JPH06147896A - Erection measuring system for steel column - Google Patents

Erection measuring system for steel column

Info

Publication number
JPH06147896A
JPH06147896A JP30388092A JP30388092A JPH06147896A JP H06147896 A JPH06147896 A JP H06147896A JP 30388092 A JP30388092 A JP 30388092A JP 30388092 A JP30388092 A JP 30388092A JP H06147896 A JPH06147896 A JP H06147896A
Authority
JP
Japan
Prior art keywords
steel column
steel
column
measurement
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30388092A
Other languages
Japanese (ja)
Other versions
JP3122862B2 (en
Inventor
Takashi Wada
和田孝史
Hidehiko Nakagawa
中川秀彦
Tetsuro Yumura
湯村哲朗
Nobuhiro Okuyama
奥山信博
Masaaki Nakanishi
中西正明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP04303880A priority Critical patent/JP3122862B2/en
Publication of JPH06147896A publication Critical patent/JPH06147896A/en
Application granted granted Critical
Publication of JP3122862B2 publication Critical patent/JP3122862B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

PURPOSE:To facilitate the measurement of verticality at the time of erection of steel column. CONSTITUTION:The erection measuring system comprises a steel colum 8 being erected at a predetermined floor M, a laser oscillator 11 installed at a design coordinate position of the steel column 8, a light receiver 12 fixed detachably to the vicinity of the head part of the steel column 8, and an operation confirming unit 15 connected through a communication cable 13 with the light receiving unit 12. The light receiving unit 12 receives a laser beam R emitted from the laser oscillator 11 and the operation confirming unit 15 operates a shifting amount of the head part of the steel column 8 from the design coordinate position which is then displayed on a LED display or notified by means of a buzzer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低層から高層建築物に
わたる鉄骨造りの建築工事において、鉄骨柱の建入れ作
業に適用される測定システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a measuring system applied to a steel column erection work in a steel frame construction work ranging from low-rise to high-rise buildings.

【0002】[0002]

【従来の技術】従来、高層建築物等の鉄骨造りの建築工
事においては、鉄骨柱の倒れに関して日本建築学会、鉄
骨精度検査基準で標準許容誤差が決められている。その
ため、鉄骨柱を鉛直に施工するための柱の建て入れ作業
は、鉄骨柱頭部に下げ振りや鉛直儀を設置し、鉄骨柱頭
部と脚部との寸法を計って修正したり、柱に対して直角
方向に据えられた2台のトランシットによって測定して
いる。
2. Description of the Related Art Conventionally, in the construction work of steel frames such as high-rise buildings, a standard allowable error is determined by the Japan Society of Architectural Science and Steel Frame Accuracy Inspection Standard for the collapse of steel columns. Therefore, for the work to install the columns to construct the steel columns vertically, install plumb bobs or vertical mounts on the steel column heads, measure and correct the dimensions of the steel column heads and legs, and It is measured by two transits installed at right angles.

【0003】しかしながら、上記従来の方法のうち下げ
振りや鉛直儀を用いる方式においては、測定を行うこと
ができる高さに限度があり、高層建造物においては困難
であり、また、人手および作業に時間を要すると共に、
風等に影響されるため測定精度が悪いという問題を有し
ている。
However, among the above-mentioned conventional methods, the method of using a plumb bob or a vertical mount has a limit to the height at which measurement can be performed, which is difficult in a high-rise building, and is difficult for human and work. Takes time,
There is a problem that the measurement accuracy is poor because it is affected by wind and the like.

【0004】また、上記2台のトランシットを用いる方
式においては、トランシットで移動中の相手を測量する
ためには、経験を要するとともに測量者の誤差が問題と
なり、鉄骨柱建て方工事の仮締め、本締め等の進捗段階
ごとにトランシット測量を行うため、作業が繁雑である
という問題や、鉄骨柱建て方を行う作業員と測量者が口
頭で指示及び確認を行って作業を進めていくための慣れ
が必要であるという問題を有している。
Further, in the method using the above two transits, in order to measure the opponent who is moving by the transit, experience is required and the error of the surveyor becomes a problem. Since transit measurement is performed at each progress stage such as final tightening, there is a problem that the work is complicated, and the worker and the surveyor who construct the steel column are verbally instructed and confirmed to proceed with the work. It has the problem of getting used to it.

【0005】さらに、高層建築物になると、地上の既知
座標である基準点を節(3階程度の高さ)ごとに上方に
盛り変えていく必要があるため、累積誤差が生じ測定精
度の信頼性が低下するという問題を有している。
Further, in the case of a high-rise building, since it is necessary to change the reference point, which is a known coordinate on the ground, upward for each node (height of about the third floor), a cumulative error occurs and the reliability of the measurement accuracy is increased. There is a problem that the property deteriorates.

