JPH06146982A - Fuel injection controller for in-cylinder direct injection type internal combustion engine - Google Patents

Fuel injection controller for in-cylinder direct injection type internal combustion engine

Info

Publication number
JPH06146982A
JPH06146982A JP29439192A JP29439192A JPH06146982A JP H06146982 A JPH06146982 A JP H06146982A JP 29439192 A JP29439192 A JP 29439192A JP 29439192 A JP29439192 A JP 29439192A JP H06146982 A JPH06146982 A JP H06146982A
Authority
JP
Japan
Prior art keywords
cylinder
temperature
internal combustion
fuel injection
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29439192A
Other languages
Japanese (ja)
Inventor
Suehiro Yamazaki
末広 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29439192A priority Critical patent/JPH06146982A/en
Publication of JPH06146982A publication Critical patent/JPH06146982A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To provide an in-cylinder internal combustion temperature so as to be lower than a specific threshold temperature and enable correction of disper sion among cylinders. CONSTITUTION:Combustion temperature sensors 105a, 105d are provided on swirl chambers 103a, 103d of cylinders 101a, 101d of an internal combustion engine 10, and each measured temperature is input in a controller 13. Amount of fuel injection in relation to each cylinder is determind by correcting dispersion among cylinders in consideration of a reference amount of fuel injeciton, which is determined based on the measured values of a rotation speed sensor 123 and an axle opening sensor 141. A coefficient of re-correction is determined according to a deviation from an average value of combustion temperature of each cylinder, and the amount of fuel injeciton is re-corrected so that deviation among cylinders is reduced in a range that does not exceed a fixed maximum temperature. A coefficient of correction is learned based on the re- correcction value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気筒内に直接燃料を噴射
する筒内直接噴射式内燃機関の燃料噴射制御装置に係わ
り、特に気筒内燃焼温度が過度に上昇して内燃機関が損
傷することを防止することの可能な筒内直接噴射式内燃
機関の燃料噴射制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device for a direct injection type internal combustion engine, which injects fuel directly into a cylinder, and more particularly, when the combustion temperature in the cylinder rises excessively and the internal combustion engine is damaged. The present invention relates to a fuel injection control device for a cylinder direct injection internal combustion engine capable of preventing the above.

【0002】[0002]

【従来の技術】ディーゼル機関のように気筒内に直接燃
料を噴射する筒内直接噴射式内燃機関においてはいわゆ
る分配型燃料噴射ポンプが使用されることが一般的であ
るが、最近は電子制御化されて燃料噴射開始時期はタイ
マコントロール弁の開弁割合によって、燃料噴射終了時
期はスピル弁の開弁時期によって制御される。
2. Description of the Related Art A so-called distributed fuel injection pump is generally used in a direct injection type internal combustion engine, such as a diesel engine, which directly injects fuel into a cylinder. The fuel injection start timing is controlled by the opening rate of the timer control valve, and the fuel injection end timing is controlled by the spill valve opening timing.

【0003】即ち内燃機関回転数およびアクセル開度の
関数として燃料噴射開始時期および燃料噴射量が決定さ
れ、燃料噴射の開始後所定燃料噴射量を各気筒に噴射す
るのに要する時間経過後にスピル弁を開弁して燃料噴射
を停止する。しかし分配型燃料噴射ポンプは、スピルリ
ング、プランジャ、スプリング等の多数の部品から構成
されており、これら部品の製作時のバラツキあるいは特
性の経時的変化によって、実際に気筒に供給される燃料
量が変動することがある。
That is, the fuel injection start timing and the fuel injection amount are determined as a function of the internal combustion engine speed and the accelerator opening degree, and after the time required to inject a predetermined fuel injection amount into each cylinder after the start of the fuel injection, the spill valve is started. Is opened to stop fuel injection. However, the distributed fuel injection pump is composed of a large number of parts such as a spill ring, a plunger, and a spring, and the amount of fuel actually supplied to the cylinders varies due to variations in the manufacturing of these parts or changes in characteristics over time. It may fluctuate.

