JPH06147610A - Control for air conditioner - Google Patents

Control for air conditioner

Info

Publication number
JPH06147610A
JPH06147610A JP4328885A JP32888592A JPH06147610A JP H06147610 A JPH06147610 A JP H06147610A JP 4328885 A JP4328885 A JP 4328885A JP 32888592 A JP32888592 A JP 32888592A JP H06147610 A JPH06147610 A JP H06147610A
Authority
JP
Japan
Prior art keywords
temperature
room temperature
air conditioner
membership function
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4328885A
Other languages
Japanese (ja)
Inventor
Tamotsu Nakajima
保 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP4328885A priority Critical patent/JPH06147610A/en
Publication of JPH06147610A publication Critical patent/JPH06147610A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To obtain comfortable room conditions by a method wherein in a fuzzy control for an air conditioner, the control is changed over to a membership function suitable for room conditions (size and structure of a living space) and seasons (four seasons). CONSTITUTION:In the title control for air conditioner, a temperature difference between a room temperature and a set temperature is designated as input 1 and a change in the course of time of the room temperature is as input 2, and based on these inputs 1 and 2, a fuzzy operation is made using preset control rules and membership functions to obtain an increasing or decreasing value of a rotations code of a compressor, so that a compressor is driven according to a rotation number code added with the increasing or decreasing value. The control includes a controller 6 comprising a membership function part 4 which has a conclusion part membership function to vary variables, and a neutral network which drives an air conditioner at prescribed rotations for a prescribed time period, and after a start of operation, inputs a change amount (DELTAt) of the room temperature within the prescribed time period, a difference of temperature (t) between the room temperature at the time of start and a set value, and an outdoor temperature (T) and corrects variables of outputs (increasing and decreasing values of the compressor rotations code).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はインバータ式の空気調
和機において能力可変型圧縮機をファジィ制御し、室内
コントロールを行う空気調和機の制御方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling an air conditioner in an inverter type air conditioner, in which a variable capacity compressor is fuzzy controlled to perform indoor control.

【0002】[0002]

【従来の技術】近年、この種の空気調和機の制御方法に
あっては、図3に示すように、室内温度(室温)のコン
トロールをファジィ制御するため、例えば下記表1に示
す制御ルールおよび図4乃至図6に示すメンバシップ関
数を有するメンバシップ関数部1を有し、その制御ルー
ルおよびメンバシップ関数を用いたファジィ演算結果に
応じて圧縮機2の回転数を制御する制御装置3を備え、
室温と設定温度との温度差(t)を入力1とし、室温の
時間的変化量(Δt)を入力2とし、予め設定されたメ
ンバシップ関数を参照して、入力1,入力2が制御ルー
ルを満足する度合を計算する(ファジィ演算を行う)。
2. Description of the Related Art In recent years, in this type of air conditioner control method, as shown in FIG. 3, in order to perform fuzzy control of the room temperature (room temperature), for example, the control rules shown in Table 1 below and A control device 3 having a membership function unit 1 having the membership function shown in FIGS. 4 to 6, and controlling the rotation speed of the compressor 2 in accordance with the control rule and the fuzzy calculation result using the membership function. Prepare,
Input 1 is the temperature difference (t) between the room temperature and the set temperature, and input 2 is the temporal change amount (Δt) of the room temperature. Input 1 and input 2 are control rules with reference to a preset membership function. Calculate the degree to satisfy (perform fuzzy operation).

【0003】[0003]

【表1】 [Table 1]

【0004】なお、上記表1および図4乃至図6におい
て、NLは負の方に大きく、NMは負の方に中程度、N
Sは負の方に小さく、ZRはゼロ(変化なし)、PSは
正方に小さく、PMは正の方に中程度、PLは正の方に
大きく変化するものである。
In Table 1 and FIGS. 4 to 6, NL is large in the negative direction, NM is medium in the negative direction, and N is N.
S is small in the negative direction, ZR is zero (no change), PS is small in the square direction, PM is medium in the positive direction, and PL is large in the positive direction.

