JPH06146225A - Load resistant member - Google Patents

Load resistant member

Info

Publication number
JPH06146225A
JPH06146225A JP20176392A JP20176392A JPH06146225A JP H06146225 A JPH06146225 A JP H06146225A JP 20176392 A JP20176392 A JP 20176392A JP 20176392 A JP20176392 A JP 20176392A JP H06146225 A JPH06146225 A JP H06146225A
Authority
JP
Japan
Prior art keywords
steel pipe
load
steel
concrete
pressure bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20176392A
Other languages
Japanese (ja)
Other versions
JPH0781246B2 (en
Inventor
Hiroshi Yoshida
博 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4201763A priority Critical patent/JPH0781246B2/en
Publication of JPH06146225A publication Critical patent/JPH06146225A/en
Publication of JPH0781246B2 publication Critical patent/JPH0781246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the strength by laying a pressure bearing plate at each of opposite ends of a steel pipe which are opened, by stretching an unbond type steel wire, steel rod or the like through the steel pipe in the axial direction of the latter, by fixing the steel wire or the like to the pressure bearing plates, and by filling concrete in the steel pipe. CONSTITUTION:When a load is exerted to a load resistant member 1, a steel pipe 15 holds concrete 15 which is therefore prevented from bulging out. Next, pressure bearing plates 12 restrain the concrete from coming out from ends of the steel pipe 11 upon loading, and since reinforcement 4 is added, the load resistance is increased by about 50% at maximum in comparison with a conventional steel pipe which no reinforcement is added. Further, the tension force is increased at the time when the load resistant member is deformed, and accordingly, the load resistance becomes substantially equal to the original value. Accordingly, it is possible to enhance the load resistance and the ability of deformation without an increase in the section modulus thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、落石、雪崩防止柵等の
支柱あるいは梁材等に用いる耐荷材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load-bearing material used for supporting columns such as rockfalls, avalanche prevention fences or beams.

【0002】[0002]

【発明が解決しようとする課題】落石から道路を守るた
めの一つの方法として、落石防止柵が用いられている。
この落石防止柵は、比較的小規模な落石対策に使用さ
れ、支柱には現在H鋼が一般的に用いられているが、実
際には支柱が曲がる例が多く、H鋼によるエネルギ−吸
収が少なく、危険な状態である。このような支柱の弱点
を補うために、現在はH鋼の断面係数を増加させるなど
の方法がとられているが、支柱が大きくなると山の斜面
の状況では、防止柵を構築することができない場合があ
る。このため、小さな寸法のままで大きな耐荷力を持つ
支柱構造が望まれている。
A rockfall prevention fence is used as one method for protecting a road from rockfalls.
This rockfall prevention fence is used for relatively small-scale measures against rockfall, and H steel is generally used for the columns at present. However, in many cases, the columns are actually bent, and the energy absorption by H steel does not occur. There are few and dangerous conditions. In order to compensate for such weak points of the support pillars, methods such as increasing the section modulus of H steel are currently taken, but if the support pillars become large, it is not possible to construct a preventive fence on the slope of a mountain. There are cases. Therefore, a strut structure having a large load bearing capacity with a small size is desired.

【0003】[0003]

【課題を解決するための手段】本発明は、上記のような
問題点を解決するためになされたもので、H鋼のように
断面係数を増加させること無く、小さな寸法で大きな耐
荷力と変形能力を得ることができる耐荷材を提供するこ
とを目的とする。即ち、本発明は、図1、2に示すよう
に、両端を開放した鋼管11と、この鋼管11の両端部
に配置した支圧板12と、鋼管11内に軸方向に収納
し、両端を前記支圧板12にナット等の止め具13を介
して定着した、アンボンドタイプの鋼線あるいは鋼棒等
の補強材14と、鋼管11内に充填したコンクリ−ト1
5とよりなる耐荷材1である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has a large load bearing capacity and deformation with a small size without increasing the section modulus unlike H steel. An object is to provide a load bearing material capable of obtaining the capability. That is, according to the present invention, as shown in FIGS. A reinforcing member 14 such as an unbonded steel wire or a steel rod fixed to a pressure bearing plate 12 via a stopper 13 such as a nut, and a concrete 1 filled in a steel pipe 11.
The load-bearing material 1 is composed of

【0004】[0004]

【本発明の作用】本発明は次のような作用を有する。 <イ>鋼管による拘束作用 耐荷材1に荷重が働いた場合、内部のコンクリ−ト梁1
5を鋼管11により拘束し、コンクリ−ト15のはらみ
出しを防止できる。
The function of the present invention has the following functions. <a> Restraint by steel pipe When load is applied to load bearing material 1, internal concrete beam 1
5 can be restrained by the steel pipe 11 to prevent the concrete 15 from protruding.