【0004】特に燃料が所定量より多く供給された場合
には、燃焼室内の燃焼温度が過度に上昇して内燃機関が
損傷するおそれがある。この問題点を解決するために、
燃焼室内温度を検出する燃焼温度センサを設置し、燃焼
室温度が所定のしきい値以上にならないようにスピル弁
の開弁時期を補正することが提案されている(特開昭5
8−172436公報参照)。
In particular, when the fuel is supplied in an amount larger than a predetermined amount, the combustion temperature in the combustion chamber excessively rises, which may damage the internal combustion engine. To solve this problem,
It has been proposed to install a combustion temperature sensor for detecting the temperature of the combustion chamber and correct the opening timing of the spill valve so that the temperature of the combustion chamber does not exceed a predetermined threshold value (Japanese Patent Laid-Open No. Sho 5).
8-172436).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実際に
は燃焼室温度を所定のしきい値温度以下に制御した場合
であっても気筒間に供給される燃料量にバラツキが発生
することは避けることはできない。即ち燃料噴射ポンプ
のバネ定数のバラツキ、燃料噴射弁自体の公差あるいは
燃焼室の構造のバラツキに起因する圧縮率の相違等によ
って気筒間の燃焼状態にバラツキが生じ気筒内燃焼温度
には最大100°C程度のバラツキが発生し、損傷する
おそれがある。
However, in reality, even if the combustion chamber temperature is controlled to be equal to or lower than a predetermined threshold temperature, it is necessary to avoid the occurrence of variations in the amount of fuel supplied between the cylinders. I can't. That is, variations in the combustion state between cylinders occur due to variations in the spring constant of the fuel injection pump, differences in the compression ratio due to tolerances in the fuel injection valve itself, variations in the structure of the combustion chamber, etc. There is a possibility that a variation of about C occurs and damage occurs.

【0006】本発明はかかる問題点に鑑みなされたもの
であって、気筒内燃焼温度を所定しきい値温度以下にす
るとともに、気筒間のバラツキを補正することを可能に
した筒内直接噴射式内燃機関の燃料噴射制御装置を提供
することを目的とする。
The present invention has been made in view of the above problems, and it is an in-cylinder direct injection type that makes it possible to make the in-cylinder combustion temperature below a predetermined threshold temperature and to correct the variation between the cylinders. An object of the present invention is to provide a fuel injection control device for an internal combustion engine.

【0007】[0007]

【課題を解決するための手段】本発明にかかる内燃機関
の運転状態に基づいて定められる基準燃料噴射量を内燃
機関の各気筒内に直接噴射する筒内直接噴射式内燃機関
の燃料噴射制御装置にあっては、内燃機関の相隣り合う
2つの気筒に対して少くとも1つでかつ内燃機関の全気
筒に対して少くとも2つが取りつけられる内燃機関の気
筒内温度を計測する温度検出器と、温度検出器で計測さ
れた気筒内温度に基づいて各気筒内温度のバラツキを少
なくするとともに各気筒内温度のいずれもが予め定めら
れたしきい値温度を越えることがないように各気筒毎に
基準燃料噴射量を補正する基準燃料噴射量補正手段と、
を具備する。
A fuel injection control apparatus for a direct injection type internal combustion engine, which directly injects a reference fuel injection amount determined based on an operating state of the internal combustion engine into each cylinder of the internal combustion engine, according to the present invention. In this case, at least one is attached to two adjacent cylinders of the internal combustion engine, and at least two are attached to all the cylinders of the internal combustion engine. , Cylinder internal temperature measured by the temperature detector to reduce the variation of each cylinder internal temperature, and to prevent each cylinder internal temperature from exceeding a predetermined threshold temperature A reference fuel injection amount correction means for correcting the reference fuel injection amount,
It is equipped with.

【0008】[0008]

【作用】各気筒毎に気筒内温度を計測し、各気筒内温度
がバラツキが少なくなりかつ予め設定されたしきい値を
越えることを防止するように各気筒毎に燃料噴射量が補
正される。
The cylinder internal temperature is measured for each cylinder, and the fuel injection amount is corrected for each cylinder so as to prevent the internal temperature of each cylinder from being less varied and exceeding a preset threshold value. .