【0005】そして、上記ファジィ制御則(表1および
図4乃至図6)は、標準的な室内環境をモデルとし、例
えば室温の安定性、外乱(ドアや窓の開閉)等による室
内の急激な変化に対する応答性の両方に対して中間的な
特性を示すように決定されている。
The above fuzzy control rules (Table 1 and FIGS. 4 to 6) are modeled on a standard indoor environment, and are abrupt in the room due to room temperature stability, disturbance (opening and closing of doors and windows), etc. It has been determined to exhibit intermediate properties for both responsiveness to changes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記空
気調和機の制御方法において、ファジィ制御則が標準的
な室内環境をモデルとして決定されており、当該空気調
和機の利用者の種々居住空間(部屋の広さ、構造等)お
よび季節(四季)によっては最適な室温コントロールが
行われないことがある。
However, in the above-mentioned air conditioner control method, the fuzzy control law is determined by using a standard indoor environment as a model, and various living spaces (rooms) of users of the air conditioner are determined. Depending on the area, structure, etc.) and season (four seasons), optimal room temperature control may not be performed.

【0007】この発明は上記課題に鑑みなされたもので
あり、その目的は種々室内空間や季節によらず、最適な
室温コントロールを行うことができるようにした空気調
和機の制御方法を提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide an air conditioner control method capable of performing optimum room temperature control regardless of various indoor spaces and seasons. It is in.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、検出室内温度と設定温度との温度差を
入力1とし、室温の時間的変化量を入力2とし、これら
入力1および入力2に基づいて予め設定されている制御
ルールおよびメンバシップ関数を用いてファジィ演算
し、このファジィ演算結果によって圧縮機回転数コード
の増減値を得、この得られた増減値に基づいて圧縮機を
制御する空気調和機の制御方法において、空気調和機を
所定時間、所定の回転数で運転し、その運転開始時の室
温と設定温度との温度差(t)、外気温度(T)および
同運転開始後所定時間内の室温の変化量(Δt)を入力
し、前記圧縮機回転数コードの増減値のメンバシップ関
数の変数を出力するニューラルネットワークを有してお
り、上記温度差(t)、外気温度(T)および所定時間
の室温の変化(Δt)に応じて上記圧縮機回転数コード
のメンバシップ関数を切り替えるようにしたことを要旨
とする。
In order to achieve the above-mentioned object, the present invention sets the temperature difference between the detection chamber temperature and the set temperature as input 1, and sets the time change amount of the room temperature as input 2, and makes these inputs 1 And a fuzzy operation using a preset control rule and membership function based on the input 2 to obtain an increase / decrease value of the compressor rotation speed code based on the fuzzy operation result, and perform compression based on the obtained increase / decrease value. In an air conditioner control method for controlling an air conditioner, the air conditioner is operated for a predetermined time at a predetermined rotation speed, and a temperature difference (t) between a room temperature and a set temperature at the start of operation, an outside air temperature (T), and The neural network has a neural network which inputs the variation (Δt) of the room temperature within a predetermined time after the start of the operation and outputs the variable of the membership function of the increase / decrease value of the compressor rotation speed code. , And summarized in that you switch the membership function of the rotational speed code the compressor in accordance with the outside air temperature (T) and a predetermined time at room temperature variation (Delta] t).

【0009】[0009]

【作用】上記方法としたので、当該空気調和機は上記ニ
ューラルネットワークによって使用室内環境や季節に適
応した結論部メンバシップ関数(圧縮機回転数コードの
増減値)の変数が変えられ、つまりニューラルネットワ
ークによって学習され、室内環境や季節に応じて結論部
メンバシップ関数が自動的に切り替えられる。
With the above method, the air conditioner can change the variables of the conclusion function membership function (increase / decrease value of the compressor speed code) adapted to the indoor environment and the season by the neural network, that is, the neural network. The membership function is automatically switched according to the indoor environment and season.

【0010】この切り替えられたメンバシップ関数を含
むメンバシップ関数および制御ルールによりファジィ演
算が実行されて圧縮機回転数コードの増減値が算出さ
れ、この算出されたコードの増減値に基づいて圧縮機の
回転が制御される。
A fuzzy operation is executed by the membership function including the switched membership function and the control rule to calculate the increase / decrease value of the compressor rotation speed code, and the compressor is based on the calculated increase / decrease value of the code. Rotation is controlled.

【0011】したがって、当該空気調和機の運転が室内
環境や季節に適切なものとなり、室内環境を良好とする
ことができ、また無駄な運転もなくなり、省エネルギー
運転ともなる。
Therefore, the operation of the air conditioner becomes appropriate for the indoor environment and the season, the indoor environment can be improved, and wasteful operation is eliminated, resulting in energy saving operation.

