JPH06148071A - Method and instrument for measuring multi-point gas concentration using optical fiber - Google Patents

Method and instrument for measuring multi-point gas concentration using optical fiber

Info

Publication number
JPH06148071A
JPH06148071A JP29586392A JP29586392A JPH06148071A JP H06148071 A JPH06148071 A JP H06148071A JP 29586392 A JP29586392 A JP 29586392A JP 29586392 A JP29586392 A JP 29586392A JP H06148071 A JPH06148071 A JP H06148071A
Authority
JP
Japan
Prior art keywords
light
gas
optical
laser
transmitted light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29586392A
Other languages
Japanese (ja)
Other versions
JP3229391B2 (en
Inventor
Atsuhiko Ishibashi
厚彦 石橋
Yasuo Yoshida
安夫 吉田
Masahiko Uchida
昌彦 内田
Satoru Yamamoto
哲 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Cable Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP29586392A priority Critical patent/JP3229391B2/en
Publication of JPH06148071A publication Critical patent/JPH06148071A/en
Application granted granted Critical
Publication of JP3229391B2 publication Critical patent/JP3229391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide a multi-point gas concentration measuring method by which a gas can be detected even when the concentration of the gas is low and the concentration of the gas can be measured at multiple points by means of one set of a light source and signal processing means and, at the same time, optical fibers can be controlled easily and no large amount of optical fibers is required. CONSTITUTION:By using a laser which oscillates laser light having the wavelength and intensity corresponding to the driving current and temperature of the laser, the wavelength and intensity of the laser light are modulated 2 and, at the same time, the laser light is intermittently discontinued 3 like a pulse by changing the driving current and temperature of the laser. The pulse-like laser light is passed through a plurality of gas atmospheres to be measured through an optical transmission line 5 and the laser light transmitted through the atmospheres is joined together. The intensity of the joined transmitted laser light is detected and the concentration of a specific gas is measured by phase-sensitively detecting 4 a fundamental and second harmonic components from the intensity detecting signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス濃度を光学的に測
定するガス濃度測定方法及び装置に係り、特に、低濃度
でもガス検出ができ、しかも1組の光源、信号処理手段
でもって多箇所のガス濃度測定ができ、さらに制御方法
が簡単且つ光ファイバ量が少なくてよい光ファイバを用
いた多点ガス濃度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration measuring method and device for optically measuring a gas concentration, and in particular, it is capable of detecting a gas even at a low concentration and has a large number of light sources and a signal processing means. The present invention relates to a multipoint gas concentration measuring device using an optical fiber which can measure a gas concentration at a location, has a simple control method, and requires a small amount of optical fibers.

【0002】[0002]

【従来の技術】特定波長のレーザ光がある種の気体に吸
収され易いことを利用して気体の有無を検出できること
が知られており、この原理を応用したセンシング技術が
工業計測、公害監視などで広く用いられている。また、
レーザ光を光ファイバ路を伝送路とすれば、遠隔地のガ
ス検出を行うことも可能である。
2. Description of the Related Art It is known that the presence or absence of gas can be detected by utilizing the fact that a laser beam of a specific wavelength is easily absorbed by a certain type of gas. Sensing technology applying this principle is used in industrial measurement, pollution monitoring, etc. Widely used in. Also,
If laser light is used as an optical fiber transmission line, it is possible to detect gas at a remote place.

【0003】一例として、メタンガスは、1.6μmに
強い吸収スペクトル線を持っている。この波長とメタン
ガスに吸収されない別の波長とを含む光を光ファイバで
測定ガスまで導き、光を測定ガス雰囲気中を透過させ、
その透過光を対向する別の光ファイバで受けて受光部ま
で導く。この場合、光源としては、LEDのような広い
帯域幅の波長を持つ光源が使われる。受光部では、帯域
透過フィルタ等を用いてメタンガスに吸収される波長の
光と、メタンガスに吸収されない波長の光とに分光し、
それぞれの光の減衰量の比を求めて、これよりメタンガ
スの濃度を検出する。
As an example, methane gas has a strong absorption spectrum line at 1.6 μm. Light including this wavelength and another wavelength that is not absorbed by methane gas is guided to the measurement gas with an optical fiber, and the light is transmitted through the measurement gas atmosphere,
The transmitted light is received by another opposing optical fiber and guided to the light receiving portion. In this case, a light source having a wavelength with a wide bandwidth such as an LED is used as the light source. In the light receiving part, using a bandpass filter or the like, the light having a wavelength absorbed by methane gas and the light having a wavelength not absorbed by methane gas are separated into
The ratio of the attenuation of each light is obtained, and the concentration of methane gas is detected from this.

【0004】ところが、このようなメタンガス検知シス
テムでは、多数のハーフミラーを用いるなど、複雑な光
学系が必要になる。また、SN比の点で、低濃度のガス
検出には、不利である。例えば、空間光路長10cmの
ガスセルに、上記メタン吸収波長として、λ=1.66
5μm(吸収係数α=16m-1・atm-1)の光を透過
させたときの減衰量は、濃度50%で、0.65、濃度
1%で0.02、濃度1000ppmで0.002とな
り、低濃度になるに従い減衰量が極端に小さくなる。こ
のように減衰量が極端に小くなると、測定がSN比の点
で困難となる。
However, such a methane gas detection system requires a complicated optical system such as using a large number of half mirrors. Further, in terms of SN ratio, it is disadvantageous for detecting low concentration gas. For example, in a gas cell with a spatial optical path length of 10 cm, λ = 1.66 as the methane absorption wavelength.
The attenuation when light of 5 μm (absorption coefficient α = 16 m -1 · atm -1 ) is transmitted is 0.65 at 50% concentration, 0.02 at 1% concentration, and 0.002 at 1000 ppm concentration. , The attenuation becomes extremely small as the concentration becomes lower. If the amount of attenuation is extremely small, the measurement becomes difficult in terms of SN ratio.

【0005】そこで、本発明者らは特願2−78498
号を応用して、光ファイバを伝送路とした新規の遠隔メ
タンガス検出装置を開発した。この原理を応用した方法
では、光源の駆動電源を所定の電流を中心として高周波
数で変調し、波長及び強度の変調されたレーザ光を発振
させる。このとき半導体レーザから出射するレーザ光の
一部をモニタ用として用い、発振の中心波長がメタン吸
収線の中心になるよう電流及び温度を制御する。そうし
て安定に出射されたレーザ光を光ファイバを介して未知
濃度のガスを含む測定用ガスセルに透過させ、その透過
光を対向する別の光ファイバで受光部まで導き、このレ
ーザ光の2倍検波信号、基本波検波信号よりよりガス濃
度を求める。このような遠隔メタンガス検出装置によ
り、ガス濃度を高いSN比で検出できるようになった。
Therefore, the present inventors have filed Japanese Patent Application No. 2-78498.
We have developed a new remote methane gas detector using an optical fiber as a transmission line. In the method applying this principle, the driving power source of the light source is modulated at a high frequency centering on a predetermined current to oscillate a laser beam whose wavelength and intensity are modulated. At this time, a part of the laser light emitted from the semiconductor laser is used for monitoring, and the current and temperature are controlled so that the center wavelength of oscillation becomes the center of the methane absorption line. Then, the stably emitted laser light is transmitted through the optical fiber to the measurement gas cell containing the gas of unknown concentration, and the transmitted light is guided to the light receiving portion by another optical fiber facing the measurement gas. The gas concentration is obtained from the double detection signal and the fundamental detection signal. With such a remote methane gas detection device, the gas concentration can be detected at a high SN ratio.

【0006】けれども、上記遠隔メタンガス検出装置
は、1点のガス濃度測定しかできない。仮に複数の箇所
のガス濃度を測定しようとして、光ファイバに沿って複
数のガスセルを直列或いは並列に設置しても、受光部で
得られる信号からは、全測定点の吸収量の総和が得られ
るのみで、各点毎のガス濃度を検知するには不十分であ
る。結局、上記遠隔メタンガス検出装置は、1点のガス
濃度測定しかできず、このため濃度監視が必要な箇所が
数箇所ある場合、光源、受光部等を含めた検出装置を別
々に測定箇所分設けることが必要となり、費用が増大す
るという問題があった。
However, the above-mentioned remote methane gas detector can only measure the gas concentration at one point. Even if a plurality of gas cells are installed in series or in parallel along the optical fiber in an attempt to measure gas concentrations at a plurality of points, the signal obtained at the light receiving section gives the sum of absorption amounts at all measurement points. However, it is not enough to detect the gas concentration at each point. After all, the remote methane gas detection device can only measure the gas concentration at one point. Therefore, when there are several places where concentration monitoring is required, a detection device including a light source, a light receiving part, etc. is separately provided for each measurement point. However, there is a problem that the cost is increased.

