JPH06147870A - Length measuring method for extruded pipe - Google Patents

Length measuring method for extruded pipe

Info

Publication number
JPH06147870A
JPH06147870A JP30219392A JP30219392A JPH06147870A JP H06147870 A JPH06147870 A JP H06147870A JP 30219392 A JP30219392 A JP 30219392A JP 30219392 A JP30219392 A JP 30219392A JP H06147870 A JPH06147870 A JP H06147870A
Authority
JP
Japan
Prior art keywords
pipe
extrusion
extruded
length
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30219392A
Other languages
Japanese (ja)
Inventor
Jun Azuma
洵 東
Eizo Shiraishi
英三 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30219392A priority Critical patent/JPH06147870A/en
Publication of JPH06147870A publication Critical patent/JPH06147870A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Extrusion Of Metal (AREA)

Abstract

PURPOSE:To provide a method for measuring the length of a pipe under hot state immediately after extrusion through a seamless pipe manufacturing line in which the length of pipe can be measured accurately regardless of the outer diameter, length or snaking of the extruded pipe without disturbing an existing manufacturing process while withstanding radiation (90 deg.C or higher) from the pipe member with a simple mechanism. CONSTITUTION:Immediately after extrusion by an extrusion press, an extruded pipe 2 under hot state is irradiated, on the outer peripheral surface thereof, with a microwave at a predetermined angle theta and the microwave reflected therefrom is received. The length of the extrusion pipe 2 is measured based on Doppler frequency produced by mixing an irradiating microwave with a reflection microwave subjected to frequency variation by Doppler effect caused by the extrusion speed (v) of the extrusion pipe 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、マンネスマン
方式あるいはユージンセジュルネ方式でシームレスパイ
プを製造する過程において、押出プレス機の直後に押し
出される熱間状態のシームレスパイプ(押出管)の長さを
測定するための押出管測長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the length of a seamless pipe in a hot state (extruded pipe) extruded immediately after an extrusion press in the process of producing a seamless pipe by the Mannesmann system or the Eugene Sejournet system, for example. The present invention relates to a method for measuring the length of an extruded tube for measuring the temperature.

【0002】[0002]

【従来の技術】図3はシームレスパイプの製造の中心で
ある一般的な押出プレス機の断面図でで、この図3にお
いて、1は押出前のビレット(素材)、2は押し出された
押出管(シームレスパイプ)、3はビレット1に押出圧力
を作用させるための主ラム、4はビレット1および押出
管2の中心に配置され押出管2の内径/内形を決めるマ
ンドレル(工具)、5はビレット1と主ラム3との間に介
設されるダミーブロック(工具)、6は主ラム3の押し込
みによってビレット1を絞り込み所定の外径/外形を形
成しながら押出管2を押出成形するダイス(工具)、7は
ビレット1を保持し主ラム3を押し込まれるコンテナ
(工具)、8はダイス6をコンテナ7に保持するためのダ
イホルダ(工具)、9は押出管2を切断するためのホット
ソー、10は頭盤、11は頭盤10とダイホルダ8との
間に介設されダイホルダ8を介してダイス6を受ける受
皿、12は受皿11およびダイホルダ8を介してダイス
6を前進させるためのダイ前進シリンダ、13はダイス
6から押し出された押出管2を送り流すためのローラテ
ーブルである。
2. Description of the Related Art FIG. 3 is a cross-sectional view of a general extrusion press, which is the center of seamless pipe production. In FIG. 3, 1 is a billet (material) before extrusion and 2 is an extruded pipe. (Seamless pipe), 3 is a main ram for exerting an extrusion pressure on the billet 1, 4 is a mandrel (tool) arranged at the center of the billet 1 and the extrusion tube 2 and determining the inner diameter / inner shape of the extrusion tube 5, A dummy block (tool) provided between the billet 1 and the main ram 3 is a die for extruding the extrusion pipe 2 while pressing the main ram 3 to narrow the billet 1 to form a predetermined outer diameter / outer shape. (Tool), 7 is a container that holds the billet 1 and is pushed into the main ram 3.
(Tool), 8 is a die holder (tool) for holding the die 6 in the container 7, 9 is a hot saw for cutting the extrusion pipe 2, 10 is a head, 11 is between the head 10 and the die holder 8. A tray is provided to receive the die 6 through the die holder 8, 12 is a die advance cylinder for advancing the die 6 through the tray 11 and the die holder 8, and 13 is for feeding the extruded pipe 2 extruded from the die 6. It is a roller table.