【0012】[0012]

【実施例】運転開始時を例にして説明すると、この発明
の空気調和機の制御方法は、入力1(室温と設定温度と
の温度差;t)および入力2(室温の時間的変化量;Δ
t)に基づいてファジィ演算して出力の圧縮機回転数コ
ード増減値を得、この得た増減値を加味した回転数コー
ドに基づいて圧縮機を制御するが、運転開始から所定時
間所定の回転数で運転し、この間の室温の変化量(Δ
t)、運転開始時の室温と設定温度との温度差(t)お
よび外気温度(T)を入力としたニューラルネットワー
クにより室内環境や季節に適応した結論部メンバシップ
関数を得、この得られたメンバシップ関数を用いてファ
ジィ演算を実行する。
EXAMPLE When the operation is started as an example, the control method of the air conditioner according to the present invention has an input 1 (a temperature difference between a room temperature and a set temperature; t) and an input 2 (a temporal change amount of the room temperature; Δ
Based on t), fuzzy calculation is performed to obtain the output compressor rotational speed code increase / decrease value, and the compressor is controlled based on the rotational speed code in consideration of the obtained increase / decrease value. The number of changes in room temperature during this period (Δ
t), the temperature difference (t) between the room temperature at the start of operation and the set temperature and the outside air temperature (T) were input to obtain a conclusion part membership function adapted to the indoor environment and season, and this was obtained. Perform fuzzy operations using membership functions.

【0013】そのため、図1に示すように、この発明の
制御方法が適用される空気調和機は、上記表1に示す制
御ルールおよび図4乃至図6に示すメンバシップ関数の
他に、図2に示す変数可変可能なメンバシップ関数を有
するメンバシップ関数部4と、当該空気調和機の運転開
始後所定時間内の室温の変化量(Δt)、運転開始時の
室温と設定温度との温度差(t)および外気温度(T)
を入力し、出力(圧縮機回転数コードの増減値)のメン
バシップ関数の変数を補正するニューラルネットワーク
5とを有する制御装置6を備えている。なお、図中、図
3と同一部分には同一符号を付し重複説明を省略する。
また、図2において、NLは負の方に大きく、NMは負
の方に中程度、NSは負の方に小さく、ZRはゼロ(変
化なし)、PSは正方に小さく、PMは正の方に中程
度、PLは正の方に大きく変化するものである。
Therefore, as shown in FIG. 1, in the air conditioner to which the control method of the present invention is applied, in addition to the control rules shown in Table 1 and the membership functions shown in FIGS. Membership function unit 4 having a variable membership function that is variable, the amount of room temperature change (Δt) within a predetermined time after the start of operation of the air conditioner, and the temperature difference between the room temperature and the set temperature at the start of operation. (T) and outside temperature (T)
And a neural network 5 that corrects the variable of the membership function of the output (increase / decrease value of the compressor rotation speed code). In the figure, the same parts as those in FIG. 3 are designated by the same reference numerals, and duplicate description will be omitted.
In FIG. 2, NL is larger in the negative side, NM is medium in the negative side, NS is smaller in the negative side, ZR is zero (no change), PS is smaller in the square direction, and PM is in the positive side. Very moderate, and PL greatly changes to the positive side.

【0014】上記制御装置6は、室内温度(室温)と設
定温度との温度差を入力1とし、室温の時間的変化量を
入力2としてファジィ演算し、このファジィ演算によっ
て圧縮機回転数コードの増減値を得、かつ運転開始から
所定時間経過後にあってはニューラルネットワーク5で
得た補正値により結論部メンバシップ関数を自動的に切
り替え、この切り替えたメンバシップ関数およびメンバ
シップ関数(図4および図5)を用いてファジィ演算し
て圧縮機回転数コードの増減値を得、このようにして得
た圧縮機回転数コードの増減値に基づいて圧縮機2を回
転制御する。
The control device 6 receives the temperature difference between the room temperature (room temperature) and the set temperature as an input 1, and inputs the time change amount of the room temperature as an input 2 to perform a fuzzy operation, and the fuzzy operation causes the compressor rotation speed code to be calculated. After the increase / decrease value is obtained and after a lapse of a predetermined time from the start of operation, the conclusion part membership function is automatically switched according to the correction value obtained by the neural network 5, and the switched membership function and membership function (FIG. 4 and FIG. 5) is used to perform a fuzzy operation to obtain an increase / decrease value of the compressor rotation speed code, and the rotation of the compressor 2 is controlled based on the increase / decrease value of the compressor rotation speed code thus obtained.

