JPH06146147A - Nonwoven fabric for cleaner filter and its production - Google Patents

Nonwoven fabric for cleaner filter and its production

Info

Publication number
JPH06146147A
JPH06146147A JP4295217A JP29521792A JPH06146147A JP H06146147 A JPH06146147 A JP H06146147A JP 4295217 A JP4295217 A JP 4295217A JP 29521792 A JP29521792 A JP 29521792A JP H06146147 A JPH06146147 A JP H06146147A
Authority
JP
Japan
Prior art keywords
fibers
density
nonwoven fabric
cleaner filter
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295217A
Other languages
Japanese (ja)
Inventor
Yukimasa Nakamura
幸正 中村
Nobuo Owaki
信雄 大脇
Shuichi Goto
修一 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP4295217A priority Critical patent/JPH06146147A/en
Publication of JPH06146147A publication Critical patent/JPH06146147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a light nonwoven fabric for a cleaner filter, exhibiting high trapping properties, low in pressure loss and excellent in flexibility, durability, processability, handleability, etc., and to provide its ready production method. CONSTITUTION:This nonwoven fabric for a cleaner filter is composed of a high-density layer made of a modified cross-section ultrafine fiber having <=0.5 denier single yarn fineness and exhibiting >=0.17g/cm<3> density and a low-density layer made of a hydrophobic fiber and exhibiting <=0.15g/cm<3> density. Both the layers are unified into one body by entanglement of constituting fibers and this nonwoven fabric exhibits a density gradient in the cross-sectional direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、掃除機フィルター用不
織布及びその製法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nonwoven fabric for a vacuum cleaner filter and an improvement in its production method.

【0002】[0002]

【従来の技術】従来から、掃除機のフィルターとして
は、起毛織物、ニードルパンチ不織布、スパンボンド不
織布、スパンボンドとニードルパンチとの併用による不
織布等が多く使用されている。
2. Description of the Related Art Conventionally, as a filter for a vacuum cleaner, a napped woven fabric, a needle punched non-woven fabric, a spunbonded nonwoven fabric, a non-woven fabric obtained by combining spunbond and needle punch, and the like are often used.

【0003】また、高捕集性の不織布として、極細繊維
を用いた不織布、例えば極細のガラス繊維をバインダー
で接着した不織布や、メルトブロー法で形成したウェッ
ブを積層後ニードルパンチした不織布等も提案されてい
る。
Further, as a highly-collective non-woven fabric, a non-woven fabric using ultrafine fibers, for example, a non-woven fabric in which ultrafine glass fibers are bonded with a binder, or a non-woven fabric obtained by laminating webs formed by a melt blow method and then needle punching them, has been proposed. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、起毛織
物、ニードルパンチ不織布、スパンボンド不織布、スパ
ンボンドとニードルパンチとの併用による不織布等から
なるフィルターは粗塵、即ち5μm以上の粉塵濾過用と
しては使用できるが、1〜5μmの微細な粉塵濾過用と
しては使用出来なかった。この場合上記従来のフィルタ
ーでも目付を大きくすれば微細な粉塵を濾過できるが、
目付を大きくすると圧力損失が大きくなって実用に供す
ることが出来ず、しかも、風合が硬く重いため縫製加工
も困難であり、取扱い性も悪くなると云う問題がある。
However, a filter made of a raised woven fabric, a needle-punched nonwoven fabric, a spunbonded nonwoven fabric, or a nonwoven fabric formed by using a combination of spunbond and needlepunch is used for coarse dust, that is, for filtering dust of 5 μm or more. Although it was possible, it could not be used for filtering fine dust of 1 to 5 μm. In this case, even if the above-mentioned conventional filter is used, fine dust can be filtered by increasing the basis weight.
When the basis weight is increased, the pressure loss becomes large and it cannot be put to practical use. Moreover, since the texture is hard and heavy, the sewing process is difficult and the handleability becomes poor.

【0005】極細繊維を用いた不織布は単糸繊度が0.
8デニール以下になると、開綿、及びカーディング工程
での通過性が問題となり、またメルトブロー法による不
織布は引張強力が弱く単独での使用が困難である。
Nonwoven fabrics using ultrafine fibers have a single yarn fineness of 0.
If it is less than 8 denier, the permeability in the cotton opening and carding steps becomes a problem, and the nonwoven fabric produced by the melt blow method has a weak tensile strength and is difficult to use alone.