【0006】上記問題を解決するために、本発明者は特
開平4−69515号公報において、トランシット2台
による測定法に代わり、レーザ測定器とマイコンを組み
合わせることにより、鉄骨柱の鉛直度測定の高精度化と
省力化を可能にした測定システムを提案している。
In order to solve the above-mentioned problems, the present inventor has disclosed in Japanese Patent Laid-Open No. 4-69515 that a laser measuring instrument and a microcomputer are combined in place of the measuring method using two transits to measure the verticality of a steel column. We are proposing a measurement system that enables high precision and labor saving.

【0007】これを図7により説明すると、基準階Lの
基準点2点に、回転台1およびレーザ発振器2を設置
し、建入れ階Mにレーザ発振器2に対向して受光器3お
よび演算処理装置4を設置している。回転台1は、鉛直
方向の測定精度を補正するものである。受光器3は、レ
ーザ光Rの軌跡をサーチすることにより、揺れ幅、レー
ザ光の輝度、測定領域等の計測パラメータを算出し、演
算処理装置4へ出力する。演算処理装置4は、受光器3
からのレーザ光Rの位置データを受信し、データ処理、
重心計算等の解析を行い、基準階Lの基準点の既知座標
と、受光器3で受信した建入れ階Mの位置座標とを比較
し、X、Y方向の既知座標とのずれを画面表示すると共
に、プリンターに出力する。その結果に基づいて鉄骨柱
の建て入れ修正を行い、基準階Lに設定された基準点を
建入れ階M上に移動させる(測定1)。
Explaining this with reference to FIG. 7, a rotary base 1 and a laser oscillator 2 are installed at two reference points on a reference floor L, and a photoreceiver 3 and an arithmetic process are provided on the building floor M facing the laser oscillator 2. The device 4 is installed. The turntable 1 corrects the measurement accuracy in the vertical direction. The light receiver 3 searches the trajectory of the laser light R to calculate measurement parameters such as the fluctuation width, the brightness of the laser light, and the measurement area, and outputs the calculated measurement parameters to the arithmetic processing unit 4. The arithmetic processing unit 4 includes the light receiver 3
Position data of the laser beam R from
Analysis such as center of gravity calculation is performed, and the known coordinates of the reference point of the reference floor L and the position coordinates of the building floor M received by the light receiver 3 are compared, and the deviation between the known coordinates in the X and Y directions is displayed on the screen. And output to the printer. Based on the result, the installation correction of the steel frame pillar is performed, and the reference point set in the reference floor L is moved to the installation floor M (measurement 1).

【0008】次に、建入れ階Mにおいて、2台の受光器
3の位置にミラー5を設置するとともに任意の位置に三
次元測量装置6を設置し、三次元測量装置6をパソコン
7に接続する。パソコン7には、予め基準点の座標およ
び鉄骨柱の設定座標が記憶されている。ミラー5を三次
元測量装置6を用いて視準することにより、建入れ階M
の基準点より三次元測量装置6の位置をパソコン7によ
り算出する(測定2)。次に、鉄骨柱8上にミラー9を
セットし、三次元測量装置6により視準することによ
り、鉄骨柱8の座標値を測定する(測定3)。測定デー
タはパソコン7に表示され、これに基づいて鉄骨柱8の
鉛直度を修正することができる。
Next, in the building floor M, the mirror 5 is installed at the position of the two light receivers 3 and the three-dimensional surveying device 6 is installed at an arbitrary position, and the three-dimensional surveying device 6 is connected to the personal computer 7. To do. In the personal computer 7, the coordinates of the reference point and the set coordinates of the steel column are stored in advance. By collimating the mirror 5 with the three-dimensional surveying device 6, the building floor M
The position of the three-dimensional surveying device 6 is calculated by the personal computer 7 from the reference point of (measurement 2). Next, the mirror 9 is set on the steel column 8 and collimated by the three-dimensional surveying device 6 to measure the coordinate value of the steel column 8 (measurement 3). The measurement data is displayed on the personal computer 7, and the verticality of the steel column 8 can be corrected based on this.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記特
開平4−69515号公報による方式においては、鉄骨
柱8の鉛直度を修正する場合、例えば、鉄骨柱8をX方
向に移動させるとY方向のずれが生じ、Y方向のずれを
修正すると今度はX方向にずれが生じ、この修正を数回
程度行う必要があり、その都度、三次元測量装置6によ
りミラー9を視準して鉄骨柱8の位置を測定しなければ
ならなず、建入れ作業に時間を要するという問題を有し
ている。
However, in the method disclosed in Japanese Patent Laid-Open No. 4-69515, when the verticality of the steel column 8 is corrected, for example, when the steel column 8 is moved in the X direction, Misalignment occurs, and when the misalignment in the Y direction is corrected, this time, the misalignment occurs in the X direction, and this correction needs to be performed several times. Each time, the three-dimensional surveying device 6 collimates the mirror 9 and the steel column 8 There is a problem that it takes time for the construction work because the position of must be measured.