【0015】上記圧縮機回転数コードの増減値を得るた
めのメンバシップ関数は図2に示すパターンであり、こ
のパターンの負方向の変数x1および正方向の変数x2
は外気温度(T)によって下記表2、表3および表4の
テーブルデータを参照して決定される。なお、下記表2
乃至表4に示す変数x1,x2の値は16進数である。
The membership function for obtaining the increase / decrease value of the compressor rotational speed code has the pattern shown in FIG. 2, and the variable x1 in the negative direction and the variable x2 in the positive direction of this pattern.
Is determined by the outside air temperature (T) with reference to the table data in Tables 2, 3 and 4 below. In addition, Table 2 below
The values of the variables x1 and x2 shown in Table 4 are hexadecimal numbers.

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】[0018]

【表4】 次に、上記構成の空気調和機に適用される制御方法を詳
細に説明すると、まず当該空気調和機の運転開始から所
定時間(例えば1分)の間、上記制御装置6において図
4乃至図6のメンバシップ関数および表1の制御ルール
にしたがってファジィ演算が実行され、この演算結果に
よって得た圧縮機回転数コードの増減値を加味した回転
数コード(例えば7コード)にしたがって圧縮機2が所
定の回転数で運転される。
[Table 4] Next, the control method applied to the air conditioner having the above configuration will be described in detail. First, for a predetermined time (for example, 1 minute) from the start of operation of the air conditioner, the control device 6 shown in FIGS. Fuzzy operation is executed in accordance with the membership function of Table 1 and the control rule of Table 1, and the compressor 2 is predetermined according to the rotation speed code (for example, 7 codes) in which the increase / decrease value of the compressor rotation speed code obtained by this calculation result is added. It is operated at the number of revolutions.

【0019】また、当該運転開始時には室温と設定温度
との温度差(t)が算出され、かつ外気温度(T)が所
定温度センサ用いて検出され、一方運転開始後所定時間
内の室温の変化量(Δt)が算出されるとともに、これ
ら算出された室温の変化(Δt)および温度差(t)と
その検出された外気温度(T)がニューラルネットワー
ク5に入力される。
Further, at the start of the operation, the temperature difference (t) between the room temperature and the set temperature is calculated, and the outside air temperature (T) is detected by using a predetermined temperature sensor, while the change of the room temperature within a predetermined time after the start of the operation. The amount (Δt) is calculated, and the calculated change (Δt) in room temperature and temperature difference (t) and the detected outside air temperature (T) are input to the neural network 5.

【0020】すると、上記所定時間経過後、上記ニュー
ラルネットワーク5においては上記算出室温の変化量
(Δt)および温度差(t)と検出外気温度(T)とに
より当該室内環境や季節に適応した出力(圧縮機回転数
コードの増減値)のメンバシップ関数が得られる。例え
ば、外気温度(T)が20℃を越えているときには表2
が選択され、その外気温度(T)が10℃を越え、かつ
20℃以下であるときには表3が選択され、その外気温
度(T)が10℃以下であるときには表4が選択され
る。
Then, after the elapse of the predetermined time, the neural network 5 outputs an output adapted to the indoor environment and season according to the calculated room temperature change (Δt) and temperature difference (t) and the detected outside air temperature (T). A membership function of (compressor rotation speed code increase / decrease value) is obtained. For example, when the outside air temperature (T) exceeds 20 ° C, Table 2
Is selected, and when the outside air temperature (T) exceeds 10 ° C. and is 20 ° C. or less, Table 3 is selected, and when the outside air temperature (T) is 10 ° C. or less, Table 4 is selected.

【0021】この選択された表が参照され、上記算出室
温の変化量(Δt)および温度差(t)に基づいて出力
メンバシップ関数(図2)の負方向変数x1および正方
向変数x2が得られ、これら得られた変数x1,x2に
よるメンバシップ関数が出力の圧縮機回転数コードの増
減値のメンバシップ関数とされる。
With reference to this selected table, the negative direction variable x1 and the positive direction variable x2 of the output membership function (FIG. 2) are obtained based on the calculated room temperature change (Δt) and temperature difference (t). The membership function based on the obtained variables x1 and x2 is used as the membership function of the increase / decrease value of the output compressor rotation speed code.