【0007】これに対して、別の方式として、光ファイ
バに沿って複数のガスセルを配置し、複数の箇所のガス
濃度を測定する方式も考えられる。即ち、図7に示した
ように、複数のガスセル6を並列に配置し、光源部2よ
り光伝送路5を介してぞれぞれのガスセル6に測定用光
を分岐して供給し、ガスセル6を透過した透過光を別の
光伝送路5fに合流させて信号処理部4に集める構成を
とると共に、光源部2からは複数(測定箇所の2分の1
以上)の変調周波数で変調されたレーザ光を与える。こ
うすることにより、各変調周波数毎に得られた関係式を
解くことで、各ガスセル6のガス濃度を求めることがで
きる。
On the other hand, as another method, a method of arranging a plurality of gas cells along the optical fiber and measuring the gas concentration at a plurality of points is also conceivable. That is, as shown in FIG. 7, a plurality of gas cells 6 are arranged in parallel, and measurement light is branched and supplied from the light source unit 2 to each of the gas cells 6 via the optical transmission line 5, The transmitted light that has passed through 6 is merged with another optical transmission path 5f and collected in the signal processing unit 4, and a plurality of light sources (half of the measurement points) are provided from the light source unit 2.
The laser light modulated by the above modulation frequency is given. By doing so, the gas concentration of each gas cell 6 can be obtained by solving the relational expression obtained for each modulation frequency.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、この方
式にも、まだ、問題点があり、一つは、n個の多点濃度
測定を行うために、n/2以上の異なる変調周波数を用
意する必要があり、これら複数の変調周波数を制御する
ための制御回路が必要になる。また、ガスセルに測定用
光を導くための光伝送路と、ガスセルからの透過光を導
くための光伝送路とが、個別に必要になり、遠隔測定に
は多くの光ファイバが必要になるという問題がある。
However, this method still has a problem. One is to prepare n / 2 or more different modulation frequencies in order to carry out n multi-point density measurement. Therefore, a control circuit for controlling the plurality of modulation frequencies is required. In addition, an optical transmission line for guiding the measuring light to the gas cell and an optical transmission line for guiding the transmitted light from the gas cell are separately required, and many optical fibers are required for the remote measurement. There's a problem.

【0009】そこで、本発明の目的は、上記課題を解決
し、低濃度でもガス検出ができ、しかも1組の光源、信
号処理手段でもって多箇所のガス濃度測定ができ、さら
に制御方法が簡単且つ光ファイバ量が少なくてよい光フ
ァイバを用いた多点ガス濃度測定方法及び装置を提供す
ることにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, to detect gas even at low concentration, and to measure gas concentration at multiple points with one set of light source and signal processing means, and to simplify the control method. Another object of the present invention is to provide a multipoint gas concentration measuring method and apparatus using an optical fiber that requires a small amount of optical fiber.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に本発明は、駆動電流および温度に応じた波長および強
度のレーザ光を発振するレーザを用い、このレーザの駆
動電流あるいは温度を変化させてレーザ光の波長および
強度を変調させると共にこのレーザ光をパルス状に断続
させ、このパルス状レーザ光を光伝送路を通して複数の
測定対象となるガス雰囲気に透過させ、これらのガス雰
囲気の透過光を合流させ、この合流された透過光の光強
度を検出し、その検出信号より変調周波数の基本波成分
と2倍波成分とを位相敏感検波して特定ガスの濃度を測
定するようにした。
In order to achieve the above object, the present invention uses a laser that oscillates a laser beam having a wavelength and intensity according to the drive current and temperature, and changes the drive current or temperature of the laser. The wavelength and intensity of the laser light are modulated, and this laser light is intermittently pulsed, and this pulsed laser light is transmitted through the optical transmission line to multiple gas atmospheres to be measured. Are combined, the light intensity of the combined transmitted light is detected, and the fundamental wave component and the second harmonic component of the modulation frequency are phase-sensitively detected from the detection signal to measure the concentration of the specific gas.

【0011】また、多点ガス濃度測定装置には、駆動電
流および温度に応じた波長および強度のレーザ光を発振
するレーザと、所定の電流値を中心として所定の振幅で
上記レーザの駆動電流を変調するための駆動回路と、測
定対象となるガスを含む複数個のガスセルと、レーザ光
を伝送する光伝送路と、光伝送路からガスセルに測定用
光を導くと共にガスセルの透過光を光伝送路に戻すガス
セル毎の測定用光透過光入出手段と、上記光伝送路から
それぞれの測定用光透過光入出手段に測定用光を分岐し
て与えると共にそれぞれの測定用光透過光入出手段から
の透過光を合流させて光伝送路に取り込む光分岐合流手
段と、光伝送路内の測定用光及び透過光から透過光を分
岐する透過光分岐手段と、分岐された透過光の光強度を
検出し且つ変調周波数の基本波成分と2倍波成分とを位
相敏感検波する信号処理手段とを備えて構成することが
できる。
Further, the multipoint gas concentration measuring apparatus includes a laser that oscillates a laser beam having a wavelength and intensity according to a driving current and temperature, and a driving current of the laser with a predetermined amplitude centered on a predetermined current value. A drive circuit for modulation, a plurality of gas cells containing the gas to be measured, an optical transmission line for transmitting laser light, a measurement light is guided from the optical transmission line to the gas cell, and the transmitted light of the gas cell is also transmitted optically. Measuring light transmission light input and output means for each gas cell returned to the path, and the measurement light is branched from the optical transmission path to each measurement light transmission light input and output means, and from each measurement light transmission light input and output means. Optical branching / combining means for combining the transmitted light to be taken into the optical transmission path, transmitted light branching means for branching the transmitted light from the measuring light and the transmitted light in the optical transmission path, and detecting the light intensity of the branched transmitted light And modulation frequency A fundamental wave component and second harmonic component number can be configured and a signal processing means for phase sensitive detection.

【0012】或いは、上記レーザ及び上記駆動回路と、
光伝送路に直列に配置された複数個のガスセルと、各ガ
スセル間の光伝送路毎に接続され前段のガスセルからの
透過光を後段のガスセルの測定用光と前段のガスセルの
透過光とに分岐する光分岐手段と、各光分岐手段で分岐
された透過光を透過光用光伝送路に合流させる光合流手
段と、光伝送路の上流と透過光用光伝送路の下流とを結
合する光結合器と、光伝送路内の測定用光及び透過光か
ら透過光を分岐する透過光分岐手段と、上記信号処理手
段とを備えて構成してもよい。
Alternatively, the laser and the drive circuit,
A plurality of gas cells arranged in series in the optical transmission line, and the transmitted light from the gas cells in the previous stage connected to each optical transmission line between each gas cell is used as the measuring light for the gas cells in the subsequent stage and the transmitted light for the gas cells in the previous stage. Optical branching means for branching, optical joining means for joining the transmitted light branched by each optical branching means to the optical transmission path for transmitted light, and the upstream of the optical transmission path and the downstream of the optical transmission path for transmitted light are coupled. It may be configured to include an optical coupler, a transmitted light branching unit that branches the transmitted light from the measuring light and the transmitted light in the optical transmission line, and the signal processing unit.

【0013】或いは、上記レーザ及び上記駆動回路と、
上記複数のガスセルと、光分岐手段と、光合流手段と、
上記合流手段からの透過光用光伝送路と、透過光用光伝
送路に接続された信号処理手段とを備えてもよい。
Alternatively, the laser and the drive circuit,
A plurality of gas cells, a light branching means, a light combining means,
An optical transmission line for transmitted light from the merging unit and a signal processing unit connected to the optical transmission line for transmitted light may be provided.

【0014】また、上記レーザからの測定用光をパルス
状に断続させるパルス変調器を備えてもよい。
Further, a pulse modulator for interrupting the measuring light from the laser in a pulse shape may be provided.

【0015】さらに、上記複数個のガスセル、光分岐手
段、及び光合流手段からなるガスセル列を複数並列に配
置してもよい。
Further, a plurality of gas cell rows each including the plurality of gas cells, the light branching means, and the light merging means may be arranged in parallel.

【0016】[0016]

【作用】上記構成により、レーザ光は、波長および強度
が変調されていると共にパルス状に断続されている。こ
のパルス幅の間には、数サイクルの変調波が含まれてい
るので、位相敏感検波が可能である。一方、このパルス
状レーザ光は、各ガスセルを透過して信号処理手段に戻
ってくるが、そのための所要時間は、各ガスセルの光伝
送路長に依存する。従って、信号処理手段には、各ガス
セルからのパルス状の透過光が時間をずらして到着す
る。各パルス毎に位相敏感検波を行うことにより、低濃
度でも各測定箇所の濃度が求まる。
With the above construction, the laser light is modulated in wavelength and intensity and is intermittently pulsed. Since the modulated wave of several cycles is included in this pulse width, phase sensitive detection is possible. On the other hand, the pulsed laser light passes through each gas cell and returns to the signal processing means, but the required time for this depends on the optical transmission path length of each gas cell. Therefore, the pulsed transmitted light from each gas cell arrives at the signal processing means with a time shift. By performing the phase sensitive detection for each pulse, the concentration at each measurement point can be obtained even at low concentration.

【0017】また、透過光を合流させて光伝送路に取り
込むことにより、1本の光ファイバで測定用光と透過光
とを伝送することができる。即ち、光ファイバ量が少な
くてよい。
Further, by combining the transmitted light and taking it into the optical transmission line, the measuring light and the transmitted light can be transmitted by one optical fiber. That is, the amount of optical fibers may be small.

【0018】[0018]

【実施例】以下本発明の一実施例を添付図面に基づいて
詳述する。ここでは、半導体レーザを光源として、メタ
ンガスを測定する例について述べる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the accompanying drawings. Here, an example of measuring methane gas using a semiconductor laser as a light source will be described.