【0009】[0009]

【実施例】図1は本発明にかかる筒内直接噴射式内燃機
関の燃料噴射制御装置の実施例の構成図であって、ディ
ーゼル内燃機関10は4つの気筒101a〜101d
(図1には2つの気筒101aおよび101dのみを示
す)を有する。ディーゼル機関10はいわゆる渦流式で
あり、気筒101aおよび101dに対応して主燃焼室
102aおよび102bの他に渦流室103aおよび1
03dが設置されている。
1 is a block diagram of an embodiment of a fuel injection control device for a direct injection type internal combustion engine according to the present invention, in which a diesel internal combustion engine 10 has four cylinders 101a to 101d.
(Only two cylinders 101a and 101d are shown in FIG. 1). The diesel engine 10 is a so-called swirl type, and corresponds to the cylinders 101a and 101d, in addition to the main combustion chambers 102a and 102b, swirl chambers 103a and 103a.
03d is installed.

【0010】さらに渦流室103aおよび103dに
は、気筒内に燃料を噴射するための燃料噴射弁104a
および104dと、気筒内の燃焼温度を計測するための
燃焼温度センサ105aおよび105dが取り付けられ
ている。燃料噴射弁104aおよび104dには燃料供
給管11aおよび11bを介して周知の分配型燃料噴射
ポンプ12から燃料が供給される。なお分配型燃料噴射
ポンプ12から供給される燃料量は、タイマー制御弁1
21の開弁割合とスピル制御ソレノイド122の動作時
期によって調整される。
Further, in the swirl chambers 103a and 103d, a fuel injection valve 104a for injecting fuel into the cylinder.
And 104d, and combustion temperature sensors 105a and 105d for measuring the combustion temperature in the cylinder. Fuel is supplied to the fuel injection valves 104a and 104d from a well-known distributed fuel injection pump 12 via fuel supply pipes 11a and 11b. The amount of fuel supplied from the distributed fuel injection pump 12 is determined by the timer control valve 1
It is adjusted by the valve opening ratio of 21 and the operation timing of the spill control solenoid 122.

【0011】上記の構成を有するディーゼル内燃機関
は、例えばマイクロコンピュータで構成される制御装置
13によって制御されるが、制御装置13には燃焼温度
センサ105aおよび105dで計測された燃焼温度が
取り込まれ、タイマー制御弁121およびスピル制御ソ
レノイド122への指令信号が出力される。この他ディ
ーゼル内燃機関の運転状態として、分配型燃料噴射ポン
プ12に組み込まれている回転数センサ123で計測さ
れた回転数およびアクセルセンサ141で検出されるア
クセルペダル141の踏み込み量が入力される。
The diesel internal combustion engine having the above structure is controlled by the control device 13 which is composed of, for example, a microcomputer. The control device 13 takes in the combustion temperatures measured by the combustion temperature sensors 105a and 105d. Command signals are output to the timer control valve 121 and the spill control solenoid 122. In addition, as the operating state of the diesel internal combustion engine, the rotation speed measured by the rotation speed sensor 123 incorporated in the distribution type fuel injection pump 12 and the depression amount of the accelerator pedal 141 detected by the accelerator sensor 141 are input.

【0012】以下の処理は、特に注記しない限り4つの
気筒101a〜dの中の現在制御対象となっている気筒
(制御対象気筒という。)について行われるものとし、
気筒毎に存在する変数については気筒を表示する添字a
〜dを省略する。図2は制御装置13内で実行される、
制御対象気筒に対するタイマー制御弁制御ルーチンのフ
ローチャートであって、所定の回転角度毎に割り込み処
理される。
Unless otherwise noted, the following processing is performed for the cylinder currently controlled by the four cylinders 101a to 101d (referred to as a controlled cylinder).
For variables that exist for each cylinder, the subscript a that indicates the cylinder
Omit d. 2 is executed in the control device 13,
7 is a flowchart of a timer control valve control routine for a control target cylinder, which is interrupted at every predetermined rotation angle.

【0013】ステップ21で回転数Ne およびアクセル
ペダル踏み込み量Accp を読み込む。ステップ22で回
転数Ne およびアクセルペダル踏み込み量Accp の関数
としてタイマー制御弁開弁時期TCVを決定し、ステッ
プ23でタイマー制御弁開弁時期TCVを出力して、タ
イマー制御弁を開弁する。
In step 21, the rotational speed Ne and the accelerator pedal depression amount Accp are read. In step 22, the timer control valve opening timing TCV is determined as a function of the rotation speed Ne and the accelerator pedal depression amount Accp, and in step 23, the timer control valve opening timing TCV is output to open the timer control valve.