【0003】このように構成される押出プレス機14に
は、押出前の素材(ビレット)を一定の長さ,外径に調整
して供給されるが、押出プレス機14の型(コンテナ7)
によっては、製品としてのシームレスパイプ(押出管2)
の外径,肉厚は異なってくるため、押し出される押出管
2の長さも大きく変わる(例えば4〜23m)。しかも、
外径や肉厚の変化や偏肉が発生するため、管長さはさら
に変化する。
The material (billet) before extrusion is supplied to the extrusion press 14 having the above-described structure after being adjusted to have a constant length and outer diameter.
Depending on the product, seamless pipe (extruded pipe 2)
Since the outer diameter and the wall thickness of the extruded tube 2 are different, the length of the extruded tube 2 to be extruded also largely changes (for example, 4 to 23 m). Moreover,
Since the outer diameter and wall thickness change and uneven thickness occurs, the pipe length further changes.

【0004】このシームレスパイプの測長は、製品の寸
法どりをするために不可欠であるが、従来、例えば、図
4に示すように、押出後の切断機ライン上で、予め目視
しながらボールねじ17を回転させることにより定寸移
動式ストッパ18を所定位置にセットし、押出管2の先
端をストッパ18に当接させた状態で、概ね、測長を行
なっている。なお、図4において、15はロールガン
グ、16は冷却床、19は押出管2の先端をストッパ1
8に当接させた状態で押出管2を所定長さに切断する切
断機である。
The length measurement of this seamless pipe is indispensable for adjusting the size of the product. Conventionally, for example, as shown in FIG. 4, a ball screw is visually checked in advance on a cutting machine line after extrusion. By rotating 17 the set-size movable stopper 18 is set at a predetermined position and the tip of the extruding tube 2 is brought into contact with the stopper 18, and the length measurement is generally performed. In FIG. 4, 15 is a roll gang, 16 is a cooling bed, and 19 is the end of the extruded tube 2 which is a stopper 1.
It is a cutting machine that cuts the extruded pipe 2 into a predetermined length in a state of being in contact with 8.

【0005】一般には、押出管2と接触しながら回転す
るメジャリングロールが用いられているが、図5(a)に
示すように、最近、レーザドップラレーダにより熱間状
態の押出管2の押出速度を測定し、管長さを測定するこ
とも提案されている。図5において、20はレーザ速度
計で、このレーザ速度計20は、押出管2の外周面にレ
ーザ光20aを照射し、外周面から反射されてきたレー
ザ光20bを受け、押出管2の速度vによって生じたド
ップラシフトから速度vを求めるもので、測定精度は高
く応答性もよい。このように測定された速度vを時間積
分することにより、押出管2の長さが測定される。
Generally, a measuring roll that rotates in contact with the extruded tube 2 is used, but as shown in FIG. 5A, recently, the extruded tube 2 in a hot state is extruded by a laser Doppler radar. It has also been proposed to measure velocity and tube length. In FIG. 5, reference numeral 20 denotes a laser speedometer. The laser speedometer 20 irradiates the outer peripheral surface of the extruded tube 2 with a laser beam 20a, receives the laser beam 20b reflected from the outer peripheral surface, and receives the speed of the extruded tube 2. The velocity v is obtained from the Doppler shift caused by v, and the measurement accuracy is high and the response is good. The length of the extruded tube 2 is measured by integrating the velocity v thus measured with time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、メジャ
リングロールを用いた測長手段では、メジャリングロー
ルと押出管2との間の滑りが大きな誤差の原因となるほ
か、押出管2のサイズに合わせてピンチするならば、押
出管2に傷を付けたり、あるいは、耐熱性まで考慮した
複雑な機構や制御装置が必要になる。また、メジャリン
グロールを用いた場合、摩耗やロールの回転の開始,終
了時点の判定が難しいなどの課題もある。
However, in the length measuring means using the measuring roll, slippage between the measuring roll and the extruded tube 2 causes a large error, and the length of the extruded tube 2 is adjusted according to the size. If it is to be pinched, the extruded tube 2 may be damaged, or a complicated mechanism or control device that takes heat resistance into consideration is required. Further, when a measuring roll is used, there is a problem that it is difficult to judge the start and end points of wear and rotation of the roll.