【0019】半導体レーザの駆動電流を周波数ωで変調
すると、レーザ光の発振周波数Ω及び、発振強度が周波
数ωで変調される。今、このように周波数及び強度が変
調されたレーザ光を光ファイバを介してメタンガスを含
む雰囲気中に透過させると、その透過光Pは、式(1)
となる。
When the driving current of the semiconductor laser is modulated with the frequency ω, the oscillation frequency Ω and the oscillation intensity of the laser light are modulated with the frequency ω. Now, when the laser light whose frequency and intensity are thus modulated is transmitted through an optical fiber into an atmosphere containing methane gas, the transmitted light P is expressed by the formula (1).
Becomes

【0020】 P=A [I0 +ΔIcos(ωt+φ1 +φ)] × [C0 +ΔΩ・T01cos(ωt+φ1 )+ T02cos{2(ωt+φ1 )+φ}] …(1) ただし、 C0 =T01+T02(ΔΩ)2 /4 ここで、A;光学系の伝送損失に依存する定数 I0 ;レーザ出力の中心強度 ΔI;強度変調振幅 ω;駆動電流の変調周波数 φ;強度変調と周波数変調との位相差 T;透過率 T01;一次微分dT/dΩ T02;二次微分d2 T/dΩ2 また、φ1 は、レーザ光が光源を発してファイバ内を伝
送して受光器に達するまでの時間遅れから生じる位相差
で、 φ1 =(2π/ω)・N・L/V …(2) ただし、N;光ファイバコア屈折率 V;真空中での光速 L;光源から検出器までの光伝送路長(ここでは、光フ
ァイバ長が数キロメートル、ガスセル内伝搬長が数セン
チから数十センチメートルであり、後者は無視してい
る。) このように、透過光Pは、直流分の他に、cos(ωt
+φ1 )成分、cos(2(ωt+φ1 ))成分からな
る。
P = A [I 0 + ΔIcos (ωt + φ 1 + φ)] × [C 0 + ΔΩ · T 01 cos (ωt + φ 1 ) + T 02 cos {2 (ωt + φ 1 ) + φ}] (1) where C 0 = T 01 + T 02 (ΔΩ ) 2/4 here, a; modulation frequency φ of the drive current; intensity modulation amplitude omega; central intensity ΔI of the laser output; constant I 0 which depends on the transmission loss of the optical-system intensity modulation and Phase difference from frequency modulation T; Transmittance T 01 ; First derivative dT / dΩ T 02 ; Second derivative d 2 T / dΩ 2 In addition, φ 1 is the laser light emitted from the light source and transmitted through the fiber to receive light. Phase difference caused by the time delay until reaching the chamber, φ 1 = (2π / ω) N L / V (2) where N: optical fiber core refractive index V; speed of light in vacuum L; light source To the detector (here, the optical fiber length is several kilometers, the propagation length in the gas cell Several tens centimeters from a few centimeters, the latter in is ignored.) Thus, the transmitted light P, in addition to the DC component, cos (.omega.t
+ Φ 1 ) component and cos (2 (ωt + φ 1 )) component.

【0021】上記(1)式のうち、cos(2(ωt+
φ1 ))の周波数、位相成分を位相敏感検波してP(2
ω)を求めると、式(3)が得られ、P(2ω)は、T
01、T02に基づき変化することが分かる。
In the above equation (1), cos (2 (ωt +
φ 1 )) frequency and phase components are detected with phase sensitivity and P (2
When ω) is obtained, equation (3) is obtained, and P (2ω) is T
It can be seen that it changes based on 01 and T 02 .

【0022】 P(2ω)=A{I0 ・T02(ΔΩ)2 /4+ ΔI・ΔΩ・cosφ・T01} …(3) 検波信号P(2ω)は、光周波数Ωの変化により変化
し、レーザの中心周波数Ω0 がメタンガスの吸収線の中
心周波数Wに一致した時に最大感度が得られる。そのと
きは、T01が0、T02が最大となるため、式(3)の第
2項が消去でき第1項のみが残る。即ち、Ω0 =Wのと
きのT02は、 T02=2・α(W)・C・l/γ2 …(4) となる。そのため、これを式(3)に代入すると、式
(5)となる。
[0022] P (2ω) = A {I 0 · T 02 (ΔΩ) 2/4 + ΔI · ΔΩ · cosφ · T 01} ... (3) the detection signal P (2 [omega) is changed by a change in the optical frequency Ω The maximum sensitivity is obtained when the center frequency Ω 0 of the laser coincides with the center frequency W of the absorption line of methane gas. At that time, since T 01 is 0 and T 02 is maximum, the second term of the equation (3) can be erased and only the first term remains. In other words, T 02 at the time of Ω 0 = W is a T 02 = 2 · α (W ) · C · l / γ 2 ... (4). Therefore, when this is substituted into the equation (3), the equation (5) is obtained.

【0023】 P(2ω)=A・I0 ・(ΔΩ)2 ・α(W)・C・l/(2γ)2 …(5) ここで、α(W);Ω0 =Wのときのメタンガスの吸収
係数 2γ;ガス吸収線の半値全幅 C・l;ガスセル内におけるガス濃度と空間光路長との
積 一方、cos(ωt)の周波数、位相成分を位相敏感検
波してP(ω)を求めると、 P(ω)=A・ΔI …(6) となる。
P (2ω) = A · I 0 · (ΔΩ) 2 · α (W) · C · l / (2γ) 2 (5) where α (W); Ω 0 = W Absorption coefficient of methane gas 2γ; full width at half maximum of gas absorption line C · l; product of gas concentration and spatial optical path length in gas cell On the other hand, the frequency and phase components of cos (ωt) are phase-sensitively detected to obtain P (ω) When obtained, P (ω) = A · ΔI (6)

【0024】また、各ガスセルを透過したパルス状レー
ザ光変調波が、信号処理手段に重なることなく時間をず
らして到着するために、光伝送路の最小余長Δlが定め
られる。1パルスに含まれる変調波の波の数をCY とす
ると、 Δl≧(CY /ω)・(V/N) …(7) となる。以下述べる実施例では、光伝送路の長さは上式
を満足するように構成されるものとする。
Further, in order that the pulsed laser light modulated waves which have passed through each gas cell arrive at the signal processing means with a time shift without overlapping, the minimum extra length Δl of the optical transmission line is determined. When the number of modulated waves included in one pulse is C Y , Δl ≧ (C Y / ω) · (V / N) (7) In the embodiments described below, the length of the optical transmission line is assumed to satisfy the above equation.

【0025】以上の知見に基づき本発明の実施例が構成
されている。
An embodiment of the present invention is constructed based on the above findings.

【0026】図1に示されるように、多点ガス濃度測定
装置1は、レーザ及び駆動回路からなる光源部2、パル
ス変調器3、及び信号処理手段4を有し、これらは光伝
送路5を介して遠隔地に設けられた多数(n個)のガス
セル6に接続されている。
As shown in FIG. 1, the multipoint gas concentration measuring apparatus 1 has a light source section 2 including a laser and a driving circuit, a pulse modulator 3, and a signal processing means 4, which are optical transmission lines 5. Is connected to a large number (n number) of gas cells 6 provided at a remote location.

【0027】光源部2に含まれるレーザは、駆動電流お
よび温度に応じた波長および強度のレーザ光を発振する
ものである。同じく光源部2に含まれる駆動回路は、こ
のレーザの駆動電流あるいは温度を変化させてレーザ光
の波長および強度を変調させるものである。光源部2
は、パルス変調器3に接続されている。
The laser included in the light source section 2 oscillates laser light having a wavelength and intensity according to the drive current and temperature. Similarly, the drive circuit included in the light source unit 2 changes the drive current or temperature of the laser to modulate the wavelength and intensity of the laser light. Light source 2
Are connected to the pulse modulator 3.

【0028】パルス変調器3は、任意の幅のパルスを連
続的、或いは単発的に発生させ、このパルスで光源部2
からのレーザ光をパルス状に断続させることができる。
パルス変調器3は、光伝送路5の最上流5aに接続され
ている。本実施例では、パルス変調器3は、LiNbO
3 導波路型マッハツェンダ変調器が用いられており、こ
のLiNbO3 導波路型マッハツェンダ変調器にパルス
信号を与えることにより、光伝送路5にパルス状レーザ
光を伝送させることができる。
The pulse modulator 3 generates a pulse having an arbitrary width continuously or singly, and the light source section 2 is generated by this pulse.
It is possible to intermittently pulse the laser light from.
The pulse modulator 3 is connected to the uppermost stream 5a of the optical transmission line 5. In this embodiment, the pulse modulator 3 is LiNbO.
A 3- waveguide type Mach-Zehnder modulator is used, and by applying a pulse signal to this LiNbO 3 waveguide-type Mach-Zehnder modulator, pulsed laser light can be transmitted to the optical transmission line 5.

【0029】信号処理手段4は、ガスセル6からの透過
光を受光する受光素子を有し、透過光を電気信号に変換
すると共に、この電気信号を変調周波数の基本波成分と
2倍波成分とを位相敏感検波して特定ガスの濃度を測定
することができる。
The signal processing means 4 has a light receiving element for receiving the transmitted light from the gas cell 6, converts the transmitted light into an electric signal, and converts the electric signal into a fundamental wave component and a second harmonic wave component of the modulation frequency. The phase sensitive detection can be performed to measure the concentration of the specific gas.