【0014】この処理によって、制御対象気筒に対して
所定のカム角度で燃料の供給が開始される。図3は制御
装置13内で実行されるスピル制御ルーチンのフローチ
ャートであって、同じく所定の回転角度毎に割り込み処
理される。ステップ31で回転数Ne およびアクセルペ
ダル踏み込み量Accp を読み込み、ステップ32で回転
数Ne およびアクセルペダル踏み込み量Accp の関数と
して基準スピル制御ソレノイド励磁時期TAUBASEを決定
する。
By this processing, fuel supply to the cylinder to be controlled is started at a predetermined cam angle. FIG. 3 is a flowchart of a spill control routine executed in the control device 13, and similarly, interrupt processing is performed at every predetermined rotation angle. In step 31, the rotation speed Ne and the accelerator pedal depression amount Accp are read, and in step 32, the reference spill control solenoid excitation timing TAUBASE is determined as a function of the rotation speed Ne and the accelerator pedal depression amount Accp.

【0015】ステップ33で基準スピル制御ソレノイド
励磁時期TAUBASEに補正係数Kを乗算して補正スピル制
御ソレノイド励磁時期TAUCMP を求める。ステップ34
および35でディーゼル内燃機関が定常運転状態にある
か否かを判定する。即ちステップ34で冷却水温度Tw
が予め定められたしきい値温度例えば80°C以上であ
るか否か、ステップ35で回転数Ne が略一定であるか
否かを判定する。
In step 33, the reference spill control solenoid excitation timing TAUBASE is multiplied by the correction coefficient K to obtain the corrected spill control solenoid excitation timing TAUCMP. Step 34
And 35, it is determined whether or not the diesel internal combustion engine is in a steady operation state. That is, in step 34, the cooling water temperature Tw
Is above a predetermined threshold temperature, for example 80 ° C. or higher, and in step 35 it is determined whether the rotational speed Ne is substantially constant.

【0016】ステップ34およびステップ35で共に肯
定判定された場合には、ステップ36に進み、補正スピ
ル制御ソレノイド励磁時期を再補正して、ステップ37
に進む。なおステップ34あるいは35のいずれかで否
定判定された場合は直接ステップ37に進む。ステップ
37では補正スピル制御ソレノイド励磁時期TAUCMP を
出力して、スピル制御ソレノイド122を駆動すること
によって燃料をスピルさせて燃料の噴射を停止する。
When both the step 34 and the step 35 are affirmatively determined, the process proceeds to step 36, the correction spill control solenoid excitation timing is corrected again, and the step 37 is performed.
Proceed to. If a negative determination is made in either step 34 or 35, the process directly goes to step 37. In step 37, the corrected spill control solenoid excitation timing TAUCMP is output to drive the spill control solenoid 122 to spill the fuel and stop the fuel injection.

【0017】ステップ38で補正係数Kを学習する必要
があるか否かを判定して、肯定判定された時はステップ
39で補正係数Kの学習を行い、このルーチンを終了す
る。逆にステップ38で否定判定された場合は直接この
ルーチンを終了する。これによって、制御対象気筒に対
応するスピル弁が所定のタイミングで開弁し、制御対象
気筒に対する燃料供給を停止する。
In step 38, it is determined whether or not the correction coefficient K needs to be learned. When the determination is affirmative, the correction coefficient K is learned in step 39, and this routine is ended. On the contrary, if a negative determination is made in step 38, this routine is directly ended. As a result, the spill valve corresponding to the control target cylinder opens at a predetermined timing, and the fuel supply to the control target cylinder is stopped.

【0018】図4は、スピル制御ルーチンのステップ3
6で実行される補正スピル制御ソレノイド励磁時期再補
正処理のフローチャートである。ステップ361で燃焼
温度センサ105a〜dで計測される気筒内燃焼温度θ
a〜θdを読み込む。ステップ362で4つの気筒内燃
焼温度θa〜θdの平均値θavを演算し、ステップ36
3で平均値θavからの偏差Δθ(制御対象気筒の偏差を
表す。)を演算する。
FIG. 4 shows step 3 of the spill control routine.
6 is a flowchart of a correction spill control solenoid excitation timing recorrection process executed in 6. In-cylinder combustion temperature θ measured by the combustion temperature sensors 105a to 105d in step 361
Read a to θd. In step 362, the average value θav of the combustion temperatures θa to θd in the four cylinders is calculated.
At 3, the deviation Δθ from the average value θav (representing the deviation of the cylinder to be controlled) is calculated.