【0005】<ロ>支圧板による拘束作用 載荷時に、コンクリ−ト15が鋼管11の端部から抜け
出そうとするのを抑えることができる。
<B> Restraining action by the pressure bearing plate It is possible to prevent the concrete 15 from attempting to come out of the end portion of the steel pipe 11 during loading.

【0006】<ハ>補強材による耐荷力向上作用 補強材14を入れることによって、補強材14を入れな
いコンクリ−ト充填鋼管よりも最大耐力で5割程度耐荷
力が向上する。
<C> Reinforcing Material Strengthening Effect of Reinforcing Material By including the reinforcing material 14, the maximum proof strength is improved by about 50% as compared with the concrete-filled steel pipe without the reinforcing material 14.

【0007】<ニ>補強材に緊張力を導入しないことに
よる変形能力向上作用 補強材14に緊張力を導入すると、耐荷材1の強度は多
少強くなる。しかし、下記の実験により証明したよう
に、補強材14に緊張力を導入すると、耐荷材1が圧縮
力を受けるため、変形能力が低下する。そのため、大き
な荷重が作用すると、圧縮側が引張側よりも先に強度が
低下し、圧壊の方が先に起こり、急激に強度が低下して
引張側の鋼管に亀裂が生じる、という欠点がある。そこ
で、本発明は、補強材14に緊張力を導入しないことと
した。これによって、耐荷材1は圧縮力を受けないた
め、変形能力が増大する。しかし、補強材14に全く緊
張力が作用しないのではない。即ち、耐荷材1が変形す
ると、引張側の補強材14が伸ばされるため、この時点
で初めて緊張力が導入されるのである。従って、下記の
実験結果からも明らかなように、耐荷力は、始めから緊
張力を導入した場合とほとんど変わらず同程度の強度を
得ることができる。よって、本発明の耐荷材1は、耐荷
力及び変形能力の面で優れた効果を発揮することができ
る。
<D> Effect of Improving Deformation Ability by Not Introducing Tension to Reinforcement When tension is introduced to the reinforcement 14, the strength of the load bearing material 1 becomes somewhat stronger. However, as proved by the following experiment, when a tension force is introduced into the reinforcing material 14, the load-bearing material 1 receives a compressive force, so that the deformability decreases. Therefore, when a large load is applied, there is a drawback that the compression side has a lower strength than the tension side, and the crushing occurs earlier, and the strength sharply lowers and cracks occur in the steel pipe on the tension side. Therefore, in the present invention, the tension force is not introduced into the reinforcing material 14. As a result, the load-bearing material 1 does not receive a compressive force, so that the deformability is increased. However, the reinforcing material 14 does not have any tension force. That is, when the load-bearing material 1 is deformed, the reinforcing material 14 on the tension side is stretched, so that the tension force is first introduced at this point. Therefore, as is clear from the following experimental results, the load bearing strength is almost the same as when the tension force is introduced from the beginning, and the same strength can be obtained. Therefore, the load-bearing material 1 of the present invention can exhibit excellent effects in terms of load-bearing capacity and deformability.

【0008】[0008]

【実験内容】実験に用いる供試体は、鋼管(材質STK40
0、外径165.2mm 、管厚4,5 mm、長さ2000mm)、アンボ
ンドタイプのPC鋼棒(直径17mm、C種1号[SBPR 1078
/1225])および普通コンクリ−ト(圧縮試験強度59.6MP
a )を用いて、図5に示す13種類のものを作製した。
作製に当たっては、先ず、コンクリ−ト型枠用の剥離剤
を内面に塗布した鋼管を鉛直に固定し、PC鋼棒4本を
所定の位置(鋼管内の直径100mm 円周上に等間隔)に配
置した後、コンクリ−トを打設した。なお、このように
作製した供試体から引き抜いたPC鋼棒を有するコンク
リ−ト梁が、図5に示す供試体BCであり、鋼管だけが
供試体BSTである。なお、供試体BCには初期緊張力
は導入しないが、定着板を取り付けてある。
[Experiment content] The test piece used for the experiment is a steel pipe (material STK40
0, outer diameter 165.2 mm, pipe thickness 4,5 mm, length 2000 mm), unbonded type PC steel rod (diameter 17 mm, C class No. 1 [SBPR 1078
/ 1225]) and ordinary concrete (compression test strength 59.6MP
Using a), 13 types shown in FIG. 5 were produced.
In the production, first, a steel pipe coated with a release agent for concrete form was fixed vertically, and four PC steel rods were placed at predetermined positions (diameter 100 mm inside the steel pipe at equal intervals). After the placement, a concrete was placed. The concrete beam having the PC steel rod pulled out from the thus-produced specimen is the specimen BC shown in FIG. 5, and only the steel pipe is the specimen BST. Although the initial tension is not introduced to the sample BC, a fixing plate is attached.