【0030】図1に示される第1の実施例では、ガスセ
ル6は2路の透過光路を有し、これらの透過光路の一端
はループ状の光ファイバ12で互いに接続されている。
一方、光伝送路5には、測定用光透過光入出手段7、光
分岐合流手段8、及び透過光分岐手段9が適宜接続され
ている。詳しく述べると、測定用光透過光入出手段7
は、ガスセル6毎に設けられ、主に光分岐結合器10及
び光アイソレータ11から構成されている。光分岐結合
器10は、その上流側から2路に分かれた下流側に光を
分岐させることができると共に、両下流側からの光を上
流側に合流させて戻すことができる。光分岐結合器10
の上流側は各ガスセル6のために割り振られた光伝送路
5bに接続され、反対の下流側は一方が光アイソレータ
11へ、他方がガスセル6の一方の透過光路に接続され
ている。光アイソレータ11は、一方からの光を遮断す
ると共に他方からの光を一方的に通過させることができ
るものである。光アイソレータ11は、ガスセル6のも
う1つの透過光路からの光を一方的に光分岐結合器10
に通過できるように接続されている。この構成により、
測定用光透過光入出手段7は、光伝送路5bから測定用
光を、光分岐結合器10、ガスセル6の一方の透過光
路、ループ状の光ファイバ12、ガスセル6のもう一方
の透過光路、光アイソレータ11の順に導くと共に光ア
イソレータ11を通過したガスセル6の透過光を光伝送
路5bに戻すことができる。
In the first embodiment shown in FIG. 1, the gas cell 6 has two transmission optical paths, and one ends of these transmission optical paths are connected to each other by a loop-shaped optical fiber 12.
On the other hand, to the optical transmission line 5, a measuring light transmitted light input / output means 7, an optical branching / merging means 8 and a transmitted light branching means 9 are appropriately connected. More specifically, the measuring light transmitted / received light input / output means 7
Is provided for each gas cell 6 and mainly includes an optical branching / coupling device 10 and an optical isolator 11. The optical branching / coupling device 10 can branch the light from the upstream side to the downstream side, which is divided into two paths, and can combine and return the light from both downstream sides to the upstream side. Optical splitter / coupler 10
The upstream side of is connected to the optical transmission line 5b allocated for each gas cell 6, and the opposite downstream side is connected to the optical isolator 11 on the one side and the transmission optical path on the other side of the gas cell 6 on the other side. The optical isolator 11 is capable of blocking light from one side and passing light from the other side unilaterally. The optical isolator 11 unidirectionally splits light from the other transmission optical path of the gas cell 6 into an optical branching / coupling device 10.
Is connected so that it can pass through. With this configuration,
The measuring light transmitted light entering / exiting means 7 sends the measuring light from the optical transmission line 5b to the optical branching / coupling device 10, one transmission optical path of the gas cell 6, the loop-shaped optical fiber 12, the other transmission optical path of the gas cell 6, The transmitted light of the gas cell 6 that has passed through the optical isolator 11 can be returned to the optical transmission line 5b while being guided in the order of the optical isolator 11.

【0031】光分岐合流手段8は、その上流側から2路
に分かれた下流側に光を分岐させることができると共
に、両下流側からの光を上流側に合流させて戻すことが
できるものである。光分岐合流手段8は、光伝送路5中
にガスセル6に対応させて設けられ、光伝送路5からそ
れぞれのガスセル6の測定用光透過光入出手段7に測定
用光を分岐して与えると共にそれぞれの測定用光透過光
入出手段7からの透過光を合流させて光伝送路5に取り
込むことができる。
The light branching / combining means 8 is capable of branching light from its upstream side into two downstream paths, and at the same time returning light from both downstream sides by combining it into the upstream side. is there. The optical branching / combining means 8 is provided in the optical transmission path 5 so as to correspond to the gas cells 6, and the measuring light is branched from the optical transmission path 5 to the measuring light transmitting light entering / exiting means 7 of each gas cell 6 and supplied. The transmitted light from the respective measuring light transmitted light input / output means 7 can be merged and taken into the optical transmission path 5.

【0032】透過光分岐手段9は、その上流側からの光
を下流側に通過させると共に下流側からの光を上流側の
分岐路に分岐させるものである。透過光分岐手段9は、
上流側がパルス変調器3からの光伝送路5の最上流5a
に接続され、下流側が光伝送路5に接続されている。ま
た、透過光分岐手段9の分岐路は、光伝送路5cを介し
て信号処理手段4に接続されている。このような構成に
より、透過光分岐手段9は、光伝送路5内の測定用光及
び透過光から透過光を分岐して信号処理手段4に導くこ
とができる。
The transmitted light branching means 9 passes the light from the upstream side to the downstream side and branches the light from the downstream side into the upstream branch path. The transmitted light splitting means 9 is
The upstream side is the uppermost stream 5a of the optical transmission line 5 from the pulse modulator 3.
, And the downstream side is connected to the optical transmission line 5. The branch path of the transmitted light branching means 9 is connected to the signal processing means 4 via the optical transmission path 5c. With such a configuration, the transmitted light branching unit 9 can branch the transmitted light from the measurement light and the transmitted light in the optical transmission path 5 and guide the branched light to the signal processing unit 4.

【0033】次に実施例の作用を述べる。Next, the operation of the embodiment will be described.

【0034】光源部2では、半導体レーザの発振波長を
メタンガスの吸収線を中心周波数とし、駆動電流及び温
度が調節されて周波数変調されたレーザ光が生成され
る。このレーザ光は、図5(a)に示されるような連続
光である。パルス変調器3では、この連続光が図5
(b)に示されるようなパルスで変調され、図5(c)
に示されるような、波長および強度が変調され且つパル
ス状に断続された測定用光が、光伝送路5aに供給され
る。測定用光は、図1の実線矢印で示されるように、透
過光分岐手段9を通過して最初の光分岐合流手段8に至
る。
In the light source section 2, the oscillation wavelength of the semiconductor laser is centered on the absorption line of methane gas, and the driving current and temperature are adjusted to generate frequency-modulated laser light. This laser light is continuous light as shown in FIG. In the pulse modulator 3, this continuous light is generated as shown in FIG.
It is modulated with a pulse as shown in FIG.
The measurement light whose wavelength and intensity are modulated and which is intermittently pulsed as shown in (3) is supplied to the optical transmission line 5a. The measuring light passes through the transmitted light branching means 9 and reaches the first light branching / merging means 8 as shown by the solid arrow in FIG.

【0035】光分岐合流手段8は、各光伝送路5bを介
してn個の各ガスセル6の測定用光透過光入出手段7に
測定用光を分岐する。この時、各光分岐合流手段8の分
岐比を、上流側では例えば1:(n−1)とし、下流に
なるほど1に近いものを用いれば、各ガスセル6に等量
の測定用光を配分できる。さらに、測定用光透過光入出
手段7では、光分岐結合器10により、直接ガスセル6
に向かう光が多くなるように配分される。光分岐結合器
10から光アイソレータ11に分岐された光はそこで遮
断される。
The light branching / combining means 8 branches the measurement light into the measurement light transmitted light input / output means 7 of each of the n gas cells 6 through each light transmission path 5b. At this time, if the branching ratio of each optical branching / combining means 8 is set to, for example, 1: (n-1) on the upstream side and a branching ratio closer to 1 is used toward the downstream side, an equal amount of measuring light is distributed to each gas cell 6. it can. Further, in the measuring light transmitted / received light input / output means 7, the light branching coupler 10 is used to directly connect the gas cell 6
Allocated so that more light goes to. The light branched from the optical branch coupler 10 to the optical isolator 11 is blocked there.

【0036】光分岐結合器10からガスセル6に配分さ
れた測定用光は、ガスセル6内の透過光路を通過し、ル
ープ状の光ファイバ12を伝送されて、再びガスセル6
内の透過光路を通過する。ここで、ガスセル6内の透過
光路を往復した透過光は、そのガス濃度に応じて減衰さ
れている。この透過光(図中、破線矢印)は、光アイソ
レータ11を経て光分岐結合器10を通過し、もと来た
光伝送路5bを戻って光分岐合流手段8に至る。さら
に、透過光は、光分岐合流手段8で順次合流し、もと来
た光伝送路5を戻って透過光分岐手段9に至る。そし
て、透過光分岐手段9で分岐されて信号処理手段4に入
射する。
The measuring light distributed from the optical branching / coupling device 10 to the gas cell 6 passes through the transmission optical path in the gas cell 6, is transmitted through the loop-shaped optical fiber 12, and is again in the gas cell 6.
Through the transmitted light path inside. Here, the transmitted light that reciprocates in the transmitted optical path in the gas cell 6 is attenuated according to the gas concentration. The transmitted light (indicated by a broken line arrow in the figure) passes through the optical isolator 11 and the optical branching / coupling device 10, returns to the original optical transmission line 5b, and reaches the optical branching / combining means 8. Further, the transmitted lights are sequentially combined by the optical branching / combining means 8 and return to the original optical transmission path 5 to reach the transmitted light branching means 9. Then, the light is split by the transmitted light splitting means 9 and enters the signal processing means 4.