【0019】即ちステップ361〜363までの処理は
4つの気筒の燃焼温度を対象に実行される。ステップ3
64で偏差Δθの関数として補正スピル制御ソレノイド
励磁時期TAUCMP に対する再補正係数αを演算する。図
5は補正係数αを決定するためのグラフであって、横軸
に偏差Δθ、縦軸に補正係数αをとる。
That is, the processes of steps 361 to 363 are executed for the combustion temperatures of the four cylinders. Step 3
At 64, the recorrection coefficient α for the corrected spill control solenoid excitation timing TAUCMP is calculated as a function of the deviation Δθ. FIG. 5 is a graph for determining the correction coefficient α, where the horizontal axis represents the deviation Δθ and the vertical axis represents the correction coefficient α.

【0020】ステップ365で気筒内温度θが予め定め
られた最高温度θmax 以下であるか否かを判定し、否定
判定された場合はステップ366に進み、ステップ36
4で求めた再補正係数αが1.0より大であるか否かを
判定する。ステップ366で肯定判定された場合はステ
ップ367に進み、再補正係数αを1.0以下の数値、
例えば1.0に置き換えてステップ368に進む。また
ステップ365で肯定判定された場合およびステップ3
66で否定判定された場合もステップ368に進む。
In step 365, it is determined whether or not the in-cylinder temperature θ is equal to or lower than a predetermined maximum temperature θmax. If a negative determination is made, the process proceeds to step 366, and step 36
It is determined whether the recorrection coefficient α obtained in 4 is larger than 1.0. If an affirmative decision is made in step 366, the operation proceeds to step 367, in which the recorrection coefficient α is set to a numerical value of 1.0 or less,
For example, the value is replaced with 1.0 and the process proceeds to step 368. In addition, when an affirmative determination is made in step 365 and step 3
Also when the negative determination is made in 66, the process proceeds to step 368.

【0021】なおステップ365〜ステップ367まで
の処理は、気筒内燃焼温度が予め定められた最高温度θ
max 以上である場合に現在の燃料噴射量が増量して気筒
内燃焼温度が上昇することを防止するための処理であ
る。ステップ368では補正スピル制御ソレノイド励磁
時期TAUCMP に補正係数αを乗算して補正スピル制御ソ
レノイド励磁時期TAUCMP を再補正してこのルーチンを
終了する。
The processing from step 365 to step 367 is carried out by determining the maximum combustion temperature .theta.
This is a process for preventing the current fuel injection amount from increasing and the in-cylinder combustion temperature to rise when it is equal to or greater than max. In step 368, the corrected spill control solenoid excitation timing TAUCMP is multiplied by the correction coefficient α to recorrect the corrected spill control solenoid excitation timing TAUCMP, and this routine ends.

【0022】図6はスピル制御ルーチンのステップ39
で実行される補正係数学習処理のフローチャートであっ
て、各気筒毎に実行される。ステップ391で再補正さ
れたスピル制御ソレノイド励磁時期TAUCMP と基準スピ
ル制御ソレノイド励磁時期TAUBASEとの比Knew を算出
し、ステップ392で比Knew が予め定めた最小値Kmi
n と最大値Kmax との間にあるか否かを判定する。
FIG. 6 shows step 39 of the spill control routine.
6 is a flowchart of the correction coefficient learning process executed in step S6, which is executed for each cylinder. In step 391, the ratio Knew between the re-corrected spill control solenoid excitation timing TAUCMP and the reference spill control solenoid excitation timing TAUBASE is calculated, and in step 392 the ratio Knew is set to a predetermined minimum value Kmi.
It is determined whether it is between n and the maximum value Kmax.