【0022】上記表2乃至表4から明かなように、上記
検出外気温度(T)が低く、室温の変化量(Δt)が負
に大きく、温度差(t)が正に大きくなるほど、圧縮機
回転数コードの増減値のメンバシップ関数は負および正
方向に大きくなっている。また、上記検出外気温度
(T)が高く、室温の変化量(Δt)が正に大きく、温
度差(t)が負に大きくなるほど、圧縮機回転数コード
の増減値のメンバシップ関数は負および正方向に小さく
なっている。
As is clear from Tables 2 to 4, as the detected outside air temperature (T) is low, the change amount (Δt) of room temperature is negatively large, and the temperature difference (t) is positively large, the compressor is increased. The membership function of the increase / decrease value of the rotation speed code increases in the negative and positive directions. Further, as the detected outside air temperature (T) is higher, the amount of change in room temperature (Δt) is positively larger, and the temperature difference (t) is larger negatively, the membership function of the increase / decrease value of the compressor rotation speed code becomes negative and It is getting smaller in the positive direction.

【0023】例えば、暖房運転時に、外気温度(T)が
10℃以下と低く、室温の変化量(Δt)が−1℃以下
と負に大きく、温度差(t)が3℃を越えている場合、
表4が参照され、図2に示すメンバシップ関数のx1が
−Dとされ、そのx2が+Dとされる。このように、上
記表2乃至4のテーブルデータは室内環境(居住空間の
広さ、構造)や季節を加味して作成されたものである。
For example, during heating operation, the outside air temperature (T) is as low as 10 ° C. or lower, the amount of change in room temperature (Δt) is −1 ° C. or less, which is negatively large, and the temperature difference (t) exceeds 3 ° C. If
With reference to Table 4, x1 of the membership function shown in FIG. 2 is set to -D, and its x2 is set to + D. As described above, the table data in Tables 2 to 4 are created in consideration of the indoor environment (size of living space, structure) and season.

【0024】そして、上記制御装置6においては、図4
および図5に示すメンバシップ関数と、図6に示すメン
バシップ関数に代えて上記ニューラルネットワーク5で
得られている結論部メンバシップ関数(圧縮機回転数コ
ードの増減値)とを用いてファジィ演算が実行される。
このファジィ演算結果による圧縮機回転数コードの増減
値に基づいて圧縮機2が回転制御されることから、当該
空気調和機の運転は室内環境や季節に適応したものとな
り、最適な室温コントロールが行われ、また無駄な運転
が行われることもなく、つまり省エネルギー運転ともな
る。
Then, in the control device 6, as shown in FIG.
And a membership function shown in FIG. 5 and a conclusion part membership function (compressor rotation speed code increase / decrease value) obtained by the neural network 5 instead of the membership function shown in FIG. Is executed.
Since the compressor 2 is rotationally controlled based on the increase / decrease value of the compressor rotation speed code based on the result of this fuzzy calculation, the operation of the air conditioner is adapted to the indoor environment and season, and optimal room temperature control is performed. In addition, no useless driving is performed, that is, energy-saving driving.

【0025】なお、上記実施例では表2乃至4に示すテ
ーブルデータによって結論部メンバシップ関数(圧縮機
回転数コードの増減値)を切り替えるようにしている
が、より多くのテーブルデータを用意してもよく、この
場合当該空気調和機の運転を室内環境や四季により適し
たものとすることができ、室温コントロールをよりきめ
細かく制御することができ、ひいては快適性の向上をよ
り図ることができる。なお、この実施例は運転開始時に
ついてのものであるが、この発明はこれに限定されるも
のではなく、運転開始後の任意の時点で行なっても良い
ことはもちろんである。
In the above embodiment, the conclusion part membership function (increase / decrease value of the compressor rotation speed code) is switched according to the table data shown in Tables 2 to 4, but more table data is prepared. In this case, the operation of the air conditioner can be made more suitable for the indoor environment and the four seasons, the room temperature control can be more finely controlled, and the comfort can be further improved. It should be noted that although this embodiment is for the start of operation, the present invention is not limited to this, and it goes without saying that it may be performed at any time after the start of operation.