【0037】ところで、光ファイバ内の光は、V/Nの
速さで伝送するので、各ガスセルの伝送路長を違えてお
くことで、パルス変調器3で発生されたパルス状のレー
ザ光は、信号処理手段4に時間をずらして到着する。即
ち、図5(d)に示されるように、伝送路の短いガスセ
ルから順に透過光が到着する。信号処理手段4は、これ
らのパルス状の透過光を受光し、それぞれ変調周波数の
基本波成分、2倍波成分について位相敏感検波し、ガス
濃度を計算する。そして、予め記憶させておいた各ガス
セルの光伝送路長に基づいて、到着順に伝送路の短いガ
スセルの濃度測定結果として表示する。ただし、本実施
例では、測定用光がガスセル内を1往復して透過してい
るので、(5)式を用いた濃度計算では、これを考慮し
てガスセル内における空間光路長を定める。
By the way, since the light in the optical fiber is transmitted at the speed of V / N, the pulsed laser light generated by the pulse modulator 3 is generated by making the transmission path length of each gas cell different. , Arrives at the signal processing means 4 with a time lag. That is, as shown in FIG. 5D, the transmitted light sequentially arrives from the gas cell having the shortest transmission path. The signal processing means 4 receives the pulsed transmitted light, performs phase sensitive detection on the fundamental wave component and the second harmonic component of the modulation frequency, and calculates the gas concentration. Then, based on the optical transmission path length of each gas cell stored in advance, the results are displayed as the concentration measurement results of the gas cells having the shortest transmission paths in the order of arrival. However, in the present embodiment, since the measuring light is transmitted back and forth through the gas cell once, the spatial light path length in the gas cell is determined in consideration of this in the concentration calculation using the equation (5).

【0038】以上説明したように、本発明は、位相敏感
検波により低濃度でもガス検出ができる。しかもレーザ
光をパルス状に断続させることで、1組の光源、信号処
理手段でもって多箇所のガス濃度測定ができると共に制
御方法が簡単になる。また、測定用光と透過光を同一光
伝送路内で往復させているので、測定点が遠隔地にあっ
ても光ファイバ量が少なくてよい。
As described above, according to the present invention, the gas can be detected even at a low concentration by the phase sensitive detection. Moreover, by intermittently pulsing the laser light, the gas concentration can be measured at multiple points with one set of light source and signal processing means, and the control method is simplified. Further, since the measuring light and the transmitted light are reciprocated in the same optical transmission line, the amount of optical fibers may be small even if the measurement point is at a remote place.

【0039】なお、本実施例では、ガスセル6は2個の
透過光路を有し、これらの透過光路の一端はループ状の
光ファイバ12で互いに接続されているものとしたが、
透過光路を1路とし、透過光を直接光アイソレータ11
に戻してもよい。
In this embodiment, the gas cell 6 has two transmission optical paths, and one ends of these transmission optical paths are connected to each other by the loop-shaped optical fiber 12.
The transmitted light path is defined as one path, and the transmitted light is directly reflected by the optical isolator 11.
May be returned to.

【0040】また、測定用光透過光入出手段7には、図
4に示される方向性結合器41を用いることができる。
方向性結合器41は、伝送路42から入射した光を伝送
路43に通過させると共に伝送路44から入射した光を
伝送路42に通過させるものである。伝送路42の側を
光伝送路5bに接続することで、光分岐結合器10及び
光アイソレータ11に代えることができる。
Further, the directional coupler 41 shown in FIG. 4 can be used as the measuring light transmission / transmission / reception means 7.
The directional coupler 41 allows the light incident from the transmission path 42 to pass through the transmission path 43 and allows the light incident from the transmission path 44 to pass through the transmission path 42. By connecting the transmission line 42 side to the optical transmission line 5b, the optical branching coupler 10 and the optical isolator 11 can be replaced.

【0041】次に、本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be described.

【0042】図2に示される第2の実施例では、多点ガ
ス濃度測定装置1は、レーザ及び駆動回路からなる光源
部2、パルス変調器3、及び信号処理手段4を有し、こ
れらは、第1の実施例と同じものである。また、透過光
分岐手段9も同じである。
In the second embodiment shown in FIG. 2, the multipoint gas concentration measuring device 1 has a light source section 2 consisting of a laser and a driving circuit, a pulse modulator 3 and a signal processing means 4, which are provided. , The same as in the first embodiment. Further, the transmitted light splitting means 9 is also the same.

【0043】ガスセル6は1路の透過光路を有し、各ガ
スセル6が光伝送路5上に直列に配置されている。各ガ
スセル6間の光伝送路5には、それぞれ光分岐手段12
が接続されている。光分岐手段12は、その上流側から
2路に分かれた下流側に光を分岐させることができるも
のである。光分岐手段12の上流側は、前段のガスセル
6の透過光出口に接続されているので、前段のガスセル
6からの透過光を適当な分岐比で分岐し、一方を後段の
ガスセル6の測定用光に、他方を前段のガスセル6の透
過光に分岐する。この分岐は光合流手段13に接続され
ている。
The gas cell 6 has one transmission optical path, and each gas cell 6 is arranged in series on the optical transmission path 5. An optical branching means 12 is provided in the optical transmission line 5 between the gas cells 6, respectively.
Are connected. The light branching means 12 is capable of branching light from the upstream side to the downstream side divided into two paths. Since the upstream side of the light branching means 12 is connected to the transmitted light outlet of the gas cell 6 in the front stage, the transmitted light from the gas cell 6 in the front stage is branched at an appropriate branching ratio, and one is used for measuring the gas cell 6 in the rear stage. The light is split into the light and the other is split into the light transmitted through the gas cell 6 in the preceding stage. This branch is connected to the optical combining means 13.

【0044】光合流手段13は、2路の上流側と1路の
下流側を有し、上流側の光を下流側に合流させることが
できる。各光分岐手段12で分岐された各段のガスセル
6の透過光は、光合流手段13で順次、透過光用光伝送
路5dに合流される。透過光用光伝送路5dの下流には
光アイソレータ11が設けられ、さらにその下流に光結
合器14が接続されている。
The light merging means 13 has an upstream side of two paths and a downstream side of one path, and can combine the light on the upstream side with the downstream side. The transmitted lights of the gas cells 6 at the respective stages branched by the respective optical branching means 12 are sequentially combined by the optical combining means 13 into the transmitted light optical transmission path 5d. An optical isolator 11 is provided downstream of the transmitted light transmission path 5d, and an optical coupler 14 is connected further downstream thereof.

【0045】光結合器14は、その上流側から2路に分
かれた下流側に光を分岐させることができると共に、両
下流側からの光を上流側に合流させて戻すことができる
ものである。光結合器14は、その上流側が光伝送路5
に接続され、下流側の一方が初段のガスセル6へ、もう
一方が光アイソレータ11に接続されている。光結合器
14は、光伝送路5の上流と透過光用光伝送路5dの下
流とを結合し、光アイソレータ11は、測定用光を透過
光用光伝送路5dから遮断することができる。
The optical coupler 14 can branch the light from the upstream side to the downstream side, which is divided into two paths, and can combine and return the light from both downstream sides to the upstream side. . The upstream side of the optical coupler 14 is the optical transmission line 5
One of the downstream sides is connected to the first-stage gas cell 6 and the other side is connected to the optical isolator 11. The optical coupler 14 couples the upstream side of the optical transmission line 5 and the downstream side of the transmitted light optical transmission line 5d, and the optical isolator 11 can block the measurement light from the transmitted light optical transmission line 5d.

【0046】図2の構成にあっては、信号処理手段4で
得られる光は、初段のガスセル6のみの透過光、初段の
ガスセル6を透過した後2段目のガスセル6を透過した
透過光、以下順次透過段数を重ねた透過光が、光伝送路
長の短い順に到着する。信号処理手段4は、位相敏感検
波して前段のガスセル6のガス濃度を計算すると共にこ
の結果を利用して順次後段のガスセル6のガス濃度を計
算する。
In the configuration of FIG. 2, the light obtained by the signal processing means 4 is the transmitted light of only the first-stage gas cell 6 or the transmitted light of the first-stage gas cell 6 and then the second-stage gas cell 6. The transmitted light in which the number of transmission stages is sequentially stacked will arrive in the order of the shorter optical transmission path length. The signal processing means 4 performs phase sensitive detection to calculate the gas concentration of the gas cell 6 at the front stage, and utilizes this result to sequentially calculate the gas concentration of the gas cell 6 at the rear stage.

【0047】次に、第3の実施例を説明する。Next, a third embodiment will be described.

【0048】図3に示される第3の実施例では、多点ガ
ス濃度測定装置1は、今まで述べた実施例同様、レーザ
及び駆動回路からなる光源部2及び信号処理手段4を有
しているが、パルス変調器3は含んでいない。そして光
源部2は、レーザ光を複数の変調周波数で変調する。こ
れは、上記第1、第2及びこの第3の実施例における光
伝送路の結合構成が、レーザ光をパルス変調する測定方
法のみならず、レーザ光を複数の変調周波数で変調する
測定方法にも利用できることを示すものである。
In the third embodiment shown in FIG. 3, the multipoint gas concentration measuring device 1 has a light source section 2 composed of a laser and a driving circuit and a signal processing means 4 as in the above-mentioned embodiments. However, the pulse modulator 3 is not included. Then, the light source unit 2 modulates the laser light with a plurality of modulation frequencies. This is applicable not only to the measuring method in which the coupling configuration of the optical transmission lines in the first, second and third embodiments described above is pulse-modulated for laser light, but also for the measuring method for modulating laser light at a plurality of modulation frequencies. Is also available.