【0010】また、鉄骨柱8へのミラー9の取り付け作
業が高所作業となるという問題を有し、さらに、三次元
測量装置6は、測定する鉄骨柱8の位置によって移動さ
せる必要があるため、ミラー9を三次元測量装置6に向
けて正確に取り付ける作業に時間を要するという問題を
有している。
Further, there is a problem that the work of attaching the mirror 9 to the steel column 8 is a high place work, and the three-dimensional surveying device 6 needs to be moved depending on the position of the steel column 8 to be measured. However, there is a problem that it takes time to accurately attach the mirror 9 toward the three-dimensional surveying device 6.

【0011】本発明は上記問題を解決するものであっ
て、鉄骨柱の建て入作業時に、鉛直度の測定を簡単に行
うことができる鉄骨柱の建入れ測定システムを提供する
ことを目的とする。
The present invention solves the above problems, and an object of the present invention is to provide an installation measuring system for a steel column which can easily measure the verticality during an installation operation of the steel column. .

【0012】[0012]

【課題を解決するための手段】そのために本発明の鉄骨
柱の建入れ測定システムは、建入れ階Mに建入れされる
鉄骨柱8と、鉄骨柱8の設計座標位置に設置されるレー
ザ発振器11と、鉄骨柱8の柱頭部付近に着脱自在に固
定される受光器12と、受光器12と通信ケーブル13
を介して接続される演算確認装置15とを備え、レーザ
発振器11からのレーザ光Rを受光器12により検知
し、演算確認装置15において、鉄骨柱8の頭部の設計
座標位置からのずれ量を表示または報知することを特徴
とする。演算確認装置15の実施例としては、液晶表示
およびLED表示によりずれ量を表示し、ブザー音によ
りずれ量を報知する。なお、上記構成に付加した番号
は、本発明の理解を容易にするために図面と対比させる
ものであり、これにより本発明の構成が何ら限定される
ものではない。
To this end, the steel column post installation measuring system according to the present invention is provided with a steel post 8 installed on a building floor M, and a laser oscillator installed at a design coordinate position of the steel post 8. 11, a light receiver 12 that is detachably fixed near the head of the steel column 8, a light receiver 12, and a communication cable 13
The laser beam R from the laser oscillator 11 is detected by the light receiver 12, and the amount of deviation from the design coordinate position of the head of the steel column 8 is calculated in the arithmetic operation confirmation device 15. Is displayed or notified. As an example of the calculation confirmation device 15, the deviation amount is displayed by a liquid crystal display and an LED display, and the deviation amount is notified by a buzzer sound. It should be noted that the numbers added to the above-mentioned configurations are for comparison with the drawings in order to facilitate the understanding of the present invention, and the configurations of the present invention are not limited thereby.

【0013】[0013]

【作用】本発明においては、例えば図1に示すように、
建入れ前の地上に置かれた鉄骨柱8の柱頭部付近の所定
位置に受光器12を固定し、鉄骨柱8の墨出し位置(設
計座標位置)にレーザ発振器11を固定した後、クレー
ンで吊られ建入れ場所に移動された鉄骨柱8の通信ケー
ブル13に演算確認装置15を接続する。演算確認装置
15のLED表示部19、液晶表示部20に、鉄骨柱8
の柱頭部の位置が自動的に表示され、また、ブザー音に
より中心位置の報知が行われ、これに基づいて作業者は
鉄骨柱8の倒れ具合に応じて上下の柱間のボルトの締付
作業および梁の取り付け作業を行い、建入れ位置が決ま
れば上下の鉄骨柱8の溶接作業や図5の梁溶接作業を行
う。
In the present invention, for example, as shown in FIG.
After fixing the light receiver 12 to a predetermined position near the head of the steel column 8 placed on the ground before installation and fixing the laser oscillator 11 to the marking position (design coordinate position) of the steel column 8, with a crane. The calculation confirmation device 15 is connected to the communication cable 13 of the steel column 8 that has been suspended and moved to the building location. The steel column 8 is displayed on the LED display section 19 and the liquid crystal display section 20 of the calculation confirmation device 15.
The position of the pillar head is automatically displayed, and the center position is notified by a buzzer sound. Based on this, the worker tightens the bolts between the upper and lower pillars according to how the steel pillar 8 falls. The work and the work of attaching the beam are performed, and when the building position is determined, the work of welding the upper and lower steel frame columns 8 and the beam welding work of FIG. 5 are performed.

【0014】[0014]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。図1および図2は本発明の鉄骨柱の建入れ測定シ
ステムの1実施例を示し、図1は測定システム全体を示
す斜視図、図2は本発明に係わる構成を示す図1の拡大
斜視図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 and FIG. 2 show an embodiment of a steel frame column installation measuring system of the present invention, FIG. 1 is a perspective view showing the entire measuring system, and FIG. 2 is an enlarged perspective view of FIG. 1 showing a configuration relating to the present invention. Is.