【0009】この作業中に要した最大引き抜き力は4tf
であり、最大付着応力度は約40〜50kpa (0.4 〜0.
5kgf/cm2 )であると考えられる。また、供試体B00
−1、B00−2及びB00−Pは、PC鋼棒の無いコ
ンクリ−ト充填鋼管であり、B00−Pは供試体の両端
で鋼板(板厚10mm)をコンクリ−ト面に密着させて鋼管
に全周溶接したものである。B00−X、B03、B1
2、B24、B36はPC鋼棒を有するコンクリ−ト充
填鋼管である。このうち、B00−Xが本発明であり、
初期緊張力は導入しないが、定着板を取り付けてある。
その他の供試体には緊張力を導入するが、PC鋼棒の緊
張には、供試体両端に鋼円板(直径146mm 、厚さ32mm)
を定着板として用い、レラクゼ−ションの影響を避ける
ため載荷試験直前に図5の所定量を導入した。
The maximum pulling force required during this work is 4 tf
And the maximum adhesive stress is about 40-50 kpa (0.4-0.
It is considered to be 5 kgf / cm 2 ). In addition, specimen B00
-1, B00-2 and B00-P are concrete-filled steel pipes without a PC steel rod, and B00-P is a steel pipe in which steel plates (plate thickness 10 mm) are adhered to the concrete surface at both ends of the specimen. Welded all around. B00-X, B03, B1
2, B24 and B36 are concrete filled steel pipes having a PC steel rod. Of these, B00-X is the present invention,
Initial tension is not introduced, but a fixing plate is attached.
Tensile force is introduced to other specimens, but for the tension of PC steel rod, steel discs (diameter 146mm, thickness 32mm) at both ends of the specimen.
Was used as a fixing plate, and the predetermined amount in FIG. 5 was introduced immediately before the loading test in order to avoid the influence of relaxation.

【0010】供試体名の記号Bに続く2桁の数値は鋼管
とコンクリ−トの付着がないものとして計算したコンク
リ−トの初期応力を表している。図1は、2点載荷曲げ
試験の概略を表している。支点および載荷点では、鋼管
に対して点荷重にならないように鋼板支承16(100 ×
30×200mm )を使用し、また大きな撓み角が生じても鋼
管と鋼板支承16が面タッチとなるように支承底面は板
厚方向に80Rの曲面を付けた。
The two-digit number following the symbol B of the specimen name represents the initial stress of the concrete calculated assuming that the concrete does not adhere to the steel pipe. FIG. 1 shows an outline of a two-point loading bending test. At the fulcrum and the loading point, the steel plate bearing 16 (100 x
30 × 200 mm), and the bottom face of the bearing has a curved surface of 80R in the plate thickness direction so that the steel pipe and the steel plate bearing 16 can be in surface contact even if a large bending angle occurs.

【0011】[0011]

【実験結果】図6、7は、荷重とスパン中央の撓みの関
係を表している。供試体B00(NO3,4 )、B12(NO
8,9 )、B24(NO10,11 )、B36(NO12,13 )につ
いては、2体ずつ試験を行っており、識別を容易にする
ために分けて示した。実験から以下のことが分かった。
[Experimental Results] FIGS. 6 and 7 show the relationship between the load and the deflection at the center of the span. Specimen B00 (NO3,4), B12 (NO
8,9), B24 (NO10,11) and B36 (NO12,13) were tested in duplicate, and are shown separately for easy identification. The experiment revealed the following.

【0012】<イ>供試体BCは、載荷初期から曲げひ
び割れが進展し、載荷点間の圧潰により耐力を失った。
<A> The specimen BC lost bending strength from the initial stage of loading, and lost its yield strength due to crushing between loading points.