【0007】一方、レーザ速度計20を用いた測長手段
では、測長対象が平板状の場合、問題は生じないが、押
出管2のような管材が測長対象である場合、図5(b)に
示すように、レーザ光20aの照射位置が押出管2の軸
心からずれると、反射されるレーザ光20cがレーザ速
度計20の検出部に戻らなくなってしまう。特に、前述
したような押出プレス機14から押し出される押出管2
の場合、横方向への振れ(蛇行)が大きい。また、実際の
製造寸法も直径27〜120mmと範囲が広いため、レー
ザ光20aの当たる位置が大きく変わる。
On the other hand, in the length measuring means using the laser speedometer 20, no problem occurs when the length measuring object is a flat plate, but when a pipe material such as the extruded pipe 2 is the length measuring object, FIG. As shown in b), when the irradiation position of the laser light 20a deviates from the axial center of the extruded tube 2, the reflected laser light 20c cannot return to the detection unit of the laser speedometer 20. In particular, the extrusion pipe 2 extruded from the extrusion press 14 as described above.
In the case of, the horizontal shake (meander) is large. In addition, since the actual manufacturing size is wide with a diameter of 27 to 120 mm, the position where the laser light 20a strikes greatly changes.

【0008】図5(a),(b)に示した測長手段では、レ
ーザ光20aという極めて指向性の高いものを用いてい
るため、焦点深度はたかだか4〜5mm程度であるので、
管径に合わせて上下に追従させる必要がある。また、前
述のごとく横振れも大きいので、これにも対応できるよ
うにするには、上下左右の追従装置が必要になり機構が
極めて複雑になる。押出管2の押出速度は、通常、20
0〜300m/分前後で蛇行量が±70〜80mmあるた
め、精度よく追従するのは極めて困難である。
In the length measuring means shown in FIGS. 5 (a) and 5 (b), since the laser beam 20a having a very high directivity is used, the depth of focus is at most 4-5 mm.
It is necessary to follow up and down according to the pipe diameter. Further, since the lateral shake is large as described above, in order to be able to cope with this, a vertical, horizontal and lateral follow-up device is required and the mechanism becomes extremely complicated. The extrusion speed of the extrusion tube 2 is usually 20
Since the amount of meandering is ± 70 to 80 mm at around 0 to 300 m / min, it is extremely difficult to follow accurately.

【0009】もし、追従することができず、図5(b)の
実線のごとき反射光20cが発生すると、レーザ速度計
20からの速度測定出力はゼロとなり、速度測定出力の
積分値から求まる予定の管長さはマイナスの誤差を生じ
てしまう。
If the reflected light 20c such as the solid line in FIG. 5 (b) is generated and cannot be followed, the speed measurement output from the laser speedometer 20 becomes zero, which is to be obtained from the integrated value of the speed measurement output. The tube length of causes a negative error.

【0010】しかし、図4に示すA点またはC点におい
て測定することは有利である。なぜならば、図4に示す
B点での測定では、管端の一方は、ある位置に固定する
ことができたにせよ、もう一方の管端は、広範囲に分布
するから、この範囲で他方の管端の位置を短時間に且つ
精度よく測定する手段を見つけ出すことは難しい。
However, it is advantageous to measure at points A or C shown in FIG. This is because, in the measurement at the point B shown in FIG. 4, although one of the tube ends could be fixed at a certain position, the other tube end was widely distributed, so that the other tube end was in this range. It is difficult to find a means for accurately measuring the position of the pipe end in a short time.

【0011】本発明は、このような課題を解決しようと
するもので、現行の生産工程を乱すことなく、また、押
出管の外径,長さ,蛇行に影響されることなく、正確に
測長できるようにするとともに、簡素な機構で管材から
の輻射(900℃以上)に耐えうる押出管測長方法を提供
することを目的とする。
The present invention is intended to solve such a problem, and accurately measures the current production process without disturbing the outer diameter, length, and meandering of the extruded pipe. An object of the present invention is to provide a method for measuring the length of an extruded pipe that can withstand the radiation (900 ° C. or higher) from the pipe material with a simple mechanism while making it possible to increase the length.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の押出管測長方法は、押出プレス機から押
し出された直後の熱間状態の押出管の外周部から、該押
出管の外周面に向けてマイクロ波を所定角度で照射し、
前記押出管の外周面から反射されてきたマイクロ波を
受信し、反射されてきたマイクロ波が前記押出管の押
出速度に伴うドップラ効果によって周波数変化したもの
を、照射したマイクロ波と混合して得たドップラ周波数
に基づき、前記押出管の長さを測定することを特徴とし
ている。
In order to achieve the above object, the method for measuring the length of an extruded pipe according to the present invention is such that the extruded pipe is extruded from the outer peripheral portion of the extruded pipe in a hot state immediately after being extruded from an extrusion press. Irradiate microwaves at a predetermined angle toward the outer peripheral surface of
The microwave reflected from the outer peripheral surface of the extruded tube is received, and the reflected microwave has a frequency changed by the Doppler effect accompanying the extrusion speed of the extruded tube, and is obtained by mixing with the irradiated microwave. The length of the extruded tube is measured based on the Doppler frequency.