【0015】図1において、基準階Lの基準点2点に、
回転台1およびレーザ発振器2を設置し、建入れ階Mに
レーザ発振器2に対向して受光器3および演算処理装置
4を設置している。回転台1は、鉛直方向の測定精度を
補正するものであって、レーザ発振器2からのレーザ光
Rの発光位置が所定の位置からずれていても、また、レ
ーザ光Rが長い距離の間では真の鉛直線よりずれていて
も、回転台1を1回転、場合によっては2回転以上自動
回転させることで、例えばX方向、Y方向における鉛直
方向の真の測定位置を決定することができるものであ
る。
In FIG. 1, two reference points on the reference floor L are
A rotary base 1 and a laser oscillator 2 are installed, and a photoreceiver 3 and an arithmetic processing unit 4 are installed on the building floor M so as to face the laser oscillator 2. The rotary table 1 is for correcting the measurement accuracy in the vertical direction, and even if the emission position of the laser light R from the laser oscillator 2 is deviated from a predetermined position, and the laser light R is in a long distance. Even if it deviates from the true vertical line, it is possible to determine the true measurement position in the vertical direction in, for example, the X direction and the Y direction by automatically rotating the rotary table 1 once, or in some cases, two or more rotations. Is.

【0016】受光器3は、X、Y方向の位置検出用のフ
ォトダイオードマトリックスにて構成され、所定の時間
レーザ光Rの軌跡をサーチすることにより、揺れ幅、レ
ーザ光の輝度、測定領域等の計測パラメータを算出し、
演算処理装置4へ出力する。演算処理装置4は、受光器
3からのレーザ光Rの位置データを受信し、データ処
理、重心計算等の解析を行い、基準階Lの基準点の既知
座標と、受光器3で受信した建入れ階Mの位置座標とを
比較し、X、Y方向の既知座標とのずれを画面表示する
と共に、プリンターに出力する。その結果に基づいて鉄
骨柱の建て入れ修正を行い、基準階Lに設定された基準
点を建入れ階M上に移動させる。
The light receiver 3 is composed of a photodiode matrix for position detection in the X and Y directions, and by searching the locus of the laser light R for a predetermined time, the fluctuation width, the brightness of the laser light, the measurement area, etc. Calculate the measurement parameters of
Output to the arithmetic processing unit 4. The arithmetic processing unit 4 receives the position data of the laser light R from the light receiver 3, analyzes the data processing, the center of gravity, etc., and calculates the known coordinates of the reference point of the reference floor L and the data received by the light receiver 3. The positional coordinates of the floor M are compared with each other, and the deviation from the known coordinates in the X and Y directions is displayed on the screen and output to the printer. Based on the result, the steel pillar is installed and corrected, and the reference point set in the reference floor L is moved to the installation floor M.

【0017】建入れ階Mにおいては、2台の受光器3の
位置にミラー5が設置されるともに任意の位置に三次元
測量装置6が設置され、三次元測量装置6にはパソコン
7が接続される。パソコン7には、予め、前記基準点の
座標および鉄骨柱の設計座標位置(墨出し位置)が記憶
されている。ミラー5を三次元測量装置6を用いて視準
することにより、建入れ階Mの基準点より三次元測量装
置6の位置をパソコン7により算出する。
On the building floor M, a mirror 5 is installed at the positions of the two light receivers 3 and a three-dimensional surveying device 6 is installed at an arbitrary position, and a personal computer 7 is connected to the three-dimensional surveying device 6. To be done. The personal computer 7 stores in advance the coordinates of the reference point and the design coordinate position (marked-out position) of the steel column. By collimating the mirror 5 with the three-dimensional surveying device 6, the position of the three-dimensional surveying device 6 is calculated by the personal computer 7 from the reference point of the building floor M.

【0018】上記した基準点の移動方法は、前記特開平
4−69515号公報による方式と同様であり、とくに
高層建築物の場合に、従来の基準点を節ごとに上方に盛
り変えていく方法と比較して最大500mの測定が可能
であり、累積誤差が生じないという利点を有するが、本
発明においては、必ずしも必須の構成要件ではなく、低
層建築物の場合には、下げ振りや鉛直儀を用いて基準点
を移動するようにしてもよい。
The above-mentioned method of moving the reference point is similar to the method according to the above-mentioned Japanese Patent Laid-Open No. 4-69515, and in the case of a high-rise building in particular, the conventional method of changing the reference point upward for each node. Although it has an advantage that it can measure up to 500 m and does not cause a cumulative error, it is not always an essential constituent element in the present invention, and in the case of a low-rise building, a plumb bob or a vertical mount is required. You may make it move a reference point using.

【0019】図1および図2において、本発明のシステ
ムに必要な構成は、建入れ階Mに設置されるレーザ発振
器11と、レーザ発振器11からのレーザ光Rを受光す
る受光器12と、受光器12に通信ケーブル13により
接続可能にされる演算確認装置15とからなる。
1 and 2, the configuration required for the system of the present invention includes a laser oscillator 11 installed on a building floor M, a photodetector 12 for receiving a laser beam R from the laser oscillator 11, and a photodetector. And a calculation confirmation device 15 which can be connected to the device 12 by a communication cable 13.