【0023】ステップ392で肯定判定されるとステッ
プ393に進み、いままで使用していた補正係数Kと今
回算出した補正係数Knew との比が予め定めたしきい値
ΔK以下であるか否かを判定し、肯定判定されるとステ
ップ394に進み補正係数Kの値を今回算出した補正係
数Knew に書き換えてこのルーチンを終了する。ステッ
プ392あるいはステップ393で否定判定された時
は、補正量が大きすぎるあるいは以前に使用していた補
正係数からの変化量が大きすぎるものとしてステップ3
95でアラームを発信してこのルーチンを終了する。
If an affirmative decision is made in step 392, the operation proceeds to step 393, in which it is checked whether the ratio of the correction coefficient K used so far to the correction coefficient Knew calculated this time is equal to or less than a predetermined threshold value ΔK. If the judgment is affirmative, the routine proceeds to step 394, where the value of the correction coefficient K is rewritten to the correction coefficient Knew calculated this time, and this routine is ended. When a negative determination is made in step 392 or step 393, it is determined that the correction amount is too large, or the amount of change from the correction coefficient used before is too large, and step 3
At 95, an alarm is issued and this routine is ended.

【0024】なお上記においては渦流室付内燃機関につ
いて説明してきたが、いわゆる直噴式内燃機関について
も適用可能である。また、4気筒内燃機関において1番
気筒と2番気筒との間にこの2つの気筒の気筒内温度を
代表する第1の温度検出器を、3番気筒と4番気筒との
間にこの2つの気筒の気筒内温度を代表する第2の温度
検出器を設け、2つの温度検出器により制御してもよ
い。
Although the internal combustion engine with a swirl chamber has been described above, it can be applied to a so-called direct injection type internal combustion engine. Further, in a four-cylinder internal combustion engine, a first temperature detector representing the in-cylinder temperature of the two cylinders is provided between the first cylinder and the second cylinder, and a second temperature detector is provided between the third cylinder and the fourth cylinder. A second temperature detector that represents the in-cylinder temperature of one cylinder may be provided and controlled by the two temperature detectors.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、気
筒毎に燃焼温度を計測することにより、各気筒の燃焼温
度が予め定められた最大温度をこえることがないように
制御することが可能となるだけでなく、同時に気筒間の
燃焼温度のバラツキが少なくなるように制御することも
可能となるので、シリンダに過度の熱応力が発生するこ
とが、より確実に防止することができる。
As described above, according to the present invention, by measuring the combustion temperature for each cylinder, it is possible to control the combustion temperature of each cylinder so as not to exceed a predetermined maximum temperature. Not only is it possible, but it is also possible to control so that the variation in combustion temperature between the cylinders is reduced at the same time, so it is possible to more reliably prevent excessive thermal stress from occurring in the cylinders.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.

【図2】タイマー制御弁制御ルーチンのフローチャート
である。
FIG. 2 is a flowchart of a timer control valve control routine.

【図3】スピル制御ルーチンのフローチャートである。FIG. 3 is a flowchart of a spill control routine.

【図4】補正スピル制御ソレノイド励磁時期再補正処理
のフローチャートである。
FIG. 4 is a flowchart of a correction spill control solenoid excitation timing recorrection process.

【図5】再補正係数を決定するためのグラフである。FIG. 5 is a graph for determining a recorrection coefficient.

【図6】補正係数学習処理のフローチャートである。FIG. 6 is a flowchart of a correction coefficient learning process.

【符号の説明】[Explanation of symbols]