【0026】[0026]

【発明の効果】以上説明したように、この発明の空気調
和機の制御方法によれば、入力1(室温と設定温度との
温度差)および入力2(室温の時間的変化量)に基づい
てファジィ演算して出力の圧縮機回転数コード増減値を
得、この得た増減値を加味した回転数コードに基づいて
圧縮機を制御するが、所定時間所定の回転数で運転し、
この間の室温の変化量(Δt)、この運転開始時の室温
と設定温度との温度差(t)および外気温度(T)を入
力としたニューラルネットワークで結論部メンバシップ
関数を得、このメンバシップ関数を用いてファジィ演算
を実行するようにしたので、室内環境(部屋の大きく、
構造)や季節(四季)に適応した圧縮機回転数コードの
増減値を得て圧縮機の回転数を制御することができ、こ
れにより室内環境を良好なものとすることができ、かつ
無駄な運転が行われなくなることから、省エネルギー運
転ともなる。
As described above, according to the control method of the air conditioner of the present invention, based on the input 1 (the temperature difference between the room temperature and the set temperature) and the input 2 (the temporal change amount of the room temperature). A fuzzy operation is performed to obtain the compressor rotation speed code increase / decrease value of the output, and the compressor is controlled based on the rotation speed code in consideration of the obtained increase / decrease value, but the operation is performed at a predetermined rotation speed for a predetermined time,
The conclusion function membership function is obtained by a neural network using the change amount (Δt) of the room temperature during this period, the temperature difference (t) between the room temperature and the set temperature at the start of operation, and the outside air temperature (T) as input. Since the fuzzy operation is executed using the function, the indoor environment (large room,
(Structure) and season (four seasons), the compressor rotation speed code can be increased or decreased to control the rotation speed of the compressor. Since it will not be operated, it will be an energy-saving operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示し、空気調和機の制御
方法が適用される空気調和機の概略的部分ブロック線図
である。
FIG. 1 is a schematic partial block diagram of an air conditioner to which an air conditioner control method according to an embodiment of the present invention is applied.

【図2】図1に示す空気調和機の制御方法に用いられる
メンバシップ関数の概略的模式図である。
FIG. 2 is a schematic diagram of a membership function used in the control method of the air conditioner shown in FIG.

【図3】従来の空気調和機の制御方法が適用される空気
調和機の概略的部分ブロック線図である。
FIG. 3 is a schematic partial block diagram of an air conditioner to which a conventional air conditioner control method is applied.

【図4】従来の空気調和機の制御方法に用いられるメン
バシップ関数の概略的模式図である。
FIG. 4 is a schematic diagram of a membership function used in a conventional air conditioner control method.

【図5】従来の空気調和機の制御方法に用いられるメン
バシップ関数の概略的模式図である。
FIG. 5 is a schematic diagram of a membership function used in a conventional air conditioner control method.

【図6】従来の空気調和機の制御方法に用いられるメン
バシップ関数の概略的模式図である。
FIG. 6 is a schematic diagram of a membership function used in a conventional air conditioner control method.

【符号の説明】[Explanation of symbols]