【0020】レーザ発振器11は、水平度自動補正機構
を備えており、ベース部材16の開口内に設置される。
ベース部材16の開口は、建入れ階Mの墨出し位置(設
計座標位置)を示す十字線17に沿って固定され、レー
ザ光Rの軸と十字線17の交点とを容易に合致可能にし
ている。
The laser oscillator 11 is provided with an automatic leveling correction mechanism and is installed in the opening of the base member 16.
The opening of the base member 16 is fixed along a cross line 17 indicating the marking position (design coordinate position) of the building floor M, so that the axis of the laser beam R and the intersection of the cross line 17 can be easily matched. There is.

【0021】受光器12は、レーザ発振器11からのレ
ーザ光Rを二次元座標上の点として検知するもので、フ
ォトダイオード素子を80×80mmのマトリックス状
に並べたもので、鉄骨柱8の柱頭部付近にマグネットに
より着脱自在に固定できるようになっている。同様に通
信ケーブル13および演算確認装置15もマグネットに
より着脱自在に固定できるようになっている。
The light receiver 12 detects the laser light R from the laser oscillator 11 as a point on a two-dimensional coordinate, and is a structure in which photodiode elements are arranged in a matrix of 80 × 80 mm. It can be detachably fixed by a magnet near the part. Similarly, the communication cable 13 and the calculation confirmation device 15 can be detachably fixed by a magnet.

【0022】演算確認装置15は、図3に示すように、
建入作業中にリアルタイムで測定結果が分かるように、
1個2mmで16×16個の発光ダイオードからなるL
ED表示部19と、X方向、Y方向のずれを数値で表示
する液晶表示部20と、操作ボタン21と内蔵バッテリ
とから構成され、LED表示部19は、前記墨出し位置
(設計座標位置)を中心としてXY方向±16mm以内
にレーザ光が入ったときにその位置を表示するととも
に、ブザー音で作業者に報知可能にしている。このブザ
ー音は、レーザ光が中心からの誤差範囲(約±2mm以
内)に入れば、例えば、断続音から連続音に変化させる
ようにして確認を容易にする。
As shown in FIG.
So that you can see the measurement results in real time during the construction work,
L consisting of 16 x 16 light emitting diodes each with 2 mm
The LED display unit 19 includes an ED display unit 19, a liquid crystal display unit 20 that numerically displays the deviations in the X and Y directions, an operation button 21, and a built-in battery. The LED display unit 19 includes the marking position (design coordinate position). When the laser light enters within ± 16 mm in the XY directions centering on, the position is displayed and the operator can be notified by a buzzer sound. If the buzzer sound falls within an error range (within approximately ± 2 mm) from the center of the buzzer sound, for example, it is changed from an intermittent sound to a continuous sound to facilitate confirmation.

【0023】図4に示すように、演算処理装置4、三次
元測量装置6および演算確認装置15の測定データは、
フロッピィディスク22によりまたは直接、事務所のコ
ンピュータ23に入力され、計測結果作図用プロッタ2
4、計測結果リスト作成用プリンタ25に出力される。
As shown in FIG. 4, the measurement data of the arithmetic processing device 4, the three-dimensional surveying device 6 and the arithmetic operation confirmation device 15 are:
It is input to the computer 23 of the office by the floppy disk 22 or directly, and the plotter 2 for measurement result plotting
4. Output to the measurement result list creation printer 25.

【0024】次に、本発明の鉄骨柱の建入れ測定システ
ムを用いた建入れ作業について説明する。
Next, the construction work using the construction measurement system for steel columns of the present invention will be described.

【0025】[準備作業] 建入れ前の地上に置かれた鉄骨柱8の柱頭部付近の所
定位置(予め工場製作時に指示線が引かれている)に受
光器12をマグネットで固定し、同時にケーブル13も
鉄骨柱8に沿ってマグネットで固定する。通常、1回の
建入れ本数分の鉄骨柱にそれぞれ受光器12を取り付け
る。
[Preparation work] The light receiver 12 is fixed with a magnet at a predetermined position near the pillar head of the steel column 8 placed on the ground before the installation (instruction line is drawn at the time of factory production), and at the same time. The cable 13 is also fixed by a magnet along the steel column 8. Usually, the light receiver 12 is attached to each of the steel columns corresponding to the number of one-time building.

【0026】墨出し位置(設計座標位置)付近にミラ
ーを設置し、ミラーを三次元測量装置6により視準し、
パソコン7により墨出し位置を確認し、その位置に十字
線17を引く。
A mirror is installed near the marking position (design coordinate position), and the mirror is collimated by the three-dimensional surveying device 6,
The stake out position is confirmed by the personal computer 7, and a cross line 17 is drawn at the position.