【0013】[0013]

【作用】上述した本発明の押出管測長方法では、押出プ
レス機から押し出されている状態の押出管に対してマイ
クロ波が照射され、その反射マイクロ波が押出管の押出
速度に伴うドップラ効果により変化する周波数に基づい
て、現行の生産工程を乱すことなく、また、押出管の外
径,長さ,蛇行に影響されることなく、押出管の長さが
正確に測定される。
In the above-described extrusion pipe length measuring method of the present invention, the extruded pipe extruded from the extrusion press is irradiated with microwaves, and the reflected microwaves cause the Doppler effect accompanying the extrusion speed of the extruded pipe. The length of the extruded tube can be accurately measured based on the frequency changing by the method without disturbing the existing production process and without being affected by the outer diameter, length and meandering of the extruded tube.

【0014】[0014]

【実施例】以下、図面により本発明の一実施例としての
押出管測長方法について説明すると、図1はその方法を
適用された装置を示す構成図、図2は本実施例における
ドップラ周波数の一例を示す波形図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An extruded pipe length measuring method as an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an apparatus to which the method is applied, and FIG. 2 is a diagram showing the Doppler frequency in this embodiment. It is a wave form diagram which shows an example.

【0015】図1において、21は押出プレス機(図
3,図4の符号14参照)から押し出された直後の熱間
状態の押出管(シームレスパイプ)2を搬送する搬送ロー
ル、22はマイクロ波発振器で、このマイクロ波発振器
22は、安定化直流電源22aで駆動されるガンダイオ
ード22bを有して構成されている。ガンダイオード2
2bとしては、例えば、10Vの安定化直流電源22a
で駆動された場合に、150mWの出力で24.5GH
z(波長λ=12.2449mm)の発振周波数(f)のマイ
クロ波を出力するものを用いる。
In FIG. 1, 21 is a conveying roll for conveying the extruded pipe (seamless pipe) 2 in a hot state immediately after being extruded from an extrusion press (see reference numeral 14 in FIGS. 3 and 4), and 22 is a microwave. In the oscillator, the microwave oscillator 22 includes a Gunn diode 22b driven by a stabilized DC power supply 22a. Gunn diode 2
As 2b, for example, a stabilized DC power source 22a of 10V is used.
24.5GH with 150mW output when driven by
A device that outputs a microwave having an oscillation frequency (f) of z (wavelength λ = 12.2449 mm) is used.

【0016】また、23はサーキュレータ24を介装さ
れた導波管25を介してマイクロ波発振器22に接続さ
れたホーンアンテナで、このホーンアンテナ23は、マ
イクロ波発振器22からのマイクロ波を導波管25を通
して導かれ、このマイクロ波を上方から鉛直線に対し所
定角度θで押出管2の外周面に照射するものである。
Reference numeral 23 is a horn antenna connected to a microwave oscillator 22 via a waveguide 25 having a circulator 24 interposed therebetween. The horn antenna 23 guides the microwave from the microwave oscillator 22. The microwaves are guided through the tube 25 and are radiated from above onto the outer peripheral surface of the extruded tube 2 at a predetermined angle θ with respect to the vertical line.

【0017】ここで、例えば、導波管9としてはJIS
規格品を用い、ホーンアンテナ23としては、利得30
dbで指向性は半値幅で±7°のものを用いる。また、ホ
ーンアンテナ23は、押出管2の押出方向に対向するよ
うに、押出管2の上方400mm近辺とし、ホーンアンテ
ナ23の前面には、厚さ2mm程度の薄いアルミナ(Al2
3)製の板材(図示せず)を配置し、押出管2からの輻射
を防いでいる。
Here, for example, the waveguide 9 is JIS
A standard product is used, and the horn antenna 23 has a gain of 30.
For db, directivity with a half width of ± 7 ° is used. Further, the horn antenna 23 is located near 400 mm above the extruded tube 2 so as to face the extruding direction of the extruded tube 2, and the front surface of the horn antenna 23 is made of thin alumina (Al 2
A plate material (not shown) made of O 3 ) is arranged to prevent radiation from the extruded tube 2.