10…ディーゼル内燃機関 101a、d…気筒 102a、d…主燃焼室 103a、d…渦流室 104a、d…燃料噴射弁 105a、d…燃焼温度センサ 11a、d…燃料供給管 12…燃料噴射ポンプ 121…タイマー制御弁 122…スピル制御ソレノイド 123…回転数センサ 13…制御装置 141…アクセル開度センサ 142…アクセルペダル 10 ... Diesel internal combustion engine 101a, d ... Cylinder 102a, d ... Main combustion chamber 103a, d ... Vortex chamber 104a, d ... Fuel injection valve 105a, d ... Combustion temperature sensor 11a, d ... Fuel supply pipe 12 ... Fuel injection pump 121 ... Timer control valve 122 ... Spill control solenoid 123 ... Rotation speed sensor 13 ... Control device 141 ... Accelerator opening sensor 142 ... Accelerator pedal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の運転状態に基づいて定められ
る基準燃料噴射量を前記内燃機関の各気筒内に直接噴射
する筒内直接噴射式内燃機関の燃料噴射制御装置におい
て、 前記内燃機関の相隣合う2つの気筒に対し少くとも1つ
で、かつ前記内燃機関の全気筒に対して少くとも2つが
取り付けられる前記内燃機関の気筒内温度を計測する温
度検出器と、 前記温度検出器で計測された気筒内温度に基づいて、各
気筒内温度のバラツキを少なくするとともに各気筒内温
度のいずれもが予め定められたしきい値温度を越えるこ
とがないように各気筒毎に前記基準燃料噴射量を補正す
る基準燃料噴射量補正手段と、を具備する筒内直接噴射
式内燃機関の燃料噴射制御装置。
1. A fuel injection control device for a direct injection type internal combustion engine, wherein a reference fuel injection amount determined based on an operating state of the internal combustion engine is directly injected into each cylinder of the internal combustion engine. A temperature detector for measuring the temperature inside the cylinder of the internal combustion engine, wherein at least one is installed for two adjacent cylinders and at least two is installed for all the cylinders of the internal combustion engine; The reference fuel injection is performed for each cylinder so that the variation in the temperature in each cylinder is reduced and the temperature in each cylinder does not exceed a predetermined threshold temperature based on the determined cylinder temperature. A fuel injection control device for a direct injection type internal combustion engine, comprising: a reference fuel injection amount correction means for correcting the amount.
JP29439192A 1992-11-02 1992-11-02 Fuel injection controller for in-cylinder direct injection type internal combustion engine Pending JPH06146982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29439192A JPH06146982A (en) 1992-11-02 1992-11-02 Fuel injection controller for in-cylinder direct injection type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29439192A JPH06146982A (en) 1992-11-02 1992-11-02 Fuel injection controller for in-cylinder direct injection type internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06146982A true JPH06146982A (en) 1994-05-27

Family

ID=17807130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29439192A Pending JPH06146982A (en) 1992-11-02 1992-11-02 Fuel injection controller for in-cylinder direct injection type internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06146982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001915A (en) * 2009-06-19 2011-01-06 Denso Corp Fuel temperature detector
KR20180115867A (en) * 2017-04-14 2018-10-24 현대자동차주식회사 Apparatus and method for monitering cylinder imbalance of multi-cylinder internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001915A (en) * 2009-06-19 2011-01-06 Denso Corp Fuel temperature detector
KR20180115867A (en) * 2017-04-14 2018-10-24 현대자동차주식회사 Apparatus and method for monitering cylinder imbalance of multi-cylinder internal combustion engine

Similar Documents

Publication Publication Date Title
KR100674251B1 (en) Knocking determination apparatus for internal combustion engine
US6470854B1 (en) Air-fuel ratio control with improved fuel supply operation immediately after complete combustion of mixture
JPH09256897A (en) Fuel injection control device for internal combustion engine
JPH0388945A (en) Knocking sensing method for engine
US5554801A (en) Diagnosis apparatus and method for a cylinder pressure sensor
JPH02305372A (en) Method of ignition timing learning control
US4314540A (en) Method and apparatus for ignition system spark timing control where exhaust gas recirculation is used
JPH0512543B2 (en)
JP4147710B2 (en) Fuel injection control device for internal combustion engine
US6488007B2 (en) Controller for controlling an internal combustion engine in emergency driving
JPH06146982A (en) Fuel injection controller for in-cylinder direct injection type internal combustion engine
JP2570000B2 (en) Fail-safe system for variable valve timing system
JP4457411B2 (en) Control device for internal combustion engine
JP2527321Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH04101044A (en) Fuel feeding controller for multicylinder internal combustion engine
JP2502500B2 (en) Engine controller
JPH0754744A (en) Correcting method for idle stabilizing ignition timing
JP2556194B2 (en) Idle rotation control device for internal combustion engine
JPH0481534A (en) Fuel supply control device for internal combustion engine
JPH04183950A (en) Idle rotation control device for internal combustion engine
JPH08504Y2 (en) Electronically controlled fuel injection type internal combustion engine interrupt injection control device
JPH08128350A (en) Fuel injection device of internal combustion engine
JPH01151748A (en) Electronic control fuel injection device for internal combustion engine
JPS6316153A (en) Engine control device
JPH01271659A (en) Device for controlling idling speed of engine