【0027】前記十字線17をもとにベース部材16
を固定し、ベース部材16の開口に合わせてレーザ発振
器11を固定する。
The base member 16 based on the cross line 17
Is fixed, and the laser oscillator 11 is fixed in accordance with the opening of the base member 16.

【0028】クレーンで吊られ建入れ場所に移動され
た鉄骨柱8の通信ケーブル13に演算確認装置15を接
続する。
The operation confirmation device 15 is connected to the communication cable 13 of the steel frame column 8 which is hung by the crane and moved to the building site.

【0029】[測定作業] 演算確認装置15のLED表示部19、液晶表示部2
0に、鉄骨柱8の柱頭部の位置が自動的に表示され、ま
た、ブザー音により中心位置の報知が行われ、これに基
づいて作業者は鉄骨柱8の倒れ具合に応じて上下の柱間
のボルトの締付作業を行い、建入れ位置が決まれば上下
の鉄骨柱8の溶接作業および梁の取り付け作業を行う。
[Measurement work] The LED display unit 19 and the liquid crystal display unit 2 of the calculation confirmation device 15
At 0, the position of the stigma of the steel column 8 is automatically displayed, and the center position is informed by a buzzer sound. Based on this, the operator can move the upper and lower columns according to the degree of fall of the steel column 8. The bolts between them are tightened, and when the installation position is determined, the welding work of the upper and lower steel frame columns 8 and the work of attaching the beams are performed.

【0030】必要に応じて測定結果を演算確認装置1
5に内蔵されたメモリに保存し、この保存した測定結果
は、事務所に置かれたプリンタに演算確認装置15を接
続しプリント出力する。
A device for confirming the calculation of the measurement result as necessary 1
The measurement result is stored in the memory built in 5, and the stored measurement result is printed out by connecting the calculation confirmation device 15 to the printer placed in the office.

【0031】鉄骨柱8の溶接後、溶接歪などにより柱
頭部の位置に誤差が生じる場合があるので、そのずれ量
を演算確認装置15により測定し、そのずれ量を次の鉄
骨柱の建入れ時に演算確認装置15に入力する。これに
より全ての柱頭位置を常に一定の基準座標で高精度の測
定が可能となる。
After the steel column 8 is welded, an error may occur in the position of the column head due to welding distortion or the like. Therefore, the deviation amount is measured by the calculation confirmation device 15, and the deviation amount is set up for the next steel column. Sometimes input to the calculation confirmation device 15. As a result, all stigmatic positions can be measured with high accuracy at a constant reference coordinate.

【0032】図5および図6は本発明の他の実施例を示
し、図5は全体斜視図、図6はパソコンの表示画面を示
す図である。前記実施例においては、鉄骨柱8を1本ご
とに建入れを行うようにしているが、本実施例において
は、図5に示すように、梁26と4本の鉄骨柱S1〜S
4が仮締めにて連結されており、4本の鉄骨柱S1〜S
4を同時に建入れを行うようにしている。4本の鉄骨柱
S1〜S4のそれぞれに前記したレーザ発振器11、受
光器12、通信ケーブル13および演算確認装置15が
接続され、それぞれの演算確認装置15は、接続器27
を介してパソコン29に接続されている。
5 and 6 show another embodiment of the present invention, FIG. 5 is an overall perspective view, and FIG. 6 is a view showing a display screen of a personal computer. In the above embodiment, the steel columns 8 are erected one by one, but in this embodiment, as shown in FIG. 5, the beam 26 and the four steel columns S1 to S are provided.
4 are connected by temporary fastening, and four steel columns S1 to S
We are building 4 at the same time. The laser oscillator 11, the light receiver 12, the communication cable 13, and the calculation confirmation device 15 described above are connected to each of the four steel columns S1 to S4, and each calculation confirmation device 15 includes a connector 27.
It is connected to the personal computer 29 via.

【0033】本実施例の建入れ作業について説明する
と、図6に示すように、パソコン27の表示画面の右側
には、鉄骨柱S1〜S4のXY方向のずれ量が表示さ
れ、左側には鉄骨柱S1〜S4の設計座標位置が実線で
示されるとともに、現在の位置が点線で示され、作業者
は点線部が実線に重なるように、梁26の仮締めを緩め
たり締めたりして調整することにより、簡単に建入れ作
業を行うことができる。
Explaining the construction work of this embodiment, as shown in FIG. 6, the shift amounts in the XY directions of the steel columns S1 to S4 are displayed on the right side of the display screen of the personal computer 27, and the steel frames are displayed on the left side. The design coordinate positions of the pillars S1 to S4 are indicated by solid lines and the current positions are indicated by dotted lines, and the worker adjusts the loosening or tightening of the temporary tightening of the beam 26 so that the dotted line portions overlap the solid lines. By doing so, it is possible to easily carry out construction work.

【0034】[0034]

【発明の効果】以上の説明から明らかなように本発明に
よれば、下記の効果が奏される。
As is apparent from the above description, the present invention has the following effects.