【0018】さらに、押し出された直後の押出管2の表
面には、潤滑剤のガラス被膜が付着しているため、ホー
ンアンテナ23の設置角度θは多少大きくても、押出管
2の表面からのマイクロ波の反射(散乱)波は十分に大き
く、反射マイクロ波は確実にホーンアンテナ23に戻っ
てくるが、押出管2の直径の範囲や蛇行を考慮すると、
設置角度θとしては20°〜40°近辺が適しており、
本実施例では、例えば、30°とする。
Further, since the glass film of the lubricant is adhered to the surface of the extruded tube 2 immediately after being extruded, even if the installation angle θ of the horn antenna 23 is slightly large, the extruded tube 2 is exposed from the surface of the extruded tube 2. The reflected (scattered) wave of the microwave is sufficiently large and the reflected microwave surely returns to the horn antenna 23. However, considering the range of the diameter of the extruded tube 2 and the meandering,
The suitable installation angle θ is around 20 ° to 40 °,
In this embodiment, the angle is 30 °, for example.

【0019】また、測定位置つまりマイクロ波の照射位
置は、図4にて示したA点もしくはB点付近とし、且
つ、無関係の回転物体(搬送ローラ21等)からの不要な
反射を避けるため、図1に示すように、搬送ローラ21
の中間点を選ぶのが望ましい。
Further, the measurement position, that is, the microwave irradiation position is near the point A or B shown in FIG. 4, and in order to avoid unnecessary reflection from an unrelated rotating object (conveying roller 21 or the like), As shown in FIG.
It is desirable to choose the midpoint of.

【0020】さて、26はミキサ(混合器)で、このミキ
サ26は、押出管2の表面から反射されドップラシフト
分の周波数fdを含む周波数f+fdの反射マイクロ波
を、ホーンアンテナ23,導波管25およびサーキュレ
ータ24を介して受け、マイクロ波発振器22の発振周
波数fと図2に示すような周波数fdのビート波を作る
ものである。ここで、ドップラシフト分の周波数fd
は、押出速度v,照射角度θ,マイクロ波の波長λを用
いて次式で示される。
Reference numeral 26 is a mixer (mixer), and this mixer 26 reflects the reflected microwave of frequency f + fd including the frequency fd of the Doppler shift reflected from the surface of the extruded tube 2 into the horn antenna 23 and the waveguide. 25 and the circulator 24 to generate a beat wave having an oscillation frequency f of the microwave oscillator 22 and a frequency fd as shown in FIG. Here, the frequency fd for the Doppler shift
Is expressed by the following equation using the extrusion speed v, the irradiation angle θ, and the wavelength λ of the microwave.

【0021】fd=2v・sinθ/λ 27はミキサ26からの周波数fdのビート波を一定の
振幅に増幅する増幅器、28は増幅器27からのビート
波を受けこのビート波の周波数fdに比例した電圧信号
つまり押出管2の押出速度vに比例した速度信号を出力
する周波数/電圧変換器(F/Vコンバータ)、29は増
幅器27からの周波数fdのビート波のゼロクロス点
(図2参照)を図示しないコンパレータまたは微分器によ
り検出しその点の数を計数するゼロクロスカウンタ(Z
CC)、30はゼロクロスカウンタ29による計数結果
を押出管2の長さlに変換する変換器で、ゼロクロスカ
ウンタ29からのリセット信号によりリセットされるよ
うになっている。
Fd = 2v · sin θ / λ 27 is an amplifier for amplifying the beat wave of the frequency fd from the mixer 26 to a constant amplitude, and 28 is a voltage proportional to the frequency fd of the beat wave, which receives the beat wave from the amplifier 27. A frequency / voltage converter (F / V converter) that outputs a signal, that is, a speed signal proportional to the extrusion speed v of the extrusion tube 2, 29 is a zero-cross point of the beat wave of the frequency fd from the amplifier 27.
A zero cross counter (Z) (see FIG. 2) is used to detect the number of points detected by a comparator or differentiator (not shown).
CC) and 30 are converters for converting the count result of the zero cross counter 29 into the length 1 of the extruded tube 2, which is reset by a reset signal from the zero cross counter 29.