【0006】本発明は、かかる従来の問題点を解消し、
軽量で高捕集性を具備しながら圧力損失が少なく、しか
も柔軟性、耐久性、加工性、及び取扱い性等の優れた掃
除機フィルター用不織布及びその簡易な製法を提供する
ものでる。
The present invention solves the above conventional problems,
(EN) A non-woven fabric for a vacuum cleaner filter, which is lightweight, has a high collection property, has a small pressure loss, and is excellent in flexibility, durability, processability, and handleability, and a simple production method thereof.

【0007】[0007]

【課題を解決するための手段】本発明は、上記従来の課
題を解決するために以下の構成をとる。すなわち、本発
明は単糸繊度0.5デニール以下の異形断面極細繊維か
らなる密度0.17g/cm3以上の高密度層と、疎水
性繊維からなる密度0.15g/cm3以下の低密度層
からなり、これら両層が構成繊維同志の交絡により一体
化されると共に断面方向に密度勾配を有することを特徴
とする掃除機フィルター用不織布、及び単糸繊度0.5
デニール以下の極細繊維に分割可能な分割性複合繊維か
らなるウェッブを疎水性繊維からなる不織布上に重ね合
わせ、前記ウェッブ上から高圧水流を噴射して分割性複
合繊維の分割と両層の交絡一体化を行うことを特徴とす
る掃除機フィルター用不織布の製法である。
The present invention has the following constitution in order to solve the above-mentioned conventional problems. That is, the present invention provides a high-density layer having a density of 0.17 g / cm 3 or more composed of ultrafine fibers of irregular cross section having a fineness of single yarn of 0.5 denier or less, and a low density of 0.15 g / cm 3 or less composed of hydrophobic fibers. A non-woven fabric for a vacuum cleaner filter, characterized in that it is composed of layers, and these two layers are integrated by the entanglement of constituent fibers and have a density gradient in the cross-sectional direction, and a single yarn fineness of 0.5.
A web made of splittable conjugate fibers that can be split into ultrafine fibers of denier or less is laid on a nonwoven fabric made of hydrophobic fibers, and a high-pressure water jet is jetted from the web to split the splittable conjugate fibers and entangle the two layers together. The method for producing a non-woven fabric for a vacuum cleaner filter is characterized in that:

【0008】本発明を更に詳細に説明すると、本発明で
使用する単糸繊度が0.5デニール以下の異形断面極細
繊維としては、分割性複合繊維を後工程で分割した極細
繊維が好適に用いられる。
The present invention will be described in more detail. As the ultrafine fibers of irregular cross section having a single yarn fineness of 0.5 denier or less used in the present invention, the ultrafine fibers obtained by dividing the splittable conjugate fiber in the subsequent step are preferably used. To be

【0009】分割性複合繊維としては、化学的に分割す
るものと、物理的に分割するものとがあるが、前者は後
工程において薬剤により繊維の複合成分の一部を溶解し
て分割するため、加工工程が複雑で、且つ特別な加工設
備が必要となり、安定生産の点で問題が多い。
The splittable conjugate fibers include those that are chemically split and those that are physically split. In the former, the latter dissolves some of the composite components of the fibers with a chemical agent in the latter step and splits. However, the processing steps are complicated, special processing equipment is required, and there are many problems in terms of stable production.

【0010】これに対して、後者は後工程で高圧水流等
の手段で分割するもので、加工工程が単純で、特別の加
工設備を必要としないので、工業的に前者より有利であ
る。
On the other hand, the latter is divided by means such as high-pressure water flow in the subsequent step, and the processing step is simple and no special processing equipment is required, so that it is industrially advantageous over the former.

【0011】物理的に分割可能な分割性複合繊維の例と
しては、図1〜図4に示すように、非相溶性の2種の熱
可塑性重合体(黒色部と白色部)を断面において交互に
配列した複合繊維が挙げられる。また非相溶性の2種の
熱可塑性重合体の組み合わせの例としては、ポリエステ
ルとポリプロピレン 、ポリエステルとナイロン、ナイ
ロンとポリプロピレン等が挙げられる。
As an example of a splittable conjugate fiber which can be physically split, as shown in FIGS. 1 to 4, two incompatible thermoplastic polymers (black portion and white portion) are alternately crossed. The composite fibers arranged in the above are listed. Examples of the combination of two incompatible thermoplastic polymers include polyester and polypropylene, polyester and nylon, nylon and polypropylene, and the like.