【0049】光伝送路5には、第2実施例同様、ガスセ
ル6が直列に配置され、ガスセル6間には、光分岐手段
12が接続され、その分岐先には、光合流手段13が接
続されている。第2実施例と異なるのは、光合流手段1
3の合流の方向が、順次後段側に合流されていることで
ある。そして、最後の光合流手段13は、透過光用光伝
送路5eを介して信号処理手段4に接続されている。
Similar to the second embodiment, the gas cells 6 are arranged in series in the optical transmission line 5, the optical branching means 12 is connected between the gas cells 6, and the optical joining means 13 is connected to the branching destination. Has been done. The difference from the second embodiment is that the light merging means 1
The merging direction of 3 is that they are sequentially merged to the rear side. Then, the last optical merging unit 13 is connected to the signal processing unit 4 via the transmitted light optical transmission line 5e.

【0050】このような構成において、 光源部2〜ガスセル61 間の伝送路長をl0,0 ガスセル61 〜ガスセル62 間の伝送路長をl0,1 ガスセル62 〜ガスセル63 間の伝送路長をl0,2 ガスセル6n-1 〜ガスセル6n 間の伝送路長をl0,n-1 ガスセル6n 〜最後の光合流手段13n-1 間の伝送路長
をl0,n 最後の光合流手段13n−1 〜信号処理手段4間の伝
送路長をl0,n+1 光分岐手段121 〜光合流手段131 間の伝送路長をl
1,1 光合流手段131 〜光合流手段132 間の伝送路長をl
1,2 光合流手段13n-2 〜光合流手段13n-1 間の伝送路長
をl1,n-1 また、 光分岐手段122 〜光合流手段131 間の伝送路長をl
2,1 光分岐手段123 〜光合流手段132 間の伝送路長をl
2,2 光分岐手段12n-1 〜光合流手段13n-2 間の伝送路長
をl2,n-2 とおく。
In such a configuration, the transmission line length between the light source section 2 and the gas cell 6 1 is l 0,0 the transmission line length between the gas cell 6 1 and the gas cell 6 2 is l 0,1 gas cell 6 2 -gas cell 6 3 the transmission path length between l 0, n-1 gas cell 6 n ~ last optical combining means 13 n-1 transmission path length between the transmission path length l 0, 2 gas cell 6 n-1 ~ gas cell 6 n between l 0, n The transmission path length between the last optical combining means 13 n-1 to the signal processing means 4 is l 0, n + 1 The transmission path length between the optical branching means 12 1 to the optical combining means 13 1 is l
The transmission path length between the 1,1 optical merging unit 13 1 and the optical merging unit 13 2 is set to 1
1,2 The transmission path length between the optical merging means 13 n-2 and the optical merging means 13 n-1 is l 1, n-1, and the transmission path length between the optical branching means 12 2 and the optical merging means 13 1 is l.
2, the transmission path length between the optical branching means 12 3 and the optical combining means 13 2 is set to l
The transmission path length between the 2,2 optical branching means 12 n-1 and the optical combining means 13 n-2 is set as l 2, n-2 .

【0051】信号処理手段4で検知する信号は、各光合
流手段13及び各ガスセル6の透過光の総和である。簡
略化のため光学系での損失を無視する。それぞれの透過
光のうち、ガス濃度に関与する2倍波位相敏感検波信号
の大きさをPG1 ,PG2 ,・・,PGN とし、各位相
差をφ1 ,φ2 ,・・,φN とすると、信号処理手段4
での2倍波位相敏感検波信号の総和PGSUM は、 PGSUM =PG1 cos{2(ωt+φ1 )} +PG2 cos{2(ωt+φ2 )}+・・ +PGN cos{2(ωt+φN )} …(8) となる。ここで、各2倍波位相敏感検波信号PGk は、
ガス濃度×透過光路長に依存する量で、簡単のため各ガ
スセルの透過光路長を一定とし、ガスセル6k のガス濃
度をCk とすると、それぞれの透過光の見掛上のガス濃
度CK(K=1,2,・・,N)は、 C1=C1 C2=C1 +C2 CN=C1 +C2 +・・・+CN で表され、PGK =PGK (CK)とおくと、 PGK (CK) =AK ・I0K・(ΔΩ)2 ・α(ω)・CK・LS /(2γ)2 …(9) ただし、AK :PGK に関与する信号伝送損失 I0K:PGK に関与するレーザの中心強度 ΔΩ:周波数変調振幅 LS :ガスセル内光路長(一定) 2γ:ガス吸収線の半値全幅 と与えられる。
The signal detected by the signal processing means 4 is the total sum of the transmitted light of each light combining means 13 and each gas cell 6. For simplicity, neglect the loss in the optical system. Of each of the transmitted light, PG 1 the magnitude of the second harmonic phase-sensitive detection signal involved in the gas concentration, PG 2, · ·, and PG N, the phase differences φ 1, φ 2, ··, φ N Then, the signal processing means 4
The sum of the second harmonic wave phase-sensitive detection signal at the PG SUM is, PG SUM = PG 1 cos { 2 (ωt + φ 1)} + PG 2 cos {2 (ωt + φ 2)} + ·· + PG N cos {2 (ωt + φ N) } (8) Here, each second harmonic phase sensitive detection signal PG k is
For the sake of simplicity, the transmission optical path length of each gas cell is constant, and the gas concentration of the gas cell 6 k is C k. K = 1, 2, ..., N) is represented by C1 = C 1 C2 = C 1 + C 2 CN = C 1 + C 2 + ... + C N , where PG K = PG K (CK) , PG K (CK) = A K · I 0 K · (ΔΩ) 2 · α (ω) · CK · L S / (2γ) 2 (9) where A K : signal transmission loss I related to PG K 0K : central intensity of laser related to PG K ΔΩ: frequency modulation amplitude L S : optical path length in gas cell (constant) 2γ: full width at half maximum of gas absorption line

【0052】また、φk は、透過光が関与した伝送路長
に依存する量であり、それぞれの透過光の光路長LK
は、 L1=l0,0 +l1,1 +・・+l1,n-1 +l0,n+1 L2=l0,0 +l0,1 +l2,1 +l1,2 +・・+l
1,n-1 +l0,n+1 LN=l0,0 +l0,1 +・・+l0,n-1 +l0,n +l
0,n+1 と表される。φk =φk (LK)とおくと、 φk (LK)=(2π/ω)・N・LK/V …(10) となる。
Further, φ k is a quantity depending on the transmission path length involved in the transmitted light, and the optical path length LK of each transmitted light.
Is L1 = l 0,0 + l 1,1 + ... + l 1, n-1 + l 0, n + 1 L2 = l 0,0 + l 0,1 + l 2,1 + l 1,2 + ... + l
1, n-1 + l 0, n + 1 LN = l 0,0 + l 0,1 + ... + l 0, n-1 + l 0, n + l
It is expressed as 0, n + 1 . When φ k = φ k (LK) is set, φ k (LK) = (2π / ω) · N · LK / V (10)

【0053】ところで、1つの変調周波数について位相
敏感検波するということは、式(8)について、大きさ
と位相の2パラメータを求めたことになる。伝送路は、
設置してしまえば、変動することがないので、φ1 〜φ
N は、既知量とおけ、結局式(8)は、各ガスセルの測
定ガスの未知濃度を含む、PG1 〜PGn のn個の未知
数を含む2元連立方程式であり。従って、n>2の場合
にこれを解くために、別の周波数ω´(≠ω)でレーザ
光を変調して、上記に同様の測定を行う。1つの変調周
波数で2のパラメータを得る。従って、n>2の場合に
は、n/2個(少数の場合は切り上げ)の異なる変調周
波数で位相敏感検波すれば、PG1 ,PG2 ,・・,P
N が求まる。
By the way, the phase sensitive detection for one modulation frequency means that the two parameters of the magnitude and the phase are obtained in the equation (8). The transmission line is
Once installed, it will not fluctuate, so φ 1 ~ φ
N is a known amount, and after all, the equation (8) is a binary simultaneous equation including n unknown numbers of PG 1 to PG n , which includes the unknown concentration of the measurement gas of each gas cell. Therefore, in order to solve this when n> 2, the laser light is modulated at another frequency ω '(≠ ω) and the same measurement as above is performed. Two parameters are obtained at one modulation frequency. Therefore, in the case of n> 2, PG 1 , PG 2 , ..., P can be obtained by phase-sensitive detection with n / 2 (rounded up when the number is small) different modulation frequencies.
G N is found.