【0022】上述の構成により、直流電源22aで駆動
されるガンダイオード22bから発生したマイクロ波
は、導波管25を通じてホーンアンテナ23に導かれ、
角度θをもって、押出プレス機から押し出された直後の
熱間状態の押出管2の外周面に向けて照射される。その
マイクロ波の発振周波数fは、押出管2の押出速度vに
伴うドップラ効果により周波数変化し、周波数f+fd
となり、押出管2の表面の微細な凹凸によって様々な方
向に反射・散乱し、一部のマイクロ波は再びホーンアン
テナ23に戻る。
With the above configuration, the microwave generated from the Gunn diode 22b driven by the DC power source 22a is guided to the horn antenna 23 through the waveguide 25,
Irradiation is performed at an angle θ toward the outer peripheral surface of the extruded tube 2 in a hot state immediately after being extruded from the extrusion press. The oscillation frequency f of the microwave changes due to the Doppler effect associated with the extrusion speed v of the extrusion tube 2, and the frequency f + fd
Then, due to the fine irregularities on the surface of the extruded tube 2, the microwaves are reflected / scattered in various directions, and some microwaves return to the horn antenna 23 again.

【0023】この周波数f+fdのマイクロ波は、導波
管25およびサーキュレータ24を通じてミキサ26に
導かれ、発振周波数fと周波数fdのビート波が作られ
る。このドップラシフト分の周波数fdはたかだか数百
Hzで、その観測波形には、図2に示すように、多少振
幅変化がある。しかし、周波数fdのビート波を、増幅
器27で一定の振幅に増幅した後、周波数/電圧変換器
28で周波数fdに比例した電圧信号に変換されるた
め、結果的に押出管2の押出速度vに比例した出力が得
られる。
The microwave having the frequency f + fd is guided to the mixer 26 through the waveguide 25 and the circulator 24, and beat waves having the oscillation frequency f and the frequency fd are produced. The frequency fd for the Doppler shift is at most several hundreds Hz, and the observed waveform has some amplitude change as shown in FIG. However, since the beat wave of the frequency fd is amplified to a constant amplitude by the amplifier 27, it is converted into a voltage signal proportional to the frequency fd by the frequency / voltage converter 28, resulting in the extrusion speed v of the extrusion tube 2. An output proportional to is obtained.

【0024】このようにして得られた押出速度vについ
てのアナログ信号を積分して押出管2の長さを求めるこ
ともできるが、精度上問題があるため、図2に示すごと
く、周波数fdのビート波のゼロクロス点をコンパレー
タまたは微分器により検出し、この数をゼロクロスカウ
ンタ29にて計数し、その計数結果を変換器30にて変
換することにより、押出管2の長さを正確に測定するこ
とができる。
It is possible to integrate the analog signal of the extrusion speed v thus obtained to obtain the length of the extrusion tube 2, but there is a problem in terms of accuracy. Therefore, as shown in FIG. The zero cross point of the beat wave is detected by a comparator or differentiator, the number is counted by the zero cross counter 29, and the count result is converted by the converter 30 to accurately measure the length of the extruded tube 2. be able to.

【0025】例えば、押出管2の押出速度vが3m/s
ecのとき、ドップラシフト分の周波数fdは245H
zで、この周波数帯域でのゼロクロス点検出は極めて容
易である。管長20mでの測定精度は±8mm前後とな
り、極めて精度は高い。また、周波数fdのビート波信
号は、押出管2が搬送ローラ21上にない時は0となる
から、このビート波信号が連続して存在する期間だけ、
ゼロクロスカウンタ29によるカウントを行なえば、押
出管2の長さを測定できる。
For example, the extrusion speed v of the extrusion tube 2 is 3 m / s.
When ec, the frequency fd for the Doppler shift is 245H
With z, the zero-cross point detection in this frequency band is extremely easy. The measurement accuracy at a pipe length of 20 m is around ± 8 mm, which is extremely high. Further, the beat wave signal of the frequency fd becomes 0 when the extruding tube 2 is not on the transport roller 21, so that the beat wave signal exists only during the continuous period.
By counting with the zero-cross counter 29, the length of the extruded tube 2 can be measured.

【0026】このように、本実施例の押出管測長方法に
よれば、押出プレス機から押し出されている状態の押出
管2に対してマイクロ波を照射され、その反射マイクロ
波が押出管2の押出速度vに伴うドップラ効果により変
化する周波数に基づいて、現行の生産設備,操業に改造
を加えることなく、また、押出管2の大小(外径,長さ)
や蛇行に影響されることなく、押出管2の長さを正確に
測定できる。
As described above, according to the extrusion pipe length measuring method of this embodiment, the extrusion pipe 2 in the state of being extruded from the extrusion press is irradiated with microwaves, and the reflected microwaves are reflected by the extrusion pipe 2. Based on the frequency that changes due to the Doppler effect associated with the extrusion speed v of the extruding pipe 2, the size (outer diameter, length) of the extruding pipe 2 can be changed without modifying the existing production equipment and operation.
The length of the extruded tube 2 can be accurately measured without being affected by meandering or meandering.

【0027】これにより、操業中に寸法どりができ、後
工程の切断に直結できるとともに、押出速度vから肉厚
変動を予測することもできるほか、極めて簡素な機構で
押出管2からの輻射に十分に耐えることができる。
As a result, the dimension can be adjusted during the operation, the cutting can be directly connected to the post-process, the wall thickness variation can be predicted from the extrusion speed v, and the radiation from the extrusion pipe 2 can be estimated by an extremely simple mechanism. Can withstand enough.

【0028】また、ドップラシフト分の周波数fdのビ
ート波のゼロクロス点を計数することにより、極めて精
度よく押出管2の長さを測定できる利点もある。
There is also an advantage that the length of the extruded tube 2 can be measured extremely accurately by counting the zero-cross points of the beat wave having the frequency fd for the Doppler shift.

【0029】[0029]

【発明の効果】以上詳述したように、本発明の押出管測
長方法によれば、押出プレス機から押し出されている状
態の押出管に対してマイクロ波を照射し、その反射マイ
クロ波が押出管の押出速度に伴うドップラ効果により変
化する周波数に基づいて、現行の生産工程を乱すことな
く、また、押出管の外径,長さ,蛇行に影響されること
なく、押出管の長さを正確に測定でき、簡素な機構で管
材からの輻射にも耐えうる効果がある。
As described above in detail, according to the extrusion pipe length measuring method of the present invention, the extrusion pipe extruded from the extrusion press is irradiated with microwaves, and the reflected microwaves Based on the frequency that changes due to the Doppler effect with the extrusion speed of the extrusion tube, the length of the extrusion tube does not disturb the current production process and is not affected by the outer diameter, length and meandering of the extrusion tube. Can be accurately measured, and with a simple mechanism, it has the effect of withstanding radiation from pipe materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例としての押出管測長方法を適
用された装置を示す構成図である。
FIG. 1 is a configuration diagram showing an apparatus to which an extruded pipe length measuring method according to an embodiment of the present invention is applied.

【図2】本実施例におけるドップラ周波数の一例を示す
波形図である。
FIG. 2 is a waveform diagram showing an example of a Doppler frequency in this embodiment.

【図3】一般的な押出プレス機の断面図である。FIG. 3 is a cross-sectional view of a general extrusion press.

【図4】従来の押出管測長手段の一例を模式的に示す平
面図である。
FIG. 4 is a plan view schematically showing an example of a conventional extruded pipe length measuring device.

【図5】(a),(b)はそれぞれレーザ速度計を用いた従
来の押出管測長手段の一例を示す側面図および正面図で
ある。
5 (a) and 5 (b) are respectively a side view and a front view showing an example of a conventional extruded pipe length measuring means using a laser velocimeter.

【符号の説明】[Explanation of symbols]

2 押出管(シームレスパイプ) 21 搬送ロール 22 マイクロ波発振器 22a 安定化直流電源 22b ガンダイオード 23 ホーンアンテナ 24 サーキュレータ 25 導波管 26 ミキサ(混合器) 27 増幅器 28 周波数/電圧変換器(F/Vコンバータ) 29 ゼロクロスカウンタ(ZCC) 30 変換器 2 Extruded pipe (seamless pipe) 21 Conveyor roll 22 Microwave oscillator 22a Stabilized DC power supply 22b Gunn diode 23 Horn antenna 24 Circulator 25 Waveguide 26 Mixer (mixer) 27 Amplifier 28 Frequency / voltage converter (F / V converter) ) 29 Zero Cross Counter (ZCC) 30 Converter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 押出プレス機から押し出された直後の熱
間状態の押出管の外周部から、該押出管の外周面に向け
てマイクロ波を所定角度で照射し、 前記押出管の外周面から反射されてきたマイクロ波を受
信し、 反射されてきたマイクロ波が前記押出管の押出速度に伴
うドップラ効果によって周波数変化したものを、照射し
たマイクロ波と混合して得たドップラ周波数に基づい
て、前記押出管の長さを測定することを特徴とする押出
管測長方法。
1. A microwave is radiated at a predetermined angle from the outer peripheral portion of the extruded tube in a hot state immediately after being extruded from the extrusion press machine to the outer peripheral surface of the extruded tube, and the outer peripheral surface of the extruded tube is irradiated. The reflected microwave is received, and the reflected microwave has a frequency changed by the Doppler effect accompanying the extrusion speed of the extrusion tube, based on the Doppler frequency obtained by mixing with the irradiated microwave, An extruded pipe length measuring method, characterized in that the length of the extruded pipe is measured.
JP30219392A 1992-11-12 1992-11-12 Length measuring method for extruded pipe Withdrawn JPH06147870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30219392A JPH06147870A (en) 1992-11-12 1992-11-12 Length measuring method for extruded pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30219392A JPH06147870A (en) 1992-11-12 1992-11-12 Length measuring method for extruded pipe

Publications (1)

Publication Number Publication Date
JPH06147870A true JPH06147870A (en) 1994-05-27

Family

ID=17906061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30219392A Withdrawn JPH06147870A (en) 1992-11-12 1992-11-12 Length measuring method for extruded pipe

Country Status (1)

Country Link
JP (1) JPH06147870A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141231A (en) * 2010-01-08 2011-07-21 Tec 8:Kk Device and method of measuring distance between torch and workpiece, device and method of detecting overloard of grinding device, device and method of controlling gripping of working machine
JP2013107106A (en) * 2011-11-21 2013-06-06 Nippon Steel & Sumitomo Metal Corp Method of manufacturing seamless tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141231A (en) * 2010-01-08 2011-07-21 Tec 8:Kk Device and method of measuring distance between torch and workpiece, device and method of detecting overloard of grinding device, device and method of controlling gripping of working machine
JP2013107106A (en) * 2011-11-21 2013-06-06 Nippon Steel & Sumitomo Metal Corp Method of manufacturing seamless tube

Similar Documents

Publication Publication Date Title
US4152380A (en) Method of and apparatus for measuring and controlling the wall thickness of plastic pipes
US6005397A (en) Microwave thickness measurement and apparatus
US3802774A (en) Method and apparatus for determining the thickness or width of work pieces
US4015127A (en) Monitoring film parameters using polarimetry of optical radiation
US7080556B2 (en) Ultrasonic apparatus and methods for the monitoring of melting, mixing and chemical reaction processes
US3490037A (en) Microwave measurement of material thickness
CN112004652A (en) Method and device for measuring tubular strip sections
JP6258993B2 (en) Measurement of industrial products produced by extrusion technology
JPH06147870A (en) Length measuring method for extruded pipe
US3509751A (en) Method and apparatus for detecting local irregularities on strips and controlling the evenness of strips
CN206122921U (en) Thin type material thickness detection device
JP2022552045A (en) Method and apparatus for measuring tubular strands
JP3106845B2 (en) Apparatus and method for measuring film thickness and method for producing film
JPH1019546A (en) Method for measuring length of moving material to be measured
CN116261510A (en) Method for determining at least one geometric parameter of a strand-like or plate-like object
JPS5810604A (en) Plate thickness measuring apparatus
US4290182A (en) Methods and apparatus for measuring the temperature of a continuously moving strand of material
JPH0550113A (en) Detecting device for cutting position of crop length
CA2074109A1 (en) Microwave steel belt location sensor for tires
CN212723728U (en) Non-contact distance measuring system of continuous casting slab number spraying machine
US3962580A (en) Infrared process for measuring the kneading mass in a calender roller gap
JPH05164548A (en) Method of measuring degree of steepness
JPH05322549A (en) Method for controlling paint film thickness on metal band
JPS6247505A (en) Device for measuring thickness of rolled metallic sheet and metallic band material and method for reference-adjusting said device
JPS62244560A (en) Drawing speed measuring method for casting slab

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201