【0035】従来、鉄骨柱の建入れの所定位置を確保
するためには、XY方向に歪直しを繰り返しながら行
い、その都度トランシットで測定を繰り返すという手間
のかかる作業であったが、本発明においては、作業者が
一度に柱頭部の位置座標をリアルタイムで、かつ、LE
D表示やブザー音で鉄骨柱の倒れ具合を確認しながら簡
単に建入れ作業を行うことができる。
Conventionally, in order to secure a predetermined position for the installation of a steel column, it has been a troublesome work to perform re-distortion in the XY directions repeatedly and to repeat the measurement at each time, but in the present invention, Means that the worker can change the position coordinates of the stigma at once in real time and
It is possible to easily carry out the installation work while confirming the falling condition of the steel column with the D display and the buzzer sound.

【0036】従来のトランシットまたは光学的鉛直儀
を使用する場合には、2〜3人で測定していたが、本発
明においては、XY座標が1人で計測できるので1人で
容易に測定することができる。
When a conventional transit or optical vertical instrument is used, the measurement is performed by two or three persons, but in the present invention, the XY coordinates can be measured by one person, so that one person can easily perform the measurement. be able to.

【0037】従来、所定位置に鉄骨柱の建入れをする
場合、柱頭部にミラーを取り付ける高所作業や、柱頭位
置の指示線が見えないなどの理由で、柱頭部のXY方向
それぞれにスケールをあてるなどの高所作業を伴うケー
スが多かったが、本発明においては、地上の安全な場所
で受光器の取り付け作業ができるため、高所作業から解
放される。
Conventionally, when constructing a steel column at a predetermined position, scales are installed in the XY directions of the column head because of work at a high place where a mirror is attached to the column head or because the indicator line of the column head position cannot be seen. In many cases, this involves work at a high place such as hitting, but in the present invention, the work of attaching the photoreceiver can be performed at a safe place on the ground, and therefore work at a high place is relieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鉄骨柱の建入れ測定システムの1実施
例を示す全体斜視図、
FIG. 1 is an overall perspective view showing an embodiment of a steel column construction measurement system of the present invention,

【図2】本発明における構成を示す図1の拡大斜視図で
ある。
FIG. 2 is an enlarged perspective view of FIG. 1 showing the configuration of the present invention.

【図3】本発明における演算確認装置の斜視図である。FIG. 3 is a perspective view of a calculation confirmation device according to the present invention.

【図4】本発明における測定データの流れを説明するた
めの概念図である。
FIG. 4 is a conceptual diagram for explaining the flow of measurement data in the present invention.

【図5】本発明の他の実施例を示す全体斜視図である。FIG. 5 is an overall perspective view showing another embodiment of the present invention.

【図6】図5におけるパソコンの表示画面を示す図であ
る。
6 is a diagram showing a display screen of the personal computer in FIG.

【図7】従来の鉄骨柱の建入れ測定システムの例を示す
斜視図である。
[Fig. 7] Fig. 7 is a perspective view showing an example of a conventional steel-column post-installation measuring system.

【符号の説明】[Explanation of symbols]

M…建入れ階、8…鉄骨柱、11…レーザ発振器、12
…受光器 13…通信ケーブル、15…演算確認装置、19…LE
D表示部 20…液晶表示部
M: Building floor, 8 ... Steel column, 11 ... Laser oscillator, 12
... light receiver 13 ... communication cable, 15 ... calculation confirmation device, 19 ... LE
D display unit 20 ... Liquid crystal display unit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山信博 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 (72)発明者 中西正明 東京都港区芝浦一丁目2番3号 清水建設 株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Nobuhiro Okuyama 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Co., Ltd. (72) Inventor Masaaki Nakanishi 1-3-2 Shibaura, Minato-ku, Tokyo Shimizu Construction Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】建入れ階に建入れされる鉄骨柱と、該鉄骨
柱の設計座標位置に設置されるレーザ発振器と、前記鉄
骨柱の柱頭部付近に着脱自在に固定される受光器と、該
受光器と通信ケーブルを介して接続される演算確認装置
とを備え、前記レーザ発振器からのレーザ光を前記受光
器により検知し、前記演算確認装置において、鉄骨柱の
柱頭部の設計座標位置からのずれ量を表示または報知す
ることを特徴とする鉄骨柱の建入れ測定システム。
1. A steel frame column installed on a building floor, a laser oscillator installed at a design coordinate position of the steel frame column, and a light receiver detachably fixed near the column head of the steel frame column. The light receiving device and a calculation confirmation device connected via a communication cable are provided, and the laser light from the laser oscillator is detected by the light receiving device, and in the calculation confirmation device, from the design coordinate position of the stigma of the steel column. An installation measuring system for steel columns, which displays or informs the amount of deviation.
【請求項2】前記演算確認装置は、液晶表示およびLE
D表示によりずれ量を表示することを特徴とする請求項
1に記載の鉄骨柱の建入れ測定システム。
2. The operation confirmation device comprises a liquid crystal display and LE.
The installation measuring system for a steel column according to claim 1, wherein the displacement amount is displayed by D display.
【請求項3】前記演算確認装置は、ブザー音によりずれ
量を報知することを特徴とする請求項1または2に記載
の鉄骨柱の建入れ測定システム。
3. The system for measuring the installation of a steel column according to claim 1, wherein the calculation confirmation device notifies the amount of deviation by a buzzer sound.
JP04303880A 1992-11-13 1992-11-13 Steel column installation measurement system Expired - Fee Related JP3122862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04303880A JP3122862B2 (en) 1992-11-13 1992-11-13 Steel column installation measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04303880A JP3122862B2 (en) 1992-11-13 1992-11-13 Steel column installation measurement system