【0054】基本波位相敏感信号についても同様であ
る。ガス濃度測定に関与するその大きさをPW1 ,PW
2 ,・・,PWn とし、位相差をφ1 ,φ2 ,・・,φ
n とおくと信号処理手段4での基本波位相敏感検波信号
の総和PWSUM は、 PWSUM =PW1 cos(ωt+φ1 +φ) +PW2 cos(ωt+φ2 +φ)+・・ ・・+PWn cos(ωt+φn +φ) …(11) となる。
The same applies to the fundamental wave phase sensitive signal. The size involved in gas concentration measurement is PW 1 , PW
2, ..., and PW n, 1 a phase difference phi, phi 2, ..., phi
If n is set, the total sum PW SUM of the fundamental wave phase sensitive detection signals in the signal processing means 4 is PW SUM = PW 1 cos (ωt + φ 1 + φ) + PW 2 cos (ωt + φ 2 + φ) + ···· + PW n cos ( ωt + φ n + φ) (11)

【0055】ここで各基本波位相敏感検波信号PW
k は、透過光が関与した振幅強度ΔIK に依存する量
で、PWK =PWK (ΔIK )とおくと、 PWK =A・ΔIK …(12) となる。
Here, each fundamental wave phase sensitive detection signal PW
k is an amount that depends on the amplitude intensity ΔI K related to the transmitted light, and if PW K = PW K (ΔI K ) is set, then PW K = A · ΔI K (12)

【0056】式(11)の測定は、前述同様大きさと位
相の2パラメータを求めたことになる。PW1 〜PWn
のn個の未知数を解くためには、別の変調周波数ω´
(≠ω)でレーザ光を変調して、上記に同様の測定を行
う。
The measurement of the equation (11) means that the two parameters of the magnitude and the phase are obtained as described above. PW 1 to PW n
To solve for the n unknowns of
The laser beam is modulated with (≠ ω) and the same measurement as above is performed.

【0057】式(9)、式(12)から、その比を求め
る。
The ratio is obtained from the equations (9) and (12).

【0058】Rk =PGk /PWk =I0k/ΔIk ・(C1 +・・+CK ) 前2係数は、レーザの特性から決まる定数であり、各測
定点の濃度が求まる。
R k = PG k / PW k = I 0k / ΔI k · (C 1 + ··· + C K ) The previous two coefficients are constants determined from the characteristics of the laser, and the concentration at each measurement point can be obtained.

【0059】次に、第4の実施例について述べる。Next, a fourth embodiment will be described.

【0060】図6に示されるように、第3の実施例に示
された直列のガスセル6及び光学系が、ガスセル列を形
成し、このガスセル列が複数配置され、各ガスセル列は
光学系により並列接続されている。このような構成は、
測定箇所が数箇所に分かれていて、1か所に数個の測定
点を含む場合に適している。
As shown in FIG. 6, the series gas cells 6 and the optical system shown in the third embodiment form a gas cell array, and a plurality of gas cell arrays are arranged. Each gas cell array is formed by an optical system. It is connected in parallel. Such a configuration
It is suitable when the measurement points are divided into several points and several measurement points are included in one point.

【0061】次に、測定対象となるガスが2種類以上の
場合について説明する。例えば、アセチレン検出用とし
て、波長1.53μmで発振するレーザを用意する。こ
のレーザの駆動電流或いは温度を変化させて、アセチレ
ンの吸収線の中心に発振周波数が一致するように調整す
る。このレーザ光を光ファイバで伝送し、実施例で示し
たメタン検出用のレーザ光を伝送している光ファイバと
合流させるため、光結合器を設ける。ただしそのときの
変調周波数ωA は、メタン検出用レーザの変調周波数ω
M とは、異なる値で設定する。2つの値はその最小公倍
数が大きい方が測定精度が向上することが予想される。
そして、受光部の信号処理系では、メタン用信号処理装
置とアセチレン信号処理装置とを並列に2つ設けた信号
処理装置、或いは、実施例で示した処理装置に切り替え
機構を設けることで、各処理系でそれぞれの変調周波数
について、これまで示してきたのと同様の処理を行えば
2種類以上のガスの同時検出も可能になる。
Next, the case where there are two or more kinds of gases to be measured will be described. For example, a laser that oscillates at a wavelength of 1.53 μm is prepared for acetylene detection. The laser drive current or temperature is changed to adjust so that the oscillation frequency coincides with the center of the absorption line of acetylene. An optical coupler is provided to transmit this laser light through an optical fiber and join the optical fiber transmitting the laser light for methane detection shown in the embodiment. However, the modulation frequency ω A at that time is the modulation frequency ω of the methane detection laser.
Set a different value from M. It is expected that the greater the least common multiple of the two values, the higher the measurement accuracy.
Then, in the signal processing system of the light receiving section, by providing a signal processing device in which two methane signal processing devices and an acetylene signal processing device are provided in parallel, or by providing a switching mechanism in the processing device shown in the embodiment, If the processing system performs the same processing as described above for each modulation frequency, it is possible to detect two or more kinds of gases simultaneously.

【0062】[0062]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0063】(1)1組の光源、信号処理手段でもって
多箇所のガス濃度測定ができるので、経済的である。
(1) It is economical because it is possible to measure the gas concentration at multiple points with one set of light source and signal processing means.

【0064】(2)複数の変調周波数による方法に比べ
て、本発明のレーザ光をパルス変調する方法は、制御方
法が簡単である。
(2) Compared to the method using a plurality of modulation frequencies, the method of pulse-modulating the laser light of the present invention is simpler in control method.

【0065】(3)測定用光と透過光を同一光伝送路内
で往復させているので、測定点が遠隔地にあっても光フ
ァイバ量が少なくてよい。
(3) Since the measuring light and the transmitted light are reciprocated in the same optical transmission line, the amount of optical fibers can be small even if the measuring point is at a remote place.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図であ
る。
FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示すブロック図であ
る。
FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示すブロック図であ
る。
FIG. 3 is a block diagram showing a third embodiment of the present invention.

【図4】本発明に使用される方向性結合器である。FIG. 4 is a directional coupler used in the present invention.

【図5】本発明の方法を説明するための波形図である。FIG. 5 is a waveform diagram for explaining the method of the present invention.

【図6】本発明の第4の実施例を示すブロック図であ
る。
FIG. 6 is a block diagram showing a fourth embodiment of the present invention.

【図7】従来例を示すブロック図である。FIG. 7 is a block diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

1 多点ガス濃度測定装置 2 光源部 3 パルス変調器 4 信号処理手段 5 光伝送路 6 ガスセル 1 multipoint gas concentration measuring device 2 light source 3 pulse modulator 4 signal processing means 5 optical transmission line 6 gas cell

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 昌彦 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 (72)発明者 山本 哲 茨城県日立市日高町5丁目1番1号 日立 電線株式会社オプトロシステム研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiko Uchida 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Hitachi Cable Ltd. Optro System Research Laboratories (72) Inventor Satoshi Yamamoto Hidaka-cho, Hitachi City, Ibaraki Prefecture 5-1-1, Hitachi Cable Ltd., Optoro System Laboratories