【0013】<ロ>供試体BSTでは、載荷点の内側に
発生した局部座屈変形の進展により耐力を失った。な
お、鋼管の短柱試験から得られた降伏点応力度319MP
a (0.2%オフセット法)を用いて崩壊荷重を求めると1
1.6tfである。
<B> The specimen BST lost its proof stress due to the progress of local buckling deformation generated inside the loading point. In addition, yield point stress degree 319MP obtained from short column test of steel pipe
When the collapse load is calculated using a (0.2% offset method), 1
It is 1.6tf.

【0014】<ハ>供試体B00−1及びB00−2
は、荷重が約11tf付近からコンクリ−ト部が鋼管から
抜け出し始め、載荷点の外側で局部座屈変形が顕著とな
り、その断面の鋼管の破断により耐力を失った。B00
の最大荷重は、BSTとBCのほぼ和になっていること
が図5から分かる。コンクリ−ト充填鋼管の変形能力の
有利性が顕著である。
<C> Specimen B00-1 and B00-2
The concrete part started to come out of the steel pipe when the load was about 11 tf, local buckling deformation became remarkable outside the loading point, and the yield strength was lost due to the fracture of the steel pipe of the cross section. B00
It can be seen from FIG. 5 that the maximum load of is approximately the sum of BST and BC. The advantage of the deformability of concrete-filled steel pipe is remarkable.

【0015】<ニ>供試体B00−Pは、鋼管の両端に
溶接した鋼板によりコンクリ−トの抜け出しを防いでい
るためその効果が認められるが、最大耐力はB00−1
とほぼ同じである。局部座屈変形はコンクリ−トが抜け
出さないことから載荷点の内側で進展し、その断面の引
張側に生じた鋼管の破断により耐力を失った。
<D> Specimen B00-P has its effect because the steel sheets welded to both ends of the steel pipe prevent the concrete from coming out, but the maximum yield strength is B00-1.
Is almost the same as. The local buckling deformation progressed inside the loading point because the concrete did not come out, and the proof stress was lost due to the fracture of the steel pipe on the tensile side of the cross section.

【0016】<ホ>PC鋼棒を有する供試体(NO6〜1
3)については、導入した緊張力の大きさによってコン
クリ−トのクラック発生後の曲線勾配が異なっている。
緊張力の大きなものほど局部座屈変形が早期に発生し、
変形能力に欠けることが分かる。しかし、それらの最大
耐力はほぼ同程度であり、PC鋼棒のない供試体B00
−1、2、P(NO3〜5)に比べて耐力が約60%上昇
している。これらの供試体においては載荷点間で局部座
屈変形が顕著となり、鋼管の破断により耐力を失った。
<E> Specimen having a PC steel rod (NO6 to 1)
Regarding 3), the curve gradient after the concrete cracks are different depending on the magnitude of the introduced tension force.
The greater the tension, the earlier the local buckling deformation will occur,
It can be seen that it lacks deformability. However, their maximum proof stresses are almost the same, and specimen B00 without PC steel bar
-1,2, P (NO3 ~ 5) compared to the yield strength is increased about 60%. In these specimens, local buckling deformation became remarkable between the loading points, and the yield strength was lost due to the fracture of the steel pipe.

【0017】<ヘ>鋼管の短柱試験から0.2%オフセ
ット法により求めた降伏点応力度に対応する降伏ひずみ
は約3550μである。梁の引張最大ひずみがこの値に
達したときのスパン中央撓みを降伏撓みと定義し、実験
梁の計測軸ひずみと撓みから供試体NO3〜13の降伏撓
みを求めると8.0 〜9.8 mmであった。コンクリ−ト充填
鋼管が耐力を失うときの梁の撓みは、最も小さなB36
−1でも降伏撓みの11倍であり、B00−X及びB0
3のようにPC鋼棒を有し、緊張力の小さな供試体では
20倍以上になっていることが分かる。以上より、鋼管
にコンクリ−トを充填することにより、曲げ変形能力は
飛躍的に増大し、PC鋼棒によるコンクリ−トの抜け出
し防止、および補強により曲げ強度の上昇が可能であ
る。
<F> The yield strain corresponding to the yield point stress degree obtained by the 0.2% offset method from the short column test of the steel pipe is about 3550 μ. The center deflection of the span when the maximum tensile strain of the beam reaches this value is defined as the yield deflection, and the yield deflection of the specimens NO3 to 13 was calculated from the measured axial strain and deflection of the experimental beam to be 8.0 to 9.8 mm. . When the concrete-filled steel pipe loses its yield strength, the beam deflection is the smallest B36.
-1 is 11 times the yield deflection, and B00-X and B0
It can be seen that the specimen having a PC steel rod as in 3 and having a small tension is 20 times or more. As described above, by filling the steel pipe with concrete, the bending deformation capability is dramatically increased, and the concrete can be prevented from coming off by the PC steel rod, and the bending strength can be increased by the reinforcement.

【0018】[0018]

【使用例】図3、4に本発明の耐荷材1の使用例を示
す。図3は、落石、雪崩防止柵等の支柱に使用した例で
ある。この場合は、所定の間隔をおいて立設した耐荷材
1間にロ−プ及びネットを張設して構成される。また、
図4はロックシェッドの梁材として使用した例である。
[Example of Use] FIGS. 3 and 4 show examples of use of the load-bearing material 1 of the present invention. FIG. 3 shows an example in which it is used as a pillar such as a rockfall or an avalanche prevention fence. In this case, a rope and a net are stretched between load-bearing materials 1 which are erected at predetermined intervals. Also,
FIG. 4 shows an example of use as a beam material for a lock shed.

【0019】[0019]

【本発明の効果】本発明は以上説明したようになるた
め、次のような効果を得ることができる。即ち、本発明
の耐荷材は、鋼管あるいは支圧板により、コンクリ−ト
の拘束効果を得ることができ、また緊張力を導入しない
補強材により、耐荷力及び変形能力の向上を図ることが
できる。そのため、耐荷材としての強度を高めることが
でき、従来のH鋼のように断面係数を増加させること無
く、小さな寸法で大きな耐荷力及び変形能力を得ること
ができる。従って、落石、雪崩防止柵あるいはロックシ
ェッド等に使用する場合には、施工が容易であり、また
コストの低減を図ることができる。
Since the present invention is as described above, the following effects can be obtained. That is, the load bearing material of the present invention can obtain a concrete restraint effect by the steel pipe or the pressure bearing plate, and can improve load bearing capacity and deformability by the reinforcing material that does not introduce tension force. Therefore, the strength as a load-bearing material can be increased, and a large load-bearing force and deformability can be obtained with a small size without increasing the section modulus unlike the conventional H steel. Therefore, when it is used for falling rocks, avalanche prevention fences, lock sheds, etc., the construction is easy and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の耐荷材の側面図FIG. 1 is a side view of a load bearing material of the present invention.

【図2】 その正面図[Figure 2] Front view

【図3】 落石防止柵に用いた場合の使用例[Figure 3] Example of use when used as a rockfall prevention fence

【図4】 ロックシェッドに用いた場合の使用例[Fig. 4] Example of use when used as a lock shed

【図5】 実験供試体の一覧を示す説明図FIG. 5 is an explanatory diagram showing a list of test specimens.

【図6】 荷重とスパン中央の撓みとの関係を示す説明
FIG. 6 is an explanatory diagram showing the relationship between the load and the deflection at the center of the span.

【図7】 荷重とスパン中央の撓みとの関係を示す説明
FIG. 7 is an explanatory diagram showing the relationship between the load and the deflection at the center of the span.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 両端を開放した鋼管と、 この鋼管の両端部に配置した支圧板と、 鋼管内に軸方向に収納し、両端を前記支圧板に定着した
アンボンドタイプの鋼線あるいは鋼棒と、 鋼管内に充填したコンクリ−トとよりなる、 耐荷材。
1. A steel pipe having both ends open, pressure bearing plates arranged at both ends of the steel pipe, and an unbonded steel wire or steel rod axially housed in the steel pipe and having both ends fixed to the pressure bearing plate. A load-bearing material consisting of concrete filled in a steel pipe.
JP4201763A 1992-07-07 1992-07-07 Load-bearing material Expired - Lifetime JPH0781246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4201763A JPH0781246B2 (en) 1992-07-07 1992-07-07 Load-bearing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4201763A JPH0781246B2 (en) 1992-07-07 1992-07-07 Load-bearing material

Publications (2)

Publication Number Publication Date
JPH06146225A true JPH06146225A (en) 1994-05-27
JPH0781246B2 JPH0781246B2 (en) 1995-08-30

Family

ID=16446533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4201763A Expired - Lifetime JPH0781246B2 (en) 1992-07-07 1992-07-07 Load-bearing material

Country Status (1)

Country Link
JP (1) JPH0781246B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716195B1 (en) * 2005-07-12 2007-05-10 주식회사 에이브이티 Guard fence
US7271855B2 (en) * 2002-10-31 2007-09-18 Lg.Philips Lcd Co., Ltd. Liquid crystal display with pads having one edge having grooves therein wherein the edge is formed at a cutting line of the shorting bar
JP2007285038A (en) * 2006-04-18 2007-11-01 Purotekku Engineering:Kk Cover structure and construction method therefor
JP2012107397A (en) * 2010-11-15 2012-06-07 Maeda Kosen Co Ltd Column for load resistance structure
KR101673984B1 (en) * 2016-02-24 2016-11-08 강혜경 Strut beam using steel-concrete and tension steel wire, and method for constructing this same
JP2016204947A (en) * 2015-04-21 2016-12-08 株式会社ライテク Shed
KR20180097797A (en) 2015-12-25 2018-09-03 가부시키가이샤 프로텍 엔지니어링 Load bearing material
KR20200124873A (en) * 2019-04-25 2020-11-04 고려대학교 산학협력단 Hydraulic pump apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7271855B2 (en) * 2002-10-31 2007-09-18 Lg.Philips Lcd Co., Ltd. Liquid crystal display with pads having one edge having grooves therein wherein the edge is formed at a cutting line of the shorting bar
US7768586B2 (en) 2002-10-31 2010-08-03 Lg Display Co., Ltd. Liquid crystal display and fabrication method thereof
KR100716195B1 (en) * 2005-07-12 2007-05-10 주식회사 에이브이티 Guard fence
JP2007285038A (en) * 2006-04-18 2007-11-01 Purotekku Engineering:Kk Cover structure and construction method therefor
JP2012107397A (en) * 2010-11-15 2012-06-07 Maeda Kosen Co Ltd Column for load resistance structure
JP2016204947A (en) * 2015-04-21 2016-12-08 株式会社ライテク Shed
KR20180097797A (en) 2015-12-25 2018-09-03 가부시키가이샤 프로텍 엔지니어링 Load bearing material
KR101673984B1 (en) * 2016-02-24 2016-11-08 강혜경 Strut beam using steel-concrete and tension steel wire, and method for constructing this same
KR20200124873A (en) * 2019-04-25 2020-11-04 고려대학교 산학협력단 Hydraulic pump apparatus

Also Published As

Publication number Publication date
JPH0781246B2 (en) 1995-08-30

Similar Documents

Publication Publication Date Title
Choi et al. Behavior of reinforced concrete columns confined by new steel-jacketing method.
Chang et al. Flexural fracture and fatigue behavior of steel-fiber-reinforced concrete structures
Agarwal et al. Effect of FRP wrapping on axial behavior of concrete and cyclic behavior of external RC beam column joints
Sugano Seismic behavior of reinforced concrete columns which used ultra-high-strength concrete
JPH06146225A (en) Load resistant member
Kimura et al. Seismic behavior of 200 MPa ultra-high-strength steel-fiber reinforced concrete columns under varying axial load
US5965277A (en) Concrete reinforcing fiber
Ali et al. Experimental investigation of bond and tube thickness effect on the flexural behavior of concrete-filled FPR tube under lateral cyclic loading
Lim et al. Compression tests of octagonal concrete-filled thin-walled tube columns
JPH0525832A (en) Structural steel pedestal
Sargsyan et al. Seismic behavior and assessment of drift-hardening concrete columns
Dry Improvement in reinforcing bond strength in reinforced concrete with self-repairing chemical adhesives
Sahi et al. Experimental study of hollow slender reinforced concrete columns subjected to eccentric loads
Maissen et al. Comparison of concrete beams prestressed with carbon fibre reinforced plastic and steel strands
Zhou et al. Behavior of concrete columns confined with both steel angles and spiral hoops under axial compression
JPH0472929B2 (en)
JP3703714B2 (en) High bending toughness and high strength pile
JP2967018B2 (en) Tensile steel
JPH0381443A (en) Structure for reinforced concrete column
Bachmann Problems relevant to poor ductility properties of european reinforcing steel
Anik et al. A review paper on increasing torsional strength of RC beam using steel fiber reinforced concrete
JP3265769B2 (en) Prestressed concrete members
Kahn Strengthening existing RC columns for earthquake resistance
Abdallah et al. Structural response of circular concrete columns confined with gfrp tubes under repeated and sequential impact loads
Perumal et al. An Experimental Study on Torsional Behavior of Steel Beams Infilled with Plain Cement Concrete and Fiber Reinforced Concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20120830

EXPY Cancellation because of completion of term