2 圧縮機4 メンバシップ関数部5 ニューラルネッ
トワーク6 制御装置
2 compressor 4 membership function unit 5 neural network 6 controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 検出室内温度と設定温度との温度差を入
力1とし、室温の時間的変化量を入力2とし、これら入
力1および入力2に基づいて予め設定されている制御ル
ールおよびメンバシップ関数を用いてファジィ演算し、
該ファジィ演算結果によって圧縮機回転数コードの増減
値を得、該得られた増減値に基づいて圧縮機を制御する
空気調和機の制御方法において、空気調和機を所定時
間、所定の回転数で運転し、この運転を開始した時の室
温と設定温度との差(t)、外気温度(T)および同運
転開始後所定時間内の室温の変化量(Δt)を入力し、
前記圧縮機回転数コードの増減値のメンバシップ関数の
変数を出力するニューラルネットワークを有しており、
前記温度差(t)、外気温度(T)および所定時間の室
温の変化量(Δt)に応じて前記圧縮機回転数コードの
メンバシップ関数を切り替えるようにしたことを特徴と
する空気調和機の制御方法。
1. A temperature difference between a detection room temperature and a set temperature is set as an input 1, a temporal change amount of a room temperature is set as an input 2, and a control rule and membership preset based on the input 1 and the input 2 are set. Fuzzy operation using a function,
An increase / decrease value of a compressor rotation speed code is obtained from the fuzzy operation result, and in the air conditioner control method of controlling the compressor based on the obtained increase / decrease value, the air conditioner is operated at a predetermined rotation speed for a predetermined time. Input the difference (t) between the room temperature at the time of starting this operation and the set temperature, the outside air temperature (T) and the change amount (Δt) of the room temperature within a predetermined time after the start of the operation,
It has a neural network that outputs the variable of the membership function of the increase / decrease value of the compressor rotation speed code,
In the air conditioner, the membership function of the compressor rotation speed code is switched according to the temperature difference (t), the outside air temperature (T), and the change amount (Δt) of the room temperature for a predetermined time. Control method.
【請求項2】 前記圧縮機回転数コードの増減値のメン
バシップ関数の変数は、前記外気温度(T)が低く、室
温の変化量(Δt)が負に大きく、温度差(t)が正に
大きくなるほど、負および正方向に大きく、上記外気温
度(T)が高く、室温の変化量(Δt)が正に大きく、
温度差(t)が負に大きくなるほど、負および正方向に
小さくした請求項1記載の空気調和機の制御方法。
2. The variables of the membership function of the increase / decrease value of the compressor rotation speed code are such that the outside air temperature (T) is low, the amount of change in room temperature (Δt) is large, and the temperature difference (t) is positive. , The outside air temperature (T) is high, and the change in room temperature (Δt) is positively large.
The control method for an air conditioner according to claim 1, wherein the temperature difference (t) is decreased in the negative and positive directions as the temperature difference (t) increases in the negative direction.
JP4328885A 1992-11-13 1992-11-13 Control for air conditioner Withdrawn JPH06147610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328885A JPH06147610A (en) 1992-11-13 1992-11-13 Control for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328885A JPH06147610A (en) 1992-11-13 1992-11-13 Control for air conditioner

Publications (1)

Publication Number Publication Date
JPH06147610A true JPH06147610A (en) 1994-05-27

Family

ID=18215184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328885A Withdrawn JPH06147610A (en) 1992-11-13 1992-11-13 Control for air conditioner

Country Status (1)

Country Link
JP (1) JPH06147610A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571061A (en) * 2015-12-28 2016-05-11 深圳达实智能股份有限公司 Air conditioner temperature control method and device based on homogeneous control theory
CN114517950A (en) * 2022-03-31 2022-05-20 北京金茂人居环境科技有限公司 Fresh air system control method, device and equipment and computer readable storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105571061A (en) * 2015-12-28 2016-05-11 深圳达实智能股份有限公司 Air conditioner temperature control method and device based on homogeneous control theory
CN114517950A (en) * 2022-03-31 2022-05-20 北京金茂人居环境科技有限公司 Fresh air system control method, device and equipment and computer readable storage medium

Similar Documents

Publication Publication Date Title
JPS62129639A (en) Air conditioner
JPH06185787A (en) Controlling method of air conditioner
JPH06147610A (en) Control for air conditioner
JPH06185786A (en) Controlling method of air conditioner
JP2697282B2 (en) Air conditioner
JP2834947B2 (en) Air conditioner
JPH04155138A (en) Controller of air conditioner
JPH06185796A (en) Controlling method of air conditioner
JPH06229612A (en) Air conditioner
JPH06159773A (en) Controller for air conditioner
JP2720595B2 (en) Air conditioner
JPH0854901A (en) Load discrimination control method and device
JP2500564B2 (en) Air conditioner automatic wind speed control system
JPH04254140A (en) Method for controlling air conditioner
JPH0221313A (en) Temperature controller
JPH02223758A (en) Air conditioner
JPH04236049A (en) Controlling method for air-conditioner
JPH02115643A (en) Controlling method for start of timer of air conditioner
JPH03160263A (en) Controlling method for air conditioner
JPH04363534A (en) Control device for air-conditioner
JPS6338625B2 (en)
JPH0434348Y2 (en)
JPS6273030A (en) Method for controlling dry operation of air conditioner
JPS6025698B2 (en) Humidity control method for air conditioner
JPH02287038A (en) Operation control of air-conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000201