【0012】この分割性複合繊維の単糸繊度は1〜5デ
ニール程度が好ましく、分割後の極細繊維の単糸繊度は
0.5デニール以下、好ましくは0.2デニール以下で
ある。
The single yarn fineness of the splittable conjugate fiber is preferably about 1 to 5 denier, and the single yarn fineness of the ultrafine fibers after splitting is 0.5 denier or less, preferably 0.2 denier or less.

【0013】本発明において用いる極細繊維の形状を異
形断面とする理由は、異形断面による表面積の増大に基
づく捕集効果の向上及び繊維相互の交絡性の向上を図る
ためである。
The reason why the ultrafine fibers used in the present invention have a modified cross section is to improve the trapping effect and the entanglement of the fibers due to the increased surface area of the modified cross section.

【0014】本発明の不織布は、異形断面極細繊維から
なる高密度層と疎水性繊維からなる低密度層とで構成さ
れており、粗塵は低密度層で濾過し、微細な粉塵は高密
度層で濾過するという層別捕集を行うことにより捕集効
率が向上すると共に、長期使用においても圧力損失が少
なくなるという利点がある。
The non-woven fabric of the present invention comprises a high-density layer made of ultrafine fibers of irregular cross section and a low-density layer made of hydrophobic fibers. Coarse dust is filtered by the low-density layer, and fine dust is high-density. There is an advantage that the collection efficiency is improved by performing the layer-by-layer collection of filtering by layers, and the pressure loss is reduced even in long-term use.

【0015】高密度層の密度は0.17g/cm3
上、好ましくは0.2〜0.25g/cm3であり、
0.17g/cm3未満では微細な粉塵の捕集効果が悪
くなる。一方低密度層の密度は0.15g/cm3以下
であり、0.15g/cm3を越えると圧力損失が大き
くなりすぎて掃除機用フィルターとして使用出来なくな
る。
[0015] The density of the high density layer is 0.17 g / cm 3 or more, preferably 0.2~0.25g / cm 3,
If it is less than 0.17 g / cm 3 , the effect of collecting fine dust becomes poor. On the other hand, the density of the low density layer is 0.15 g / cm 3 or less, and if it exceeds 0.15 g / cm 3 , the pressure loss becomes too large to be used as a filter for a vacuum cleaner.

【0016】低密度層を構成する繊維としては、疎水性
繊維が好ましく、具体的には単糸繊度が1〜5デニール
のポリエステル繊維、ポリプロピレン繊維、及びアクリ
ル繊維が好適に用いられる。
As the fibers constituting the low density layer, hydrophobic fibers are preferable, and specifically, polyester fibers, polypropylene fibers, and acrylic fibers having a single yarn fineness of 1 to 5 denier are preferably used.

【0017】構成繊維の一部として、熱融着性繊維を1
0%以上含有させ、後工程で熱融着処理することによ
り、形態安定性及び耐久性を一層向上させることが出来
る。この場合の熱融着性繊維としては、芯成分に低融点
成分を配し、鞘成分に高融点成分を配した芯鞘複合繊
維、例えば、芯ポリエチレン/鞘ポリプロピレン、芯ポ
リエチレン /鞘ポリエステル、芯低融点ポリエステル
/鞘ポリエステル、芯低融点ポリエステル/鞘ポリアミ
ド等の芯鞘複合繊維が好適に使用される。
A heat-fusible fiber is used as a part of the constituent fibers.
By containing 0% or more and performing heat fusion treatment in the subsequent step, the shape stability and durability can be further improved. In this case, as the heat-fusible fiber, a core-sheath composite fiber having a core component having a low melting point component and a sheath component having a high melting point component, for example, core polyethylene / sheath polypropylene, core polyethylene / sheath polyester, core Core-sheath composite fibers such as low-melting point polyester / sheath polyester and core low-melting point polyester / sheath polyamide are preferably used.

【0018】本発明における、高密度層の目付は40〜
100g/m2が好ましく、40g/m2未満では層が不
均一になって捕集効率にバラツキが生じやすくなり、逆
に100g/m2を越えると捕集効率は向上するが、圧
力損失が大きくなるので好ましくない。
In the present invention, the high-density layer has a unit weight of 40 to
100 g / m 2 is preferable, and if it is less than 40 g / m 2 , the layer becomes non-uniform and the collection efficiency tends to vary. On the contrary, if it exceeds 100 g / m 2 , the collection efficiency is improved, but the pressure loss is It becomes large, which is not preferable.

【0019】また不織布全体の目付は140〜400g
/m2が好ましく、140g/m2未満では形態安定性及
び耐久性の点で問題があり、逆に400g/m2を越え
ると圧力損失が大きく成りすぎると共に縫製加工や取扱
い性の点で問題がある。
The basis weight of the whole nonwoven fabric is 140 to 400 g.
/ M 2 is preferable, and if it is less than 140 g / m 2 , there is a problem in shape stability and durability. Conversely, if it exceeds 400 g / m 2 , pressure loss becomes too large and there is a problem in sewing processing and handling. There is.

【0020】本発明に係わる不織布の製法の一例につい
て説明すると、先ず疎水性繊維(好ましくは単糸繊度1
〜5デニール)を用いてニードルパンチ不織布を形成す
るが、この場合のニードルパンチ本数は、300〜40
0ポイント/cm2程度が好ましく、本数を多くして密
度を高くし過ぎると後で高圧水流処理の際の繊維同志の
交絡が不十分となるので好ましくない。
An example of the method for producing the non-woven fabric according to the present invention will be described. First, the hydrophobic fiber (preferably single yarn fineness 1
~ 5 denier) is used to form a needle punched nonwoven fabric, and the number of needle punches in this case is 300 to 40
About 0 points / cm 2 is preferable, and if the number is increased and the density is increased too much, the entanglement of the fibers in the subsequent high pressure water treatment becomes insufficient, which is not preferable.

【0021】次いで極細繊維からなる高密度層を形成す
るが、この場合機械的に分割可能な図1〜図4に示す如
き分割性複合繊維を用いてウェッブを形成し、このウェ
ッブを前記ニードルパンチ不織布の上に重ね合わせ、軽
くニードルパンチするか又はしないで、分割性複合繊維
ウェッブ側から高圧水流を噴射して、該分割性複合繊維
の分割と構成繊維同志の交絡を施すことにより、高密度
層を形成すると同時に該高密度層と前記ニードルパンチ
不織布からなる低密度層とを一体化することにより本発
明の不織布が形成される。
Next, a high-density layer composed of ultrafine fibers is formed. In this case, a mechanically dividable composite fiber as shown in FIGS. 1 to 4 is used to form a web, and this web is needle-punched. By superposing on a non-woven fabric and lightly needle punching or not, by injecting a high-pressure water stream from the splittable conjugate fiber web side, the splittable conjugate fiber is split and the constituent fibers are entangled with each other to achieve a high density. The nonwoven fabric of the present invention is formed by simultaneously forming the layer and integrating the high density layer and the low density layer made of the needle punched nonwoven fabric.

【0022】この場合、高圧水流処理は、不織布の厚さ
方向に沿って密度勾配をもたせるのに非常に有利ある。
In this case, the high-pressure water flow treatment is very advantageous in providing a density gradient along the thickness direction of the nonwoven fabric.

【0023】すなわち、高圧水流が直接衝突する表面に
おいて、高圧水流の衝撃力が最も大きいので分割性複合
繊維の分割がほぼ完全に行われると共に構成繊維同志の
交絡も充分に行われて密度が高くなり、内層に行くほど
衝撃力が弱くなるため分割性複合繊維の分割も不十分に
なると共に構成繊維同志の交絡も弱くなって密度が低く
なり、必然的に不織布の表面から下層に向かって密度勾
配が形成されるのである。
That is, since the impact force of the high-pressure water flow is the largest on the surface where the high-pressure water flow directly collides, the splittable conjugate fiber is almost completely split, and the constituent fibers are sufficiently entangled with each other to have a high density. Since the impact force becomes weaker toward the inner layer, splitting of the splittable composite fiber becomes insufficient and the entanglement of the constituent fibers also becomes weaker, resulting in a lower density, inevitably increasing the density from the surface of the nonwoven fabric toward the lower layer. A gradient is formed.

【0024】高圧水流による処理は、孔径0.05〜
0.40mmのノズルを用い、噴射圧力40〜200k
g/mm2で柱状流の形で行うのが好ましく、ノズルと
被処理ウエッブとの間隔は1〜5cmとするのが好まし
く、この間隔が大きすぎると高圧水流と空気とが混じり
あって高圧水流の衝撃力が小さくなり、複合繊維の分割
及び交絡効果が得られなくなる。
The treatment with a high-pressure water stream is performed with a pore size of 0.05 to
Injection pressure of 40-200k using 0.40mm nozzle
The columnar flow is preferably performed at g / mm 2 , and the distance between the nozzle and the web to be treated is preferably 1 to 5 cm. If this distance is too large, the high pressure water flow and the air are mixed and the high pressure water flow is mixed. The impact force of is decreased, and the effect of splitting and entanglement of the composite fiber cannot be obtained.

【0025】高圧水流処理におけるウェッブの支持体と
しては、ロール状物又はネット状物を用い、ネット状物
の場合は60メッシュ以上の緻密な組織のものを使用す
るのが好ましい。
As the support for the web in the high-pressure water flow treatment, a roll-shaped material or a net-shaped material is used, and in the case of the net-shaped material, it is preferable to use a material having a dense structure of 60 mesh or more.

【0026】[0026]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、実施例中の各物性値は以下の方法で測定した
ものである。
EXAMPLES The present invention will be described in more detail below with reference to examples, but the physical properties in the examples are measured by the following methods.

【0027】[目付]:JIS L−1085に準拠。[Unit weight]: According to JIS L-1085.

【0028】[厚み]:JIS L−1085(荷重2
0g/cm2)に準拠。
[Thickness]: JIS L-1085 (load 2
According to 0 g / cm 2 ).

【0029】[密度]:重量(g)/体積(cm3)で
算出。
[Density]: Calculated by weight (g) / volume (cm 3 ).

【0030】[圧力損失]:直径10cmのダクトに試
料をセットし、風速1m/秒で空気を吸引した時の、試
料前後の静圧差をU字管マノメータで測定。
[Pressure loss]: The static pressure difference before and after the sample was measured with a U-tube manometer when the sample was set in a duct having a diameter of 10 cm and air was sucked at a wind speed of 1 m / sec.

【0031】[通気度]:JIS L−1096(フラ
ジール法)に準拠。
[Air permeability]: According to JIS L-1096 (Flagille's method).

【0032】[捕集効率]:ポルトランドを線速5cm
/秒で試験用フィルターに供給したときのフィルター上
流側と下流側との濃度比を重量法で測定。
[Collection efficiency]: A linear velocity of 5 cm in Portland
The concentration ratio between the upstream side and the downstream side of the filter when supplied to the test filter at 1 / sec is measured by a gravimetric method.

【0033】(実施例1)固有粘度0.63(オルソク
ロロフェノール中、25℃で測定)のポリエチレンテレ
フタレートと、MI10(ASTM D−1238 2
30℃)のポリプロピレン とを容積比1:2で溶融複
合紡糸して、図1に示す断面の分割性複合未延伸糸を得
た。この未延伸糸を引き揃えて延伸温度80℃で3.5
倍延伸し単糸繊度を2デニールにした後、引続き押し込
み捲縮機にて20ケ/インチの捲縮を付与し、次いでオ
ートクレーブで120℃の湿熱にて10分間弛緩熱処理
した後38mmの長さに切断して分割性複合短繊維と
し、この分割性複合短繊維を用いて目付50g/m2
カードウェッブを形成した。
Example 1 Polyethylene terephthalate having an intrinsic viscosity of 0.63 (measured in orthochlorophenol at 25 ° C.) and MI10 (ASTM D-1238 2)
(30 ° C.) polypropylene was melt-composited at a volume ratio of 1: 2 to obtain a splittable composite undrawn yarn having a cross section shown in FIG. The unstretched yarns are drawn together and drawn at a stretching temperature of 80 ° C for 3.5
After being double-stretched to have a single yarn fineness of 2 denier, 20 crimps / inch of crimps are continuously applied by a crimping machine, and then relaxation heat treatment is performed in an autoclave at 120 ° C. for 10 minutes, and then a length of 38 mm. It was cut into splittable conjugate short fibers, and using this splittable conjugate short fiber, a card web having a basis weight of 50 g / m 2 was formed.

【0034】他方、ポリエステル短繊維(2デニール×
51mm)80%と、芯がポリエチレンテレフタレー
ト、鞘が融点120℃の改質ポリエステルである熱融着
性複合繊維20%とからなる密度0.11g/cm3
ニードルパンチ混合不織布を形成した。
On the other hand, polyester short fibers (2 denier x
51 mm) 80%, polyethylene terephthalate as the core, and 20% of the heat-fusible composite fiber as the sheath, which is a modified polyester having a melting point of 120 ° C., to form a needle-punched mixed nonwoven fabric having a density of 0.11 g / cm 3 .

【0035】次いで、混合不織布の上に、分割性複合短
繊維ウェッブを積層し、100メッシュのネットコンベ
ア上に載置して、分割性複合短繊維ウェッブ側から孔径
0.13mm、孔間隔1mmのノズルを用いて、20k
g/mm2、30kg/mm2、80kg/mm2、及び
100kg/mm2の圧力で4段階水の柱状流を噴射し
て、分割性複合短繊維の分割と構成繊維同志の交絡を施
した後乾燥し、150℃で熱融着処理を施した。
Then, the separable composite short fiber web was laminated on the mixed non-woven fabric and placed on a 100-mesh net conveyer, and the hole diameter was 0.13 mm and the hole interval was 1 mm from the side of the separable composite short fiber web. 20k with nozzle
A columnar flow of 4-stage water was jetted at a pressure of g / mm 2 , 30 kg / mm 2 , 80 kg / mm 2 , and 100 kg / mm 2 to split the splittable composite short fibers and entangle the constituent fibers. It was then dried and subjected to heat fusion treatment at 150 ° C.

【0036】分割後の極細繊維の繊度は、ポリエステル
繊維が0.12デニール、ポリプロピレン 繊維が0.
14デニールであった。また、不織布を電子顕微鏡で観
察したところ、表面部は完全に分割した極細繊維が相互
に交絡した高密度の層であり、中層部に近い部分では完
全に分割した極細繊維と分割が不完全な繊維、並びに下
層のポリエステル繊維とポリエステル熱融着性複合繊維
とが混在した層であり、最下層はポリエステル繊維とポ
リエステル熱融着性複合繊維とからなる密度の低い層で
あって、表面から下層に向けて密度勾配のある不織布で
あった。得られた不織布の各物性値を表1に示した。
The fineness of the ultrafine fibers after division is 0.12 denier for polyester fibers and 0.
It was 14 denier. Also, when observing the non-woven fabric with an electron microscope, the surface part is a high-density layer in which completely divided ultrafine fibers are entangled with each other, and in the part close to the middle layer part, the completely divided ultrafine fibers and the division are incomplete. Fiber, and a layer in which the polyester fiber and the polyester heat-fusible composite fiber of the lower layer are mixed, the lowest layer is a low density layer consisting of polyester fiber and polyester heat-fusible composite fiber, from the surface to the lower layer It was a non-woven fabric with a density gradient toward. The physical properties of the obtained non-woven fabric are shown in Table 1.

【0037】(実施例2)分割性複合短繊維からなる目
付50g/m2のウェッブの代わりに目付80g/m2
ウェッブを用いる以外は実施例1と同じ処理を行って得
た不織布の各物性値も表1に示した。
Example 2 Each of the non-woven fabrics obtained by the same treatment as in Example 1 except that a web having a basis weight of 80 g / m 2 was used instead of the web having a basis weight of 50 g / m 2 made of splittable composite short fibers. The physical property values are also shown in Table 1.

【0038】(比較例1、2、3)高密度層と低密度層
の密度を変更する以外は実施例2と同様に形成した不織
布(比較例1)、実施例1で用いたのと同様の分割性複
合短繊維のみからなる不織布(比較例2)、及び市販の
ポリエチレンテレフタレート繊維のみからなるニードル
パンチ不織布(比較例3)の各物性値も表1に示した。
(Comparative Examples 1, 2, 3) Nonwoven fabric formed in the same manner as in Example 2 except that the densities of the high-density layer and the low-density layer were changed (Comparative Example 1), the same as that used in Example 1. Table 1 also shows the physical properties of the non-woven fabric composed of the splittable composite staple fibers (Comparative Example 2) and the needle-punched non-woven fabric composed of the commercially available polyethylene terephthalate fiber (Comparative Example 3).

【0039】[0039]

【表1】 [Table 1]

【0040】(実施例3)ポリエステル短繊維(2デニ
ール×51mm)80%と、芯がポリエチレンテレフタ
レート、鞘が融点120℃の改質ポリエステルである熱
融着性複合繊維20%とからなる目付120g/m2
カードウェッブを形成し、このウェッブに目付30g/
2のコルバック(アクゾ社製スパンボンド不織布の商
品名)を重ね合わせてニードルパンチで仮結合した。
(Example 3) 120 g of a basis weight consisting of 80% polyester short fibers (2 denier x 51 mm) and 20% heat-fusible composite fiber whose core is polyethylene terephthalate and whose sheath is a modified polyester having a melting point of 120 ° C. / M 2 of a card web is formed, and a basis weight of 30 g /
m 2 corbags (trade name of spunbonded nonwoven fabric manufactured by Akzo Co., Ltd.) were superposed and temporarily joined by needle punching.

【0041】次いで、実施例1で用いたのと同様の分割
性複合短繊維を用いて目付60g/m2のカードウェッ
ブを形成し、このウェッブを上記仮結合した不織布に重
ねあわせ、分割性複合短繊維ウェッブ側から、水柱状流
を圧力120kg/mm2で噴射した。
Then, the same splittable composite short fibers as used in Example 1 were used to form a card web having a basis weight of 60 g / m 2 , and this web was laid on the above temporarily bonded nonwoven fabric to form a splittable composite. From the short fiber web side, a water columnar flow was jetted at a pressure of 120 kg / mm 2 .

【0042】得られた不織布は、極細繊維からなる表層
と、スパンボンド不織布からなる中層と、ポリエチレン
テレフタレート繊維及び熱有着性繊維からなる下層とで
構成された3層不織布であり、目付が210g/m2
表層の密度が0.21g/cm3、下層の密度が0.1
4g/cm3、通気度が35cc/cm2/秒であり、掃
除機用フィルターとして10m/分の風速下で使用した
ところ、2μm以上の塵の捕集効率が99.9%以上で
あった。
The obtained non-woven fabric was a three-layer non-woven fabric composed of a surface layer made of ultrafine fibers, a middle layer made of spunbonded non-woven fabric, and a lower layer made of polyethylene terephthalate fiber and heat-adhesive fiber. m 2 ,
The surface layer has a density of 0.21 g / cm 3 , and the lower layer has a density of 0.1.
4 g / cm 3 , air permeability was 35 cc / cm 2 / sec, and when used as a vacuum cleaner filter at a wind speed of 10 m / min, the collection efficiency of dust of 2 μm or more was 99.9% or more. .

【0043】またこの不織布は、ウェット・ドライ共用
の業務用掃除機のフィルターとして使用しても圧力損失
が少なく水洗い等の繰り返し使用後も性能の低下がなく
優れたものであった。
Further, this non-woven fabric was excellent in that it had little pressure loss even when it was used as a filter for a commercial vacuum cleaner for both wet and dry use and did not deteriorate in performance even after repeated use such as washing with water.

【0044】[0044]

【発明の効果】上述の如く構成された本発明の不織布
は、軽量で高捕集性を具備しながら圧力損失が少なく、
しかも柔軟性、耐久性、加工性、及び取扱い性等の優れ
た不織布であって、掃除機フィルター用として優れた適
性を有するものである。
EFFECT OF THE INVENTION The nonwoven fabric of the present invention constructed as described above is light in weight and has a high trapping property while having a small pressure loss.
Moreover, it is a non-woven fabric having excellent flexibility, durability, processability, and handleability, and has excellent suitability for a vacuum cleaner filter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で用いる分割性複合繊維の一例を示す横
断面図である。
FIG. 1 is a cross-sectional view showing an example of a splittable conjugate fiber used in the present invention.

【図2】本発明で用いる分割性複合繊維の他の例を示す
横断面図である。
FIG. 2 is a cross-sectional view showing another example of the splittable conjugate fiber used in the present invention.

【図3】本発明で用いる分割性複合繊維の他の例を示す
横断面図である。
FIG. 3 is a cross-sectional view showing another example of the splittable conjugate fiber used in the present invention.

【図4】本発明で用いる分割性複合繊維の他の例を示す
横断面図である。
FIG. 4 is a cross-sectional view showing another example of the splittable conjugate fiber used in the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単糸繊度0.5デニール以下の異形断面極
細繊維からなる密度0.17g/cm3以上の高密度層
と、疎水性繊維からなる密度0.15g/cm3以下の
低密度層からなり、これら両層が構成繊維同志の交絡に
より一体化されると共に断面方向に密度勾配を有するこ
とを特徴とする掃除機フィルター用不織布。
1. A high-density layer having a density of 0.17 g / cm 3 or more composed of ultrafine fibers of irregular cross section having a single yarn fineness of 0.5 denier or less, and a low density of 0.15 g / cm 3 or less composed of hydrophobic fibers. A non-woven fabric for a vacuum cleaner filter, which is composed of layers, and both layers are integrated by entanglement of constituent fibers and have a density gradient in a cross-sectional direction.
【請求項2】単糸繊度0.5デニール以下の極細繊維に
分割可能な分割性複合繊維からなるウェッブを疎水性繊
維からなる不織布上に重ね合わせ、前記ウェッブ上から
高圧水流を噴射して分割性複合繊維の分割と両層の交絡
一体化を行うことを特徴とする掃除機フィルター用不織
布の製法。
2. A web composed of separable conjugate fibers that can be divided into ultrafine fibers having a single yarn fineness of 0.5 denier or less is superposed on a nonwoven fabric composed of hydrophobic fibers, and a high-pressure water stream is jetted from the web to divide the fibers. A method for producing a nonwoven fabric for a vacuum cleaner filter, characterized in that the functional composite fiber is divided and both layers are entangled and integrated.
JP4295217A 1992-11-04 1992-11-04 Nonwoven fabric for cleaner filter and its production Pending JPH06146147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295217A JPH06146147A (en) 1992-11-04 1992-11-04 Nonwoven fabric for cleaner filter and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295217A JPH06146147A (en) 1992-11-04 1992-11-04 Nonwoven fabric for cleaner filter and its production

Publications (1)

Publication Number Publication Date
JPH06146147A true JPH06146147A (en) 1994-05-27

Family

ID=17817722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295217A Pending JPH06146147A (en) 1992-11-04 1992-11-04 Nonwoven fabric for cleaner filter and its production

Country Status (1)

Country Link
JP (1) JPH06146147A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053046A1 (en) * 2004-11-09 2006-05-18 Donaldson Company, Inc. Electronic enclosure filter containing polymer microfiber element
JP2013094699A (en) * 2011-10-28 2013-05-20 Toyota Boshoku Corp Filter medium for mist separator
EP3878537A4 (en) * 2018-11-09 2022-08-03 Roki Co., Ltd. Filter material for automatic transmission oil filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006053046A1 (en) * 2004-11-09 2006-05-18 Donaldson Company, Inc. Electronic enclosure filter containing polymer microfiber element
JP2013094699A (en) * 2011-10-28 2013-05-20 Toyota Boshoku Corp Filter medium for mist separator
EP3878537A4 (en) * 2018-11-09 2022-08-03 Roki Co., Ltd. Filter material for automatic transmission oil filter

Similar Documents

Publication Publication Date Title
US8410006B2 (en) Composite filter media with high surface area fibers
JP5629577B2 (en) Mixed fiber and non-woven fabric made therefrom
JP2703971B2 (en) Ultrafine composite fiber and its woven or nonwoven fabric
US20080166938A1 (en) Microfiber split film filter felt and method of making same
US20200270787A1 (en) Spunbond filters with low pressure drop and high efficiency
US10596499B2 (en) Pre-air-filter for internal combustion engine
DE202007015994U1 (en) Air filter medium
KR20220034116A (en) Fiber structure and its manufacturing method
JP2001279570A (en) Composite nonwoven fabric and method for producing the same
JPH06146147A (en) Nonwoven fabric for cleaner filter and its production
JP3912177B2 (en) Brushed nonwoven fabric, method for producing the same, and textile product using the same
KR20200116522A (en) Filter media
DE19804940B4 (en) Layered textile composite and process for its production
JP3907712B2 (en) Nonwoven fabric manufacturing method
JP2018023913A (en) Air filter
JP3573545B2 (en) Method for producing composite
JP2000189732A (en) Electrification type air filter
JPH08209521A (en) Production of filter having high collecting efficiency
JP3563483B2 (en) Air filter medium and method of manufacturing the same
JP7377644B2 (en) laminate
US20220203330A1 (en) Fibrillated bicomponent fibers and methods of making and uses thereof
JP2001327816A (en) Filter medium for filter and its manufacturing method
AU685052B2 (en) Post-treatment of nonwoven webs
JP6681160B2 (en) Filter material for automobile engine
JPS6010664Y2 (en) filter