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザを用い、このレーザの
駆動電流あるいは温度を変化させてレーザ光の波長およ
び強度を変調させると共にこのレーザ光をパルス状に断
続させ、このパルス状レーザ光を光伝送路を通して複数
の測定対象となるガス雰囲気に透過させ、これらのガス
雰囲気の透過光を合流させ、この合流された透過光の光
強度を検出し、その検出信号より変調周波数の基本波成
分と2倍波成分とを位相敏感検波して特定ガスの濃度を
測定するようにしたことを特徴とする光ファイバを用い
た多点ガス濃度測定方法。
1. A laser that oscillates a laser beam having a wavelength and intensity according to a drive current and temperature is used, and the drive current or temperature of the laser is changed to modulate the wavelength and intensity of the laser beam and the laser beam is emitted. The pulsed laser light is intermittently transmitted, and this pulsed laser light is transmitted through the optical transmission line to multiple gas atmospheres to be measured, the transmitted light of these gas atmospheres is combined, and the light intensity of the combined transmitted light is detected. Then, a multipoint gas concentration measuring method using an optical fiber is characterized in that the fundamental wave component and the second harmonic component of the modulation frequency are phase-sensitively detected from the detection signal to measure the concentration of the specific gas. .
【請求項2】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザと、所定の電流値を中
心として所定の振幅で上記レーザの駆動電流を変調する
ための駆動回路と、測定対象となるガスを含む複数個の
ガスセルと、レーザ光を伝送する光伝送路と、光伝送路
からガスセルに測定用光を導くと共にガスセルの透過光
を光伝送路に戻すガスセル毎の測定用光透過光入出手段
と、上記光伝送路からそれぞれの測定用光透過光入出手
段に測定用光を分岐して与えると共にそれぞれの測定用
光透過光入出手段からの透過光を合流させて光伝送路に
取り込む光分岐合流手段と、光伝送路内の測定用光及び
透過光から透過光を分岐する透過光分岐手段と、分岐さ
れた透過光の光強度を検出し且つ変調周波数の基本波成
分と2倍波成分とを位相敏感検波する信号処理手段とを
備えたことを特徴とする光ファイバを用いた多点ガス濃
度測定装置。
2. A laser that oscillates laser light having a wavelength and intensity according to a drive current and temperature, a drive circuit for modulating the drive current of the laser with a predetermined amplitude around a predetermined current value, and measurement. A plurality of gas cells containing the target gas, an optical transmission line that transmits laser light, and a measurement light that guides the measurement light from the optical transmission line to the gas cell and returns the transmitted light of the gas cell to the optical transmission line. The transmission light input / output means and the measurement light transmitted light input / output means from the optical transmission path are branched and given, and the transmission light from the respective measurement light transmission light input / output means are combined to form an optical transmission path. An optical branching / combining means to be taken into, a transmitted light branching means for branching the transmitted light from the measuring light and the transmitted light in the optical transmission line, a light intensity of the branched transmitted light, and a fundamental wave component of a modulation frequency. With the second harmonic component A multipoint gas concentration measuring device using an optical fiber, comprising a signal processing means for phase sensitive detection.
【請求項3】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザと、所定の電流値を中
心として所定の振幅で上記レーザの駆動電流を変調する
ための駆動回路と、測定対象となるガスを含み光伝送路
に直列に配置された複数個のガスセルと、各ガスセル間
の光伝送路毎に接続され前段のガスセルからの透過光を
後段のガスセルの測定用光と前段のガスセルの透過光と
に分岐する光分岐手段と、各光分岐手段で分岐された透
過光を透過光用光伝送路に合流させる光合流手段と、光
伝送路の上流と透過光用光伝送路の下流とを結合する光
結合器と、光伝送路内の測定用光及び透過光から透過光
を分岐する透過光分岐手段と、分岐された透過光の光強
度を検出し且つ変調周波数の基本波成分と2倍波成分と
を位相敏感検波する信号処理手段とを備えたことを特徴
とする光ファイバを用いた多点ガス濃度測定装置。
3. A laser that oscillates laser light having a wavelength and intensity according to a drive current and temperature, a drive circuit for modulating the drive current of the laser with a predetermined amplitude centered on a predetermined current value, and measurement. A plurality of gas cells that contain the target gas and are arranged in series in the optical transmission line, and the transmitted light from the gas cells in the previous stage that is connected to each optical transmission line between each gas cell Optical branching means for branching to the transmitted light of the gas cell, optical joining means for joining the transmitted light branched by each optical branching means to the transmitted light optical transmission path, and upstream of the optical transmission path and the transmitted light optical transmission path An optical coupler for coupling the downstream side of the optical transmission line, a transmitted light splitting unit for splitting the transmitted light from the measurement light and the transmitted light in the optical transmission line, a light intensity of the split transmitted light, and a basic modulation frequency. Phase sensitive detection of wave component and second harmonic component A multipoint gas concentration measuring device using an optical fiber, comprising: a signal processing means.
【請求項4】 駆動電流および温度に応じた波長および
強度のレーザ光を発振するレーザと、所定の電流値を中
心として所定の振幅で上記レーザの駆動電流を変調する
ための駆動回路と、測定対象となるガスを含み光伝送路
に直列に配置された複数個のガスセルと、各ガスセル間
の光伝送路毎に接続され前段のガスセルからの透過光を
後段のガスセルの測定用光と前段のガスセルの透過光と
に分岐する光分岐手段と、各光分岐手段で分岐された透
過光を合流する光合流手段と、上記合流手段からの合流
された透過光を伝送する透過光用光伝送路と、合流され
た透過光の光強度を検出し且つ変調周波数の基本波成分
と2倍波成分とを位相敏感検波する信号処理手段とを備
えたことを特徴とする光ファイバを用いた多点ガス濃度
測定装置。
4. A laser that oscillates a laser beam having a wavelength and intensity according to a drive current and temperature, a drive circuit for modulating the drive current of the laser with a predetermined amplitude around a predetermined current value, and measurement. A plurality of gas cells that contain the target gas and are arranged in series in the optical transmission line, and the transmitted light from the gas cells in the previous stage that is connected to each optical transmission line between each gas cell Optical branching means for branching to the transmitted light of the gas cell, optical joining means for joining the transmitted lights branched by the respective optical branching means, and an optical transmission path for transmitted light for transmitting the joined transmitted light from the joining means. And a signal processing means for detecting the light intensity of the combined transmitted light and performing phase sensitive detection of the fundamental wave component and the second harmonic component of the modulation frequency. Gas concentration measuring device.
【請求項5】 上記レーザからの測定用光をパルス状に
断続させるパルス変調器を備えたことを特徴とする請求
項2〜4いずれか記載の光ファイバを用いた多点ガス濃
度測定装置。
5. A multipoint gas concentration measuring device using an optical fiber according to claim 2, further comprising a pulse modulator for intermittently measuring the measuring light from the laser in a pulsed manner.
【請求項6】 上記複数個のガスセル、光分岐手段、及
び光合流手段からなるガスセル列を複数並列に配置した
ことを特徴とする請求項2〜4いずれか記載の光ファイ
バを用いた多点ガス濃度測定装置。
6. A multipoint using an optical fiber according to any one of claims 2 to 4, wherein a plurality of gas cell rows each consisting of the plurality of gas cells, the light branching means, and the light merging means are arranged in parallel. Gas concentration measuring device.
JP29586392A 1992-11-05 1992-11-05 Multipoint gas concentration measurement method and apparatus using optical fiber Expired - Fee Related JP3229391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29586392A JP3229391B2 (en) 1992-11-05 1992-11-05 Multipoint gas concentration measurement method and apparatus using optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29586392A JP3229391B2 (en) 1992-11-05 1992-11-05 Multipoint gas concentration measurement method and apparatus using optical fiber

Publications (2)

Publication Number Publication Date
JPH06148071A true JPH06148071A (en) 1994-05-27
JP3229391B2 JP3229391B2 (en) 2001-11-19

Family

ID=17826165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29586392A Expired - Fee Related JP3229391B2 (en) 1992-11-05 1992-11-05 Multipoint gas concentration measurement method and apparatus using optical fiber

Country Status (1)

Country Link
JP (1) JP3229391B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361129A (en) * 2003-06-02 2004-12-24 Tokyo Electric Power Co Inc:The Multipoint gas concentration detection method
JP2005083876A (en) * 2003-09-08 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Diasaster preventing system of underground space
JP2009222526A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
JP2017083272A (en) * 2015-10-27 2017-05-18 パナソニックIpマネジメント株式会社 Substance detection device and substance detection method
US10585037B2 (en) 2015-08-24 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Substance detecting device, substance detecting system, and substance detecting method in which temperature control of light emission is performed
CN111189799A (en) * 2018-11-14 2020-05-22 汉泰黄石科技有限公司 Laser gas monitoring system
US10761017B2 (en) 2017-03-09 2020-09-01 Nec Corporation Gas detection system, gas detection method and program
CN113820294A (en) * 2021-09-03 2021-12-21 浙江大学 Device for measuring gas discharge amount of rice field multi-point greenhouse by using laser spectrum technology

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004361129A (en) * 2003-06-02 2004-12-24 Tokyo Electric Power Co Inc:The Multipoint gas concentration detection method
JP2005083876A (en) * 2003-09-08 2005-03-31 Ishikawajima Harima Heavy Ind Co Ltd Diasaster preventing system of underground space
JP2009222526A (en) * 2008-03-14 2009-10-01 Mitsubishi Heavy Ind Ltd Gas concentration measuring method and apparatus
US10585037B2 (en) 2015-08-24 2020-03-10 Panasonic Intellectual Property Management Co., Ltd. Substance detecting device, substance detecting system, and substance detecting method in which temperature control of light emission is performed
JP2017083272A (en) * 2015-10-27 2017-05-18 パナソニックIpマネジメント株式会社 Substance detection device and substance detection method
US10761017B2 (en) 2017-03-09 2020-09-01 Nec Corporation Gas detection system, gas detection method and program
CN111189799A (en) * 2018-11-14 2020-05-22 汉泰黄石科技有限公司 Laser gas monitoring system
CN113820294A (en) * 2021-09-03 2021-12-21 浙江大学 Device for measuring gas discharge amount of rice field multi-point greenhouse by using laser spectrum technology

Also Published As

Publication number Publication date
JP3229391B2 (en) 2001-11-19

Similar Documents

Publication Publication Date Title
JP3279116B2 (en) Laser Doppler velocimeter
JPH0315742A (en) Gas detector
US4012149A (en) Measuring method and equipment for locating a break in an optical cable
CN103842782A (en) Distributed optical fiber sound wave detection device
KR910000604B1 (en) Improved fiber optical sensor for detecting very small displacements of a surface
CN108279209A (en) A kind of more gas detecting systems of wave-length coverage and wavelength continuously adjustable
JP3229391B2 (en) Multipoint gas concentration measurement method and apparatus using optical fiber
GB2145514A (en) Optical detecting and/or measuring systems
EP0183502B1 (en) Improvements relating to optical pulse generating arrangements
US4815853A (en) Three-axis fiber-optic ring interferometer
JPH0830680B2 (en) Gas detector
GB2096762A (en) Optical fibre sensor device
JP2540670B2 (en) Multi-type gas detector using optical fiber
US4001577A (en) Method and apparatus for acousto-optical interactions
JPH0450639A (en) Optical sample analyzer
JPH0354292B2 (en)
JPH02118416A (en) Optical sensor
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
JP2549885B2 (en) Optical signal elimination filter and application of the filter to ring interferometer
GB2233087A (en) Apparatus for monitoring a gas or a flame
JP2003185534A (en) Dispersion distribution-measuring method and apparatus
CA2066260A1 (en) Quantum non-demolition optical tapping
JPH07122597B2 (en) Emission spectrum width measuring device
JPS613024A (en) Apparatus for measuring wavelength dispersion of optical fiber
JPH1062570A (en) Method and apparatus for measuring time lag

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees