppb迄の
広い範囲の測定値が必要とされることとなった。
Measurement of a high concentration of several ppb to several hundreds of ppb is used for determining seawater leak from a heat exchanger for cooling main steam in a power plant, and a sodium ion concentration of 0.1 ppb or less is used in a thermal power plant. , As an index for monitoring the adhesion status of turbine scale, and P
It is used as a control value to prevent alkali embrittlement in WR nuclear power plants. That is, as the sodium ion concentration, a wide range of measured values of several hundred ppb to 0.1 ppb is required.

【0005】ナトリウムイオンを測定する装置として
は、図4に示すようなガラス電極式微量ナトリウムイオ
ン測定装置が用いられている。
As a device for measuring sodium ions, a glass electrode type trace amount sodium ion measuring device as shown in FIG. 4 is used.

【0006】ガラス電極式微量ナトリウムイオン測定装
置は、ナトリウムイオン濃度の指数とガラス電極内外に
生じる起電力とが比例する関係にあることを利用し、該
起電力を測定することによりナトリウムイオン濃度を得
るようにしている。
The glass electrode type trace amount sodium ion measuring device utilizes the fact that the index of sodium ion concentration and the electromotive force generated inside and outside the glass electrode are in a proportional relationship, and the sodium ion concentration is measured by measuring the electromotive force. I am trying to get it.

【0007】図4において、セルチャンバー1内に、ナ
トリウムイオン電極2,比較電極3,温度補償電極4が
挿入されており、セルチャンバー1内に測定時には試薬
混合サンプル水、校正時には校正液が充填できるように
している。
In FIG. 4, a sodium ion electrode 2, a reference electrode 3 and a temperature compensating electrode 4 are inserted in the cell chamber 1, and the cell chamber 1 is filled with a reagent mixed sample water at the time of measurement and a calibration solution at the time of calibration. I am able to do it.

【0008】校正液は、予め濃度が既知の0.1ppb
以上の濃度の液体であって、濃度差の大きな2種類の校
正液を用意し、この2種類の校正液を交互にセルチャン
バー内に充填し、その時の比較電極の起電力を測定し、
2点のデータより、濃度対起電圧の一次関数(ax+
b)を同定する。
The calibration solution has a known concentration of 0.1 ppb.
Two kinds of calibration solutions having the above-mentioned concentrations and having a large difference in concentration are prepared, the two kinds of calibration solutions are alternately filled in the cell chamber, and the electromotive force of the reference electrode at that time is measured.
From the data of two points, the linear function (ax +
Identify b).

【0009】そして、実際の測定は、試薬混合サンプル
水をチャンバー内に充填し、実際に得られた変数である
ナトリウムイオン電極の起電力から濃度を求めるように
し、温度変化を温度補償電極により補償している。
In the actual measurement, the reagent-mixed sample water is filled in the chamber, the concentration is obtained from the electromotive force of the sodium ion electrode, which is a variable actually obtained, and the temperature change is compensated by the temperature compensation electrode. is doing.

【0010】しかしながら、ナトリウムイオン濃度の指
数対起電力の関係が比例関係を示すのは略0.1ppb
の濃度迄であり、これ以下になると線形性(比例関係)
が失われ、図6に示すように起電力が比例関係で変化し
なくなるため、0.1ppb以下の濃度測定は実際には
できなかった(校正線L1 )。そして、どうしても0.
1ppb以下での測定を行う場合には、図5に示すよう
に、0.1ppb以下の領域に重きをおいた校正線(校
正線L2 )を用いていた。
However, the relationship between the exponent of sodium ion concentration and the electromotive force shows a proportional relationship of about 0.1 ppb.
Up to the concentration of, and below this linearity (proportional relationship)
Was lost and the electromotive force did not change in a proportional relationship as shown in FIG. 6, so that the concentration measurement of 0.1 ppb or less could not be actually performed (calibration line L 1 ). And by all means 0.
When measuring at 1 ppb or less, as shown in FIG. 5, a calibration line (calibration line L 2 ) with a weight on the region of 0.1 ppb or less was used.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、図5に
示す1本の特性曲線に依る校正線L2 の濃度対起電圧の
特性直線は、0.1ppb以下の特定の領域では一般的
な校正方法に依る校正線L1 よりは測定精度が得られる
ものの、なおかなりの誤差を含んでおり充分な測定精度
が得られず、逆に0.1ppb以上については高精度の
測定が可能であったにもかかわらず、充分な精度が得ら
れなくなった。
However, the characteristic line of concentration vs. electromotive voltage of the calibration line L 2 based on one characteristic curve shown in FIG. 5 is a general calibration method in a specific region of 0.1 ppb or less. Although a measurement accuracy can be obtained from the calibration line L 1 according to the above, a considerable error is still included and sufficient measurement accuracy cannot be obtained, and conversely, high accuracy measurement is possible for 0.1 ppb or more. However, I could not get enough accuracy.

【0012】本発明は、このような従来の問題を解決
し、0.1ppb未満であっても充分な測定精度が得ら
れると共に、0.1ppb以上についても高精度の測定
を行えるガラス電極式微量ナトリウムイオン測定装置を
提供することを目的とする。
The present invention solves the above-mentioned problems of the related art, and a sufficient accuracy of measurement can be obtained even if it is less than 0.1 ppb, and a very small amount of glass electrode type that can measure highly accurately even at 0.1 ppb or more. An object is to provide a sodium ion measuring device.

【0013】[0013]

【課題を解決するための手段】本発明の目的を実現する
校正は、特許請求の範囲に記載した通りであり、具体的
には、濃度の指数と起電圧とが比例関係を示す領域と、
比例関係を示さない領域の境界を0.1ppbとし、
0.1ppb以上で校正した直線と、0.1ppb未満
で校正した直線を特性曲線とし、この両直線の交点での
起電圧を閾値とし、測定電圧に応じて微量ナトリウムイ
オン濃度の演算に用いる特性曲線を選択するようにす
る。
The calibration for realizing the object of the present invention is as set forth in the claims, and specifically, a region where the concentration index and the electromotive voltage show a proportional relationship,
The boundary of the region that does not show the proportional relationship is 0.1 ppb
A characteristic curve is a straight line calibrated at 0.1 ppb or more and a straight line calibrated at less than 0.1 ppb, and the electromotive voltage at the intersection of the two straight lines is used as a threshold, and the characteristic used to calculate the trace sodium ion concentration according to the measured voltage. Make sure you select a curve.

【0014】[0014]

【実施例】本発明の一実施例を図1及び図2に基づいて
説明する。なお、本実施例によるガラス電極式微量ナト
リウムイオン測定装置の構成は図4と同様であり、指示
部5の構成のみが異なるため、指示部の構成について以
下説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. The configuration of the glass electrode type trace amount sodium ion measuring device according to the present embodiment is the same as that of FIG. 4, and only the configuration of the indicator 5 is different. Therefore, the configuration of the indicator will be described below.

【0015】本実施例は、指示部5に第1の演算部と第
2の演算部、及び測定電圧比較部とを有し、図3に示す
ように、測定電圧比較部に設定された電圧Viを閾値と
して、測定電圧が該電圧Viよりも大きい場合には、第
1の演算部を使用し、該電圧Vi未満であれば第2の演
算部を使用して、測定した起電力の電圧に基づいてナト
リウムイオン濃度を出力し、その値を表示或はプリント
アウトする。
In this embodiment, the instruction section 5 has a first operation section, a second operation section, and a measured voltage comparison section. As shown in FIG. 3, the voltage set in the measured voltage comparison section is set. When the measured voltage is higher than the voltage Vi with Vi as the threshold value, the voltage of the electromotive force measured by using the first operation unit, and when it is less than the voltage Vi, the second operation unit is used. Based on, the sodium ion concentration is output, and the value is displayed or printed out.

【0016】第1の演算部、第2の演算部および測定電
圧比較部は、デジタル的或はアナログ的に構成してもよ
く、第1演算部については、図1に示す関数V0 (V0
=a0 x+b0 )を使用し、第2演算部については、図
1に示す関数V1 (V0 =a1 x+b1 )を使用してい
る。
The first arithmetic unit, the second arithmetic unit and the measured voltage comparing unit may be configured digitally or in an analog manner, and for the first arithmetic unit, the function V 0 (V 0
= A 0 x + b 0 ) and the function V 1 (V 0 = a 1 x + b 1 ) shown in FIG. 1 is used for the second computing unit.

【0017】関数V0 は、0.1ppb以上の既知の濃
度の校正液を1種或は2種用意し、係数a0 及びb0
求め、直線の同定を行う。また関数V1 は、0.1pp
b未満の既知の濃度の校正液を1種或は2種用意し、係
数a1 及びb1 を求め、直線を同定するが、この場合、
直線V1 の勾配は関数V0 の直線よりも小さな正の値
(a0 >a1 >0)となる。なお、1種の校正液のみで
直線の関数を求める場合には、V0 、V1 ともに直線の
傾きは予め定められた値を用いる。
As for the function V 0 , one or two kinds of calibration solutions having a known concentration of 0.1 ppb or more are prepared, coefficients a 0 and b 0 are obtained, and a straight line is identified. The function V 1 is 0.1 pp
Prepare one or two kinds of calibration solutions of known concentration less than b, obtain coefficients a 1 and b 1 , and identify a straight line. In this case,
The slope of the straight line V 1 has a positive value (a 0 > a 1 > 0) smaller than that of the straight line of the function V 0 . When a linear function is obtained using only one kind of calibration liquid, a predetermined value is used as the inclination of the linear line for both V 0 and V 1 .

【0018】このような関数V0 及びV1 の同定は、指
示部5に設けた校正部により行い、また該校正部は求め
た関数V0 及びV1 の直線の交点(Vi,Xi)を演算
する。この校正部の動作のフローチャートを図2に示
す。また、校正部は演算した交点(Vi,Xi)を上記
した測定電圧比較部に伝達し、閾値として用いる。
The identification of the functions V 0 and V 1 is performed by the calibration unit provided in the instruction unit 5, and the calibration unit determines the intersection (Vi, Xi) of the straight lines of the obtained functions V 0 and V 1. Calculate A flowchart of the operation of this calibration unit is shown in FIG. Further, the calibration unit transmits the calculated intersection (Vi, Xi) to the above-mentioned measured voltage comparison unit and uses it as a threshold value.

【0019】以上の構成を有する本実施例のガラス電極
式微量ナトリウムイオン測定装置は、0.1ppb未満
での校正直線と、0.1以上での校正直線を、ナトリウ
ムイオン電極の起電圧に応じて使い分けるようにしたの
で、0.1ppb以上であっても、また未満であっても
充分高精度のナトリウムイオンの濃度を測定することが
できる。特に、0.0Xオーダーの濃度について現在要
求される精度は、Xの値が一般的に考えられている計器
精度(フルスケールの±5%、例えばここでは0.1p
pb×5%/100%=0.005ppbのような値)
では要求されておらず、したがってXの値のおおよその
絶対値程度の指示精度があれば充分であることに鑑みれ
ば、曲線ではない関数V1 で得られる程度の精度で充分
と云える。
The glass electrode type trace amount sodium ion measuring device of the present embodiment having the above-mentioned structure is arranged so that the calibration straight line at less than 0.1 ppb and the calibration straight line at 0.1 or more are determined according to the electromotive voltage of the sodium ion electrode. The concentration of sodium ion can be measured with sufficiently high accuracy even if the concentration is 0.1 ppb or more or less than 0.1 ppb. In particular, the accuracy currently required for the concentration of 0.0X order is the accuracy of the instrument for which the value of X is generally considered (± 5% of full scale, for example, 0.1p in this case).
pb × 5% / 100% = 0.005 ppb)
In view of the fact that it is not required, and therefore, there is sufficient indication accuracy of approximately the absolute value of the value of X, it can be said that the accuracy obtained by the function V 1 which is not a curve is sufficient.

【0020】[0020]

【発明の効果】以上説明したように本発明によれば、濃
度の指数と起電圧の関係が比例しない領域、すなわち
0.1ppb未満の濃度と、濃度の指数と起電圧の関係
が比例する領域、すなわち0.1ppb以上の濃度にお
いて、濃度の演算に用いる関数を使い分けるようにし、
特に0.1ppb未満の濃度領域での関数の校正を従来
のように0.1ppb以上の校正線と同一の校正線とは
せずに全く異なる直線としたので、0.1ppb以下で
の濃度を広範囲にわたりある程度の精度を有して測定で
き、さらに0.1ppb以上の濃度についても従来通り
高精度に測定することができるようになった。
As described above, according to the present invention, the region where the relationship between the concentration index and the electromotive voltage is not proportional, that is, the region where the concentration less than 0.1 ppb is proportional to the relationship between the concentration index and the electromotive voltage. That is, at a concentration of 0.1 ppb or more, the function used for the concentration calculation is selectively used.
Especially, since the calibration of the function in the concentration range of less than 0.1 ppb is not the same as the calibration line of 0.1 ppb or more as in the past but is a completely different straight line, the concentration at 0.1 ppb or less It has become possible to measure with a certain degree of accuracy over a wide range, and also to measure concentrations of 0.1 ppb or higher with high accuracy as before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるガラス電極式微量ナトリウムイオ
ン測定装置の一実施例を示す濃度の指数と起電圧との特
性曲線を示す図。
FIG. 1 is a diagram showing a characteristic curve of concentration index and electromotive voltage showing an embodiment of a glass electrode type trace amount sodium ion measuring device according to the present invention.

【図2】図1に示す関数V0 とV1 の校正を示すフロー
チャート。
FIG. 2 is a flowchart showing calibration of functions V 0 and V 1 shown in FIG.

【図3】本発明によるガラス電極式微量ナトリウムイオ
ン測定装置の一実施例の測定動作を示すフローチャー
ト。
FIG. 3 is a flowchart showing a measuring operation of an embodiment of a glass electrode type trace amount sodium ion measuring device according to the present invention.

【図4】従来のガラス電極式微量ナトリウムイオン測定
装置の概略図。
FIG. 4 is a schematic view of a conventional glass electrode type trace amount sodium ion measuring device.

【図5】従来のガラス電極式微量ナトリウムイオン測定
装置の一実施例を示す濃度の指数と起電圧との特性曲線
を示す図。
FIG. 5 is a view showing a characteristic curve of an index of concentration and an electromotive voltage showing an embodiment of a conventional glass electrode type trace amount sodium ion measuring device.

【図6】図5の詳細を示す図。FIG. 6 is a diagram showing details of FIG. 5;

【符号の説明】[Explanation of symbols]

1 セルチャンバー 2 ナトリウムイオン電極 3 比較電極 4 温度補償電極 5 指示部 1 cell chamber 2 sodium ion electrode 3 reference electrode 4 temperature compensation electrode 5 indicator

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年11月12日[Submission date] November 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】数ppb〜数100ppbの高い濃度の測
定は発電所における主蒸気冷却用海水の熱交換器からの
海水リークの判定に用いられ、0.1ppb以下のナト
リウムイオン濃度は火力発電所においては、タービンス
ケールの付着状況を監視するための指標として、またP
WR型原子力発電所においてはアルカリ脆化を防止する
ための管理値として利用される。つまり、ナトリウムイ
オン濃度としては、数100ppb〜0.01ppb迄
の広い範囲の測定値が必要とされることとなった。
Measurement of a high concentration of several ppb to several hundreds of ppb is used for determining seawater leak from a heat exchanger for cooling main steam in a power plant, and a sodium ion concentration of 0.1 ppb or less is used in a thermal power plant. , As an index for monitoring the adhesion status of turbine scale, and P
It is used as a control value to prevent alkali embrittlement in WR nuclear power plants. In other words, as the sodium ion concentration, a wide range of measured values of several hundred ppb to 0.01 ppb is required.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】しかしながら、ナトリウムイオン濃度の指
数対起電力の関係が比例関係を示すのは略0.1ppb
の濃度迄であり、これ以下になると線形性(比例関係)
が失われ、図6に示すように起電力が比例関係で変化し
なくなるため、0.1ppb以下の濃度測定は実際には
できなかった。なお実際の測定においては、0.1pp
b以上の濃度を正しく測定するために図5に示した、一
般的な校正方法による校正線L1 を用いて測定を行な
い、止むを得ず0.1ppb以下の概略の濃度も知りた
い場合には、図5に示すように、0.1ppb以下の領
域に重きをおいた校正線(校正線L2 )を用いて測定を
行なっていた。
However, the relationship between the exponent of sodium ion concentration and the electromotive force shows a proportional relationship of about 0.1 ppb.
Up to the concentration of, and below this linearity (proportional relationship)
Is lost, and the electromotive force does not change in a proportional relationship as shown in FIG . In the actual measurement, 0.1 pp
In order to correctly measure concentrations above b, the one shown in FIG.
Perform the measurement using the calibration line L 1 according to a general calibration method.
Inevitably, I also knew the approximate concentration below 0.1 ppb.
If not, as shown in FIG. 5, the measurement is performed using a calibration line (calibration line L 2 ) with an emphasis on the region of 0.1 ppb or less.
I was doing .

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0016】第1の演算部、第2の演算部および測定電
圧比較部は、デジタル的或はアナログ的に構成してもよ
く、第1演算部については、図1に示す関数V0 (V0
=a0 x+b0 )を使用し、第2演算部については、図
1に示す関数V11 =a1 x+b1 )を使用してい
る。
The first arithmetic unit, the second arithmetic unit and the measured voltage comparing unit may be configured digitally or in an analog manner, and for the first arithmetic unit, the function V 0 (V 0
= A 0 x + b 0 ) and the function V 1 ( V 1 = a 1 x + b 1 ) shown in FIG. 1 is used for the second computing unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被測定対象液に浸漬したガラス電極の起
電圧から該被測定対象液の微量ナトリウムイオンを演算
する演算手段を有するガラス電極式微量ナトリウムイオ
ン測定装置であって、該演算手段は、濃度の指数と起電
圧が比例関係を示す領域で校正した第1の関数と、濃度
の指数と起電圧が比例関係を示さない領域で校正した第
2の関数とを有し、該第1の関数と該第2の関数との交
点での起電圧を閾値として、測定した起電圧に応じて該
第1の関数又は該第2の関数を選択することを特徴とす
るガラス電極式微量ナトリウムイオン測定装置。
1. A glass electrode type trace amount sodium ion measuring device having a calculating means for calculating a trace amount of sodium ions in the measured liquid from the electromotive voltage of a glass electrode immersed in the measured liquid, the calculating means comprising: A first function calibrated in a region where the density index and the electromotive voltage have a proportional relationship, and a second function calibrated in a region where the density index and the electromotive voltage do not have a proportional relationship. Glass electrode type trace sodium, characterized in that the first function or the second function is selected in accordance with the measured electromotive voltage, with the electromotive voltage at the intersection of the above function and the second function as a threshold value. Ion measuring device.
【請求項2】 請求項1において、第1の関数は0.1
ppb近傍以上で校正し、第2の関数は0.1ppb近
傍未満で校正したことを特徴とするガラス電極式微量ナ
トリウムイオン測定装置。
2. The first function according to claim 1, wherein the first function is 0.1.
A glass electrode type trace sodium ion measuring device characterized in that it is calibrated in the vicinity of ppb or more and the second function is calibrated in the vicinity of less than 0.1 ppb.
【請求項3】 請求項1又は2において、演算手段は第
1の関数の校正と第2の関数の校正は別々に行うことを
特徴とするガラス電極式微量ナトリウムイオン測定装
置。
3. The glass electrode type trace sodium ion measuring device according to claim 1 or 2, wherein the calculating means separately calibrates the first function and the second function.
JP4300967A 1992-11-11 1992-11-11 Glass electrode type trace sodium ion measuring device Pending JPH06148134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4300967A JPH06148134A (en) 1992-11-11 1992-11-11 Glass electrode type trace sodium ion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4300967A JPH06148134A (en) 1992-11-11 1992-11-11 Glass electrode type trace sodium ion measuring device

Publications (1)

Publication Number Publication Date
JPH06148134A true JPH06148134A (en) 1994-05-27

Family

ID=17891234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4300967A Pending JPH06148134A (en) 1992-11-11 1992-11-11 Glass electrode type trace sodium ion measuring device

Country Status (1)

Country Link
JP (1) JPH06148134A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053019A (en) * 2004-08-11 2006-02-23 Tanita Corp Electrochemical measuring instrument
WO2009144331A1 (en) * 2009-09-11 2009-12-03 Swan Analytical Instruments Reconditioning of glass electrodes for sodium trace detection
JP2012233818A (en) * 2011-05-06 2012-11-29 Yokogawa Electric Corp Na+ CONCENTRATION MEASUREMENT SYSTEM USING pH METER

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006053019A (en) * 2004-08-11 2006-02-23 Tanita Corp Electrochemical measuring instrument
JP4610965B2 (en) * 2004-08-11 2011-01-12 株式会社タニタ Electrochemical measuring device
WO2009144331A1 (en) * 2009-09-11 2009-12-03 Swan Analytical Instruments Reconditioning of glass electrodes for sodium trace detection
JP2012233818A (en) * 2011-05-06 2012-11-29 Yokogawa Electric Corp Na+ CONCENTRATION MEASUREMENT SYSTEM USING pH METER

Similar Documents

Publication Publication Date Title
US20050263408A1 (en) Calibration method and zirconia-type oxygen analyzer using this method
US4581714A (en) Method of calibrating and linearizing the output of fluid measuring instruments
Leito et al. Estimation of uncertainty in routine pH measurement
CN105572191A (en) Pressure compensation method of electrochemical gas sensor
US4700064A (en) Temperature varying optical measurement device
CN115389567A (en) Temperature compensation algorithm of water quality conductivity sensor
Hack Evaluating galvanic corrosion
Marinenko et al. Precise coulometric titrations of potassium dichromate
JPH06148134A (en) Glass electrode type trace sodium ion measuring device
JPH04218792A (en) Method for monitoring neutron detector
CN107132417A (en) A kind of precision resister measuring method of reactive circuit parameter drift
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
Pearman Further studies of the comparability of baseline atmospheric carbon dioxide measurements
US4691168A (en) High purity water calibrating device
JPWO2019163281A1 (en) Automatic analyzer, automatic analysis method
CN112782256A (en) Multi-parameter probe for corrosion monitoring and corrosion detection system
Hack et al. Influence of electrolyte resistance on electrochemical measurements and procedures to minimize or compensate for resistance errors
RU1789914C (en) Method of graduation of heat conduction meter
Lund The standardization of pH meters: A comparison of procedures for different types of instruments
JP2006242843A (en) System for measuring continuous monitor chromaticity
JPH04191650A (en) Measuring apparatus for ion
JP3032910B2 (en) Analysis equipment
Keys Dynamic conductrometric analysis of peanut (Arachis hypogaea L.) seed leachate using the CASAS (computerized automated seed analysis system)
McKinley Permeation tubes: A simple path to very complex gas mixtures
SU1763965A1 (en) Electrochemical analysis device