Publications (2)

Publication Number Publication Date
JPH06147896A true JPH06147896A (en) 1994-05-27
JP3122862B2 JP3122862B2 (en) 2001-01-09

Family

ID=17926389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04303880A Expired - Fee Related JP3122862B2 (en) 1992-11-13 1992-11-13 Steel column installation measurement system

Country Status (1)

Country Link
JP (1) JP3122862B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827678B1 (en) 1998-01-31 2004-12-07 Heidelberger Druckmaschinen Ag System for making folded boxes from blanks
JP2014115236A (en) * 2012-12-12 2014-06-26 Runhorn Pretech Engineering Co Ltd Structural perpendicularity measuring apparatus, and measuring method for the same
JP6433033B1 (en) * 2017-08-28 2018-12-05 株式会社きんそく Construction support system and mobile device used in construction support system
WO2020170566A1 (en) * 2019-02-19 2020-08-27 シャープ株式会社 Inspection device, method for controlling inspection device, inspection program, and recording medium
US11953342B2 (en) 2020-07-01 2024-04-09 Makita Corporation Laser marking system and portable terminal device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733363U (en) * 1993-11-26 1995-06-20 勝則 小山 Sprinkler-head adapter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6827678B1 (en) 1998-01-31 2004-12-07 Heidelberger Druckmaschinen Ag System for making folded boxes from blanks
JP2014115236A (en) * 2012-12-12 2014-06-26 Runhorn Pretech Engineering Co Ltd Structural perpendicularity measuring apparatus, and measuring method for the same
JP6433033B1 (en) * 2017-08-28 2018-12-05 株式会社きんそく Construction support system and mobile device used in construction support system
JP2019039247A (en) * 2017-08-28 2019-03-14 株式会社きんそく Construction support system and mobile device used for construction support system
WO2020170566A1 (en) * 2019-02-19 2020-08-27 シャープ株式会社 Inspection device, method for controlling inspection device, inspection program, and recording medium
JPWO2020170566A1 (en) * 2019-02-19 2021-11-04 シャープ株式会社 Inspection equipment, inspection equipment control method, inspection program and recording medium
US11953342B2 (en) 2020-07-01 2024-04-09 Makita Corporation Laser marking system and portable terminal device

Also Published As

Publication number Publication date
JP3122862B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP2004212058A (en) Working position measuring apparatus
US20050077454A1 (en) Photodetection device for rotary laser system
CN111272156A (en) Automatic measurement equipment, method and system for determining attitude of vertical shaft heading machine
JP3122862B2 (en) Steel column installation measurement system
JP2018179533A (en) Inclination measurement device, measurement method of accuracy of steel column election using same, calibration method of inclination measurement device, and inclination measurement processing program
JP7424584B2 (en) How to install the method, how to install the method and the surveying system
JP2007271627A (en) Work position measuring device
JPS62269010A (en) Building accuracy measuring method for steel column using laser vertical gauge and apparatus therefor
JP2533317B2 (en) Displacement automatic detection system
JPH0694457A (en) Displacement measuring apparatus of underground structure
JP2917751B2 (en) Column accuracy measurement system
JP7424585B2 (en) How to install the method, how to install the method and the surveying system
JP2619604B2 (en) Method and apparatus for adjusting the installation of legs for steel tower structures
JP3595022B2 (en) Vertical beam measurement system using laser beam
JP2926101B2 (en) Vertical measurement system
US20220155068A1 (en) Tilt analysis system, tilt analysis method, storage medium storing tilt analysis program, and survey target device
JPH09101151A (en) Horizontal reference line measurement device for construction work, horizontal laser oscillation device and horizontal laser receiving device constituting the measurement device and intermediate marking device
JPH0213661A (en) Erecting method for building material
JP2590008B2 (en) Automatic displacement measurement method for structures
JP3594118B2 (en) Vertical detection output device, measurement point instruction unit and surveying equipment
JPH08120941A (en) Erection method for construction material and its device
JPH0797032B2 (en) Formwork position measuring device for structure construction
JPH11183173A (en) Structural steel guide system utilizing tracking range finder/goniometer
JP2926103B2 (en) Vertical measurement system
JPS62269009A (en) Building accuracy measuring method for steel column using laser vertical gauge and apparatus therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees