JPH0614607A - Lifting and lowering controller of tiller - Google Patents

Lifting and lowering controller of tiller

Info

Publication number
JPH0614607A
JPH0614607A JP17585692A JP17585692A JPH0614607A JP H0614607 A JPH0614607 A JP H0614607A JP 17585692 A JP17585692 A JP 17585692A JP 17585692 A JP17585692 A JP 17585692A JP H0614607 A JPH0614607 A JP H0614607A
Authority
JP
Japan
Prior art keywords
angle
engine
lift
speed
lift arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17585692A
Other languages
Japanese (ja)
Other versions
JP2899479B2 (en
Inventor
Satoshi Iida
聡 飯田
Toshiya Fukumoto
俊也 福本
Shohei Nakai
章平 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17585692A priority Critical patent/JP2899479B2/en
Publication of JPH0614607A publication Critical patent/JPH0614607A/en
Application granted granted Critical
Publication of JP2899479B2 publication Critical patent/JP2899479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lifting Devices For Agricultural Implements (AREA)

Abstract

PURPOSE:To obtain a tilling depth controller enabling tilling depth control operation without using a back cover of a rotary tiller. CONSTITUTION:The objective controller controls a lift cylinder CY so that a lift arm angle sensor PM 3 for detecting a lifting and lowering angle of a lift arm to the machine body may be made to coincide with an objective angle corresponding to the objective tilling depth manually set by detection result of the lift arm angle sensor PM3 and a tilling depth setting device PM2 and is equipped with an engine revolution sensor S for detecting number of revolutions of an engine 10 and operates the difference between number of revolutions of the engine changed according to tilling operation and a standard number of revolutions and its changing ratio, judging a detection value of number of revolution of the engine obtained when a rotary tiller 2 lowered until the objective tilling depth as the standard number of revolution and obtains correction value of the objective angle based on preliminarily set map data from the operated difference and changing ratio and controls the lift cylinder CY based on corrected new objective angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走行機体にロータリー
耕耘装置を昇降自在に連結し、リフトシリンダにより昇
降駆動されるリフトアームによりロータリー耕耘装置を
昇降駆動するよう構成してある耕耘装置の昇降制御装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hoisting and lowering device for a rotary tiller which is connected to a traveling machine body so as to be able to move up and down, and is configured to lift and lower the rotary tiller by means of a lift arm which is driven up and down by a lift cylinder. Regarding the control device.

【0002】[0002]

【従来の技術】上記耕耘装置の昇降制御装置において、
従来では、一般にロータリー耕耘装置の後カバーを上部
側の横軸芯周りで揺動自在にロータリーカバー本体に取
付け、耕耘爪の土中への入り込みに伴い下端が接地して
揺動するこの後カバーの揺動量を検出して実耕深として
判断し、この検出値と設定器により人為設定される設定
耕深とが合致するようリフトシリンダを自動制御する構
成となっていた〔例えば特開平4−75504号参
照〕。
2. Description of the Related Art In the lifting control device for the above tiller,
Conventionally, generally, a rear cover of a rotary tiller is attached to a rotary cover body so as to be swingable around an upper horizontal axis, and the lower end is grounded and swings as the plowing nail enters the soil. The amount of rocking of the lift cylinder is detected to determine the actual tilling depth, and the lift cylinder is automatically controlled so that the detected value and the preset tilling depth manually set by the setting device match. 75504]].

【0003】[0003]

【発明が解決しようとする課題】ところが、上記従来構
造によるときは、例えば圃場が泥濘になっている場合に
は、走行機体の車輪が機体重量により土中に沈下してし
まうことになるので、ロータリー耕耘装置も伴に沈下し
ようとするが、このとき、圃場が軟弱であることに起因
して前記後カバーも土中に沈み込んでしまうことがあ
る。その結果、上記したような実耕深検出作動が精度よ
く行えないこととなり、耕耘爪が設定耕深よりも深く土
中に入りこんでエンジンに過大負荷がかかってエンジン
停止してしまうおそれが高くなり、作業能率が低下する
弊害があった。又、通常の硬さの圃場においても、耕耘
爪により耕起された領域の直後に後カバーによる押さえ
込み作動がなされる構造となっているから、後カバーに
よって耕起された土の表面が均されるので、例えば土中
での酸素の量を確保したい荒起こし作業を行う場合に
は、却って不都合な状況となる弊害もあった。本発明は
上記したような不具合点を解消することを目的としてい
る。
However, in the case of the above-mentioned conventional structure, for example, when the field is muddy, the wheels of the traveling machine body sink into the soil due to the weight of the machine body. Although the rotary tiller also tries to sink, the rear cover may also sink into the soil at this time due to the weakness of the field. As a result, the actual working depth detection operation as described above cannot be performed accurately, and there is a high risk that the plowing claws will penetrate deeper into the soil than the set working depth, overloading the engine and stopping the engine. However, there was an adverse effect that the work efficiency decreased. Further, even in a field of ordinary hardness, since the pressing operation by the rear cover is performed immediately after the area cultivated by the plowing claw, the surface of the soil cultivated by the rear cover is leveled. Therefore, for example, when performing a roughing work to secure the amount of oxygen in the soil, there is also an adverse effect of becoming an inconvenient situation. The present invention aims to eliminate the above-mentioned problems.

【0004】[0004]

【課題を解決するための手段】本発明の特徴構成は、冒
頭に記載した耕耘装置の昇降制御装置において、前記リ
フトアームの対機体昇降角度を検出するリフトアーム角
検出手段と、このリフトアーム角検出手段の検出結果と
耕深設定器により人為設定される目標耕深に対応する目
標角度とが合致するようリフトシリンダを制御する耕深
制御手段と、走行機体の搭載エンジンの回転数を検出す
るエンジン回転数検出手段と、ロータリー耕耘装置が前
記目標耕深まで下降した際のエンジン回転数検出値を基
準回転数として、耕耘作業に伴って変化するエンジン回
転数と前記基準回転数との差と変化率とを演算する演算
手段とを備え、この演算された前記差と変化率とから、
予め定まるマップデータに基づいて、前記目標角度の補
正値を求め、補正された新たな目標角度に基づいて前記
リフトシリンダを制御するよう構成してある点にある。
A characteristic configuration of the present invention is to provide a lift arm angle detecting means for detecting a lift angle of a lift arm with respect to a body, and a lift arm angle in the lift control apparatus for a tilling device described at the beginning. The working depth control means for controlling the lift cylinder so that the detection result of the detection means and the target angle corresponding to the target working depth manually set by the working depth setting device and the rotation speed of the engine mounted on the traveling machine body are detected. Engine rotation speed detection means, and the difference between the engine rotation speed and the reference rotation speed that changes along with the tilling work, with the engine rotation speed detection value when the rotary tiller descends to the target tillage depth as the reference rotation speed. And a calculation means for calculating the change rate, and from the calculated difference and the change rate,
It is configured such that a correction value of the target angle is obtained based on map data set in advance and the lift cylinder is controlled based on the corrected new target angle.

【0005】[0005]

【作用】走行機体とロータリー耕耘装置との連係構造の
機体的な特性から、リフトアームの対機体相対角度によ
り耕耘装置の耕深を判断するようにして、先ず、耕耘作
業の開始に際しては、人為設定器により所望の耕深にな
るよう耕深設定器により目標耕深を設定しておく。そし
て、前記目標耕深に対応するリフトアーム目標角度と実
際の検出リフトアーム角度とが合致するまで耕耘装置を
下降させ、目標耕深まで下降した際のエンジン回転数を
作業基準回転数と判断して、以降、作業走行するに伴っ
て、走行機体の前後傾斜や機体全体の土中への沈み込み
等に起因して耕耘装置の実耕深が変化するに連れて作業
負荷が変わりエンジン回転数が変化するから、このエン
ジン回転数を検出して前記基準回転数と比較しながら、
その回転数差と変化率とによって、前記目標耕深に対応
するリフトアーム目標角度を順次補正して、その補正値
に基づいて昇降制御することで、エンジンに過剰負荷が
掛かるのを防止しながら、常に、目標耕深に近い状態で
耕耘装置を昇降制御することが可能となる。
[Function] Based on the mechanical characteristics of the structure in which the traveling machine body and the rotary tiller are linked, the plowing depth of the tiller is determined based on the relative angle of the lift arm to the machine. First, when starting the tiller work, The target tillage depth is set by the tiller depth setter so that the desired tillage depth is set by the tiller. Then, the tilling device is lowered until the lift arm target angle corresponding to the target tillage depth and the actual detected lift arm angle match, and the engine speed at the time of reaching the target tillage depth is determined as the work reference speed. After that, as the work traveled, the work load changed as the actual tilling depth of the tiller changed due to the forward and backward inclination of the traveling body and the submersion of the entire body into the soil. Therefore, while detecting this engine speed and comparing it with the reference speed,
The lift arm target angle corresponding to the target plowing depth is sequentially corrected by the rotation speed difference and the rate of change, and lifting control is performed based on the correction value, while preventing the engine from being overloaded. , It is always possible to control the tiller to move up and down in a state close to the target tillage depth.

【0006】[0006]

【発明の効果】その結果、後カバーを用いることなく、
耕深をほぼ所定値に維持することが可能な昇降制御作動
を行うことができるものとなり、所望の耕深による荒起
こし作業を有効に行うことができ、泥濘での作業におけ
る頻繁なエンジン停止を防止して作業能率の向上を図る
ことができるものとなった。
As a result, without using the rear cover,
It will be possible to perform the lifting control operation that can maintain the plowing depth to a substantially predetermined value, and it will be possible to effectively perform the roughing work with the desired plowing depth, and to prevent frequent engine stop during mud work. It has become possible to prevent this and improve work efficiency.

【0007】[0007]

【実施例】以下、実施例を図面に基いて説明する。図8
に乗用型耕耘機を示している。この耕耘機は乗用型走行
機体の後部にリンク機構1を介して昇降自在にロータリ
ー耕耘装置2を連結して、走行機体を操縦しながら圃場
の耕耘作業を行えるよう構成してある。この耕耘機は前
記ロータリー耕耘装置2による耕起深さ、即ち、実耕深
を設定値に維持すべく自動制御する構成としてある。つ
まり、前記リンク機構1における左右リンク3をリフト
シリンダCYにより横軸芯周りで昇降揺動駆動されるリ
フトアーム4によりリフトロッド5を介して吊り上げ、
耕耘装置2を駆動昇降させるよう構成するとともに、耕
耘装置2における後カバー6をロータリーカバー本体7
に横軸芯周りで揺動自在に枢支連結し、耕耘爪2aの土
中への入り込みに伴う後カバー6の相対上下動量を実耕
深としてポテンショメータ式のカバー角センサPM1に
より検出し、このカバー角センサPM1による検出値が
ポテンショメータ式耕深設定器PM2により人為設定さ
れる設定耕深と合致するよう、リフトシリンダCYに対
する電磁式油圧制御弁Vを制御して実耕深を設定値に維
持するよう構成してある。又、耕耘装置2を下降した耕
耘作業位置と大きく上昇する非作業位置とに人為的に切
り換え操作するための昇降レバー8を備えるとともに、
リフトアーム4の対機体相対角度を検出するポテンショ
メータ式リフトアーム角センサPM3を備えてある。そ
して、前記耕深制御作動において、圃場が泥濘等であり
走行機体の車輪が土中に沈み込み後カバー6も伴に沈み
込むような場合には、不必要な後カバー6の沈み込みに
よるエンジン停止を未然に防止できるよう構成してあ
る。詳述すると、図1に示すように、前記電磁式油圧制
御弁Vを供給電流量に対応して開度を比例変更制御自在
な電磁式比例流量制御制御弁で構成し、この制御弁Vを
マイクロコンピュータを備えた制御装置9により駆動制
御するよう構成するとともに、走行機体に搭載されたエ
ンジン10の出力回転数を検出する回転数検出センサS
〔回転数検出手段の一例〕を設け、この回転数検出セン
サSの出力も制御装置9に与えられるよう構成してあ
る。そして、前記制御装置9には、耕耘装置2が設定目
標耕深まで下降した際のエンジン回転数検出値を基準回
転数として、耕耘作業に伴って変化するエンジン回転数
と前記基準回転数との差と変化率とを演算する演算手段
Aと、耕深設定器による設定目標耕深を、前記演算手段
Aにより演算される前記差と変化率より、予め定まるマ
ップデータに基づいて補正し、補正された新たなデータ
に基づいて、この補正目標耕深と実耕深とが合致するよ
うリフトシリンダを制御するカバー角耕深制御手段Bと
を制御プログラム形式で備えてあり、制御装置9は以下
のように制御を実行する。図4、図5に示すように、前
記昇降レバー8が上昇位置にあるときは上昇位置を維持
し、耕耘装置2が上昇位置にある状態から昇降レバー8
が下降位置に操作されると、そのときの耕深設定器PM
2の出力b〔設定目標耕深〕、カバー角検出センサの出
力a〔実耕深〕、リフトアーム角センサPM3の出力及
びエンジン回転数センサSの出力の夫々を読み込み、リ
フトシリンダCYを下降作動させる〔ステップ1〜
4〕。このとき、下降速度は目標耕深aと実耕深bとの
偏差の量に応じた速度になるよう比例制御する。そし
て、リフトアーム角度より判断して耕耘装置2が接地す
る直前において下降速度を、前記比例制御に基づく速度
よりも遅い下降速度でゆっくり耕耘装置を接地下降さ
せ、接地後はエンジン回転数の検出結果に基づいて、こ
の検出回転数の変化量と変化率に応じて、予め定まる特
性により、下降速度を制御してエンジン停止を防止する
〔ステップ5、6〕。カバー角検出センサPM1による
検出実耕深aが目標耕深bと合致すると、下降作動を停
止する〔ステップ7、8〕とともに、そのときのエンジ
ン回転数を基準回転数NEとしてメモリ11に記憶させ
る〔ステップ9〕。尚、このときの検出回転数がエンジ
ン停止する直前のような低い回転数であるときは、予め
設定される最低設定回転数を基準回転数として記憶させ
る。そして、耕耘作業に伴って所定時間毎にそのときの
エンジン回転数Nと前記基準回転数NEの差(NE−
N)、及び変化率dN/dtとを演算し〔ステップ1
0〕、演算された前記差と変化率より、予め定められる
マップデータに基づいて設定目標耕深bの補正量Δbを
演算する〔ステップ11〕。このときのマップデータは
所謂ファジー制御により設定される。次に、上記したよ
うに演算された補正値Δbにより設定目標耕深を補正し
た後の値b1を新たな目標耕深として設定して〔ステッ
プ12〕、この新たな目標耕深b1に基づいてリフトシ
リンダCYを昇降制御する〔ステップ13〜15〕。つ
まり、検出実耕深と補正目標耕深との偏差に比例した作
動速度となる流量が供給されるよう偏差−流量マップ並
びに流量−電流マップのマップデータに基づいて、電磁
制御弁Vに求められた電流を供給するのである。このよ
うな制御が行われる耕耘作業中に走行クラッチが切り操
作され、そのことがクラッチ検出スイッチSWにより検
出されると、再度クラッチ入り操作されるまで、そのク
ラッチ切り操作が行われた時点でのリフトアーム角度に
維持固定する〔ステップ16、17〕。又、途中でアク
セルレバー12が変更操作され、アクセルレバー検出セ
ンサPM4によりそのことが検出されると、センサ検出
値が安定した値になるまでは操作が行われた時点でのリ
フトアーム角度を維持し、センサ検出値が安定すると、
予め定まるアクセルレバー12の変位量と無負荷回転数
との機械的特性より初期無負荷回転数N0と変更操作後
の無負荷回転数N1との差を、前記基準回転数NEから
差し引いて新たな基準回転数として修正する〔ステップ
18〜21〕。そして、このような制御を枕地での上昇
操作が行われるまで維持し、上昇操作されると〔ステッ
プ22〕、新たな基準回転数NEを再設定してこのよう
な制御を実行する。
Embodiments will be described below with reference to the drawings. Figure 8
Shows a riding-type cultivator. In this cultivator, a rotary cultivating device 2 is movably connected to a rear portion of a riding type traveling body via a link mechanism 1 so that a cultivating work in a field can be performed while operating the traveling body. This tiller is configured to automatically control the tilling depth by the rotary tiller 2, that is, the actual tilling depth so as to maintain the set value. That is, the left and right links 3 in the link mechanism 1 are lifted via the lift rod 5 by the lift arm 4 which is driven to move up and down around the horizontal axis by the lift cylinder CY,
The cultivating device 2 is configured to be driven up and down, and the rear cover 6 of the cultivating device 2 is attached to the rotary cover body 7.
Is pivotally connected about the axis of the horizontal axis so that the relative vertical movement amount of the rear cover 6 due to the plowing of the tilling claw 2a into the soil is detected by the potentiometer-type cover angle sensor PM1 as the actual plowing depth. The electromagnetic hydraulic control valve V for the lift cylinder CY is controlled to maintain the actual tillage depth at the set value so that the detected value by the cover angle sensor PM1 matches the set tillage depth manually set by the potentiometer-type tiller depth setter PM2. It is configured to do. In addition, an elevating lever 8 for artificially switching the plowing device 2 between a lowered plowing working position and a significantly raised non-working position is provided.
A potentiometer type lift arm angle sensor PM3 for detecting the relative angle of the lift arm 4 to the machine body is provided. In the operation of the plowing depth control, when the field is mud or the like and the wheels of the traveling vehicle body are submerged in the soil and the subcover 6 is also submerged, the engine is unnecessarily submerged. It is configured so that the stoppage can be prevented. More specifically, as shown in FIG. 1, the electromagnetic hydraulic control valve V is composed of an electromagnetic proportional flow rate control valve whose opening can be proportionally changed and controlled according to the amount of supplied current. A rotation speed detection sensor S configured to be driven and controlled by a control device 9 including a microcomputer and for detecting an output rotation speed of an engine 10 mounted on a traveling machine body.
An example of the rotation speed detection means is provided, and the output of the rotation speed detection sensor S is also provided to the control device 9. Then, the control device 9 uses the engine speed detection value when the cultivating device 2 descends to the set target tillage depth as a reference speed, and the engine speed and the reference speed that change with the tilling work. A calculation means A for calculating a difference and a rate of change and a set target tillage depth by a tilling depth setting device are corrected based on map data determined in advance from the difference and the rate of change calculated by the means for correction A, and correction is made. On the basis of the new data obtained, the cover angle plowing depth control means B for controlling the lift cylinder so that the corrected target plowing depth and the actual plowing depth match is provided in a control program format. Control is executed as follows. As shown in FIGS. 4 and 5, when the elevating lever 8 is in the raised position, the elevating lever 8 is maintained in the raised position, and when the tiller 2 is in the raised position.
Is operated to the lowered position, the plowing depth setting device PM at that time
2 output b [set target tillage depth], output a of cover angle detection sensor a [actual tillage depth], output of lift arm angle sensor PM3 and output of engine speed sensor S, and lift cylinder CY is lowered. Let [Step 1
4]. At this time, the descending speed is proportionally controlled so as to be a speed corresponding to the amount of deviation between the target tillage depth a and the actual tillage depth b. Then, the lowering speed immediately before the cultivating device 2 comes into contact with the ground is judged by the lift arm angle, and the cultivating device is slowly grounded down at a lowering speed that is slower than the speed based on the proportional control. Based on the above, the descending speed is controlled to prevent the engine from being stopped by the characteristic determined in advance according to the amount of change and the rate of change of the detected rotation speed [steps 5 and 6]. When the actual cultivation depth a detected by the cover angle detection sensor PM1 matches the target cultivation depth b, the descending operation is stopped [steps 7 and 8], and the engine speed at that time is stored in the memory 11 as the reference speed NE. [Step 9]. When the detected rotation speed at this time is a low rotation speed just before the engine stops, the preset minimum rotation speed is stored as the reference rotation speed. Then, the difference between the engine speed N at that time and the reference speed NE (NE-
N) and the rate of change dN / dt are calculated [Step 1
0], the correction amount Δb of the set target plowing depth b is calculated from the calculated difference and the rate of change based on predetermined map data [step 11]. The map data at this time is set by so-called fuzzy control. Next, the value b1 after correcting the set target tillage depth by the correction value Δb calculated as described above is set as a new target tillage depth [step 12], and based on this new target tillage depth b1. The lift cylinder CY is vertically controlled [steps 13 to 15]. That is, the electromagnetic control valve V is determined based on the map data of the deviation-flow rate map and the flow rate-current map so that the flow rate having an operating speed proportional to the deviation between the detected actual cultivation depth and the corrected target cultivation depth is supplied. Supply the electric current. When the traveling clutch is disengaged during the tilling work in which such control is performed, and this is detected by the clutch detection switch SW, the clutch disengagement operation is performed until the clutch disengagement operation is performed again. The lift arm angle is maintained and fixed [steps 16 and 17]. When the accelerator lever 12 is changed and operated by the accelerator lever detection sensor PM4 on the way, the lift arm angle at the time of the operation is maintained until the sensor detection value reaches a stable value. If the sensor detection value becomes stable,
From the mechanical characteristics of the displacement amount of the accelerator lever 12 and the no-load rotational speed determined in advance, the difference between the initial no-load rotational speed N0 and the no-load rotational speed N1 after the changing operation is subtracted from the reference rotational speed NE to obtain a new value. It is corrected as the reference rotation speed [steps 18 to 21]. Then, such control is maintained until the raising operation is performed on the headland, and when the raising operation is performed [step 22], a new reference rotational speed NE is reset and such control is executed.

【0008】この耕耘機では、上記したような後カバー
6による耕深制御作動に代えて、後カバー6を上方に大
きく退避させた非使用状態でも耕深制御を行うことがで
きるよう構成してある。詳述すると、後カバー6を使用
しないときは図8に仮想線で示すように、後カバー6を
大きく上昇させてピン固定して位置保持させておく。そ
のときカバー角検出センサPM1は上記したカバー角耕
深制御における通常作動域から大きく外れた出力となる
から、この検出値が設定値eよりも大であるときは、後
記するようなエンジン回転制御状態に設定され、設定値
eより小であるときは上記したようなカバー角耕深制御
状態に設定されるよう自動切り換え制御する切換手段C
を制御装置9に備えてある〔図2のステップ00〕参
照〕。エンジン回転制御手段Dは制御装置9に制御プロ
グラム形式で備えられ、制御装置9は次にように制御す
る。図6、図7に示すように、昇降レバー8が下降操作
されると、耕深設定器PM2による目標耕深を読み込
み、この目標耕深に対応するリフトアーム角度d〔目標
リフトアーム角度〕を演算する〔ステップ1〜4〕。次
に、リフトアーム角検出センサPM3の出力とエンジン
回転数検出センサSの出力を読み込み、耕耘装置2を下
降操作させる〔ステップ5、6〕。このとき、下降速度
は目標耕深と実耕深との偏差の量に応じた速度になるよ
う比例制御する。そして、リフトアーム角度より判断し
て耕耘装置2が接地する直前において下降速度を、前記
比例制御に基づく速度よりも遅い下降速度でゆっくり耕
耘装置2を接地下降させ、接地後はエンジン回転数の検
出結果に基づいて、この検出回転数の変化量と変化率に
応じて、予め定まる特性により、下降速度を制御してエ
ンジン停止を防止する〔ステップ7、8〕。そして、リ
フトアーム角検出センサPM3の検出値cが前記目標リ
フトアーム角度dに合致すると下降を停止し、そのとき
のエンジン回転数を基準回転数NEとしてメモリ11に
記憶する〔ステップ9〜11〕。そして、耕耘作業に伴
って所定時間毎にそのときのエンジン回転数Nと前記基
準回転数NEの差(NE−N)、及び変化率dN/dt
とを演算し〔ステップ12〕、演算された前記差(NE
−N)と変化率dN/dtより、予め定められるマップ
データに基づいて設定目標耕深dの補正量Δdを演算す
る〔ステップ13〕。このときのマップデータは所謂フ
ァジー制御により設定される。次に、上記したように演
算された補正値Δdにより目標リフトアーム角度を補正
した後の値d1を新たな目標リフトアーム角度として設
定して〔ステップ12〕、この新たな目標値に基づいて
リフトシリンダCYを昇降制御する〔ステップ15〜1
7〕。そして、上記したようなカバー角制御のステップ
16〜21におけると同様なクラッチ制御及びアクセル
レバー制御を実行し〔ステップ18〜23〕、このよう
な制御を枕地での上昇操作が行われるまで維持し、上昇
操作されると〔ステップ24〕、新たな基準回転数を再
設定してこのような制御を実行する。
In this cultivator, instead of the operation of controlling the working depth by the rear cover 6 as described above, the working depth can be controlled even when the rear cover 6 is largely retracted upward and not in use. is there. More specifically, when the rear cover 6 is not used, the rear cover 6 is largely lifted and pinned and held in position as shown by a phantom line in FIG. At this time, the cover angle detection sensor PM1 has an output that greatly deviates from the normal operating range in the cover angle plowing depth control described above. Therefore, when the detected value is larger than the set value e, the engine rotation control as described below is performed. State, and when it is smaller than the set value e, switching means C for automatically switching so as to set the cover angle plowing depth control state as described above.
Is provided in the controller 9 [see step 00 in FIG. 2]. The engine rotation control means D is provided in the control device 9 in the form of a control program, and the control device 9 controls as follows. As shown in FIG. 6 and FIG. 7, when the elevating lever 8 is operated to descend, the target tillage depth by the tiller depth setting device PM2 is read, and the lift arm angle d (target lift arm angle) corresponding to this target tiller depth is read. Calculate [Steps 1 to 4]. Next, the outputs of the lift arm angle detection sensor PM3 and the engine speed detection sensor S are read, and the tiller 2 is operated to descend [steps 5 and 6]. At this time, the descending speed is proportionally controlled so as to be a speed corresponding to the amount of deviation between the target tillage depth and the actual tillage depth. Then, the lowering speed immediately before the cultivating device 2 comes in contact with the ground is judged by the lift arm angle, and the cultivating device 2 is slowly grounded down at a lowering speed than the speed based on the proportional control, and after the grounding, the engine speed is detected. Based on the result, the descending speed is controlled to prevent the engine from stopping according to the characteristic determined in advance in accordance with the change amount and the change rate of the detected rotation speed [steps 7 and 8]. When the detected value c of the lift arm angle detection sensor PM3 matches the target lift arm angle d, the descent is stopped, and the engine speed at that time is stored in the memory 11 as the reference speed NE [steps 9 to 11]. . Then, along with the tilling work, the difference (NE-N) between the engine speed N at that time and the reference speed NE and the change rate dN / dt at every predetermined time.
And [step 12], and the calculated difference (NE
-N) and the rate of change dN / dt are used to calculate the correction amount Δd of the set target plowing depth d based on predetermined map data [step 13]. The map data at this time is set by so-called fuzzy control. Next, the value d1 after correcting the target lift arm angle by the correction value Δd calculated as described above is set as a new target lift arm angle [step 12], and the lift is performed based on this new target value. Control the cylinder CY up and down [Steps 15-1
7]. Then, the same clutch control and accelerator lever control as those in steps 16 to 21 of the cover angle control as described above are executed [steps 18 to 23], and such control is maintained until the raising operation on the headland is performed. Then, when the ascending operation is performed [step 24], a new reference rotational speed is reset and such control is executed.

【0009】尚、特許請求の範囲の項に図面との対照を
容易にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for facilitating the comparison with the drawings, the present invention is not limited to the configuration of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】制御ブロック図FIG. 1 is a control block diagram.

【図2】切換制御フローチャート[Fig. 2] Switching control flowchart

【図3】制御特性図[Fig. 3] Control characteristic diagram

【図4】カバー角耕深制御フローチャート[Fig. 4] Cover angle plowing depth control flowchart

【図5】カバー角耕深制御フローチャートFIG. 5: Cover angle plowing depth control flowchart

【図6】エンジン回転数制御フローチャートFIG. 6 is an engine speed control flowchart.

【図7】エンジン回転数制御フローチャートFIG. 7 is an engine speed control flowchart.

【図8】耕耘機の全体側面図[Figure 8] Overall side view of the cultivator

【符号の説明】[Explanation of symbols]

2 ロータリー耕耘装置 4 リフトアーム 10 エンジン A 演算手段 D 耕深制御手段 d,d1 目標角度 Δd 補正値 N エンジン回転数 NE 基準回転数 NE−N 回転数差 dN/dt 変化率 PM2 耕深設定器 PM3 リフトアーム角検出手段 S エンジン回転数検出手段 2 rotary tiller 4 lift arm 10 engine A computing means D tilling depth control means d, d1 target angle Δd correction value N engine speed NE reference speed NE-N speed difference dN / dt change rate PM2 tilling depth setter PM3 Lift arm angle detection means S Engine speed detection means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 走行機体にロータリー耕耘装置(2)を
昇降自在に連結し、リフトシリンダ(CY)により昇降
駆動されるリフトアーム(4)によりロータリー耕耘装
置(2)を昇降駆動するよう構成してある耕耘装置の昇
降制御装置であって、前記リフトアーム(4)の対機体
昇降角度を検出するリフトアーム角検出手段(PM3)
と、このリフトアーム角検出手段(PM3)の検出結果
と耕深設定器(PM2)により人為設定される目標耕深
に対応する目標角度(d)とが合致するようリフトシリ
ンダ(CY)を制御する耕深制御手段(D)と、走行機
体の搭載エンジン(10)の回転数を検出するエンジン
回転数検出手段(S)と、ロータリー耕耘装置(2)が
前記目標耕深まで下降した際のエンジン回転数検出値を
基準回転数(NE)として、耕耘作業に伴って変化する
エンジン回転数(N)と前記基準回転数との差(NE−
N)と変化率(dN/dt)とを演算する演算手段
(A)とを備え、この演算された前記差(NE−N)と
変化率(dN/dt)とから、予め定まるマップデータ
に基づいて、前記目標角度(d)の補正値(Δd)を求
め、補正された新たな目標角度(d1)に基づいて前記
リフトシリンダ(CY)を制御するよう構成してある耕
耘装置の昇降制御装置。
1. A rotary tiller (2) is movably connected to a traveling machine body, and a rotary arm (4) is vertically moved by a lift cylinder (CY) to drive the rotary tiller (2) up and down. A lift arm angle detection means (PM3) for detecting the lift angle of the lift arm (4) with respect to the body, which is a lift control device for a tilling device.
And the lift cylinder (CY) is controlled so that the detection result of the lift arm angle detection means (PM3) and the target angle (d) corresponding to the target working depth manually set by the working depth setting device (PM2) match. When the working depth control means (D), the engine speed detecting means (S) for detecting the speed of the engine (10) mounted on the traveling machine body, and the rotary tiller (2) are lowered to the target working depth. The engine speed detection value is used as a reference speed (NE), and the difference (NE-) between the engine speed (N) and the reference speed that changes with the tilling work.
N) and a change rate (dN / dt) are included in the calculation means (A), and the calculated difference (NE-N) and change rate (dN / dt) are converted into predetermined map data. Based on this, a correction value (Δd) of the target angle (d) is obtained, and the lifting control of the tiller is configured to control the lift cylinder (CY) based on the corrected new target angle (d1). apparatus.
JP17585692A 1992-07-03 1992-07-03 Tilting device lifting control device Expired - Fee Related JP2899479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17585692A JP2899479B2 (en) 1992-07-03 1992-07-03 Tilting device lifting control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17585692A JP2899479B2 (en) 1992-07-03 1992-07-03 Tilting device lifting control device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP15940398A Division JP3280311B2 (en) 1998-06-08 1998-06-08 Tilting device lifting control device

Publications (2)

Publication Number Publication Date
JPH0614607A true JPH0614607A (en) 1994-01-25
JP2899479B2 JP2899479B2 (en) 1999-06-02

Family

ID=16003399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17585692A Expired - Fee Related JP2899479B2 (en) 1992-07-03 1992-07-03 Tilting device lifting control device

Country Status (1)

Country Link
JP (1) JP2899479B2 (en)

Also Published As

Publication number Publication date
JP2899479B2 (en) 1999-06-02

Similar Documents

Publication Publication Date Title
JPH0614607A (en) Lifting and lowering controller of tiller
JPH06141606A (en) Controller for elevation of tilling device
JPH0614609A (en) Lifting and lowering controller of tiller
JPH0614608A (en) Lifting and lowering controller of tiller
JP3280311B2 (en) Tilting device lifting control device
JP2781316B2 (en) Tilting device lifting control device
JPH06141607A (en) Controller for elevation of tilling device
JP2869268B2 (en) Tilting device lifting control device
JP3321517B2 (en) Agricultural tractor
JPH10178808A (en) Tractor
JP2510032B2 (en) Lifting control device for work equipment
JP2527042B2 (en) Hydraulic lifting control device for ground work machine
JPH0779607A (en) Rise and fall control device for tilling device
JP2559253Y2 (en) Automatic Tillage Depth Controller for Ground Work Vehicle
JPH06237614A (en) Ground working machine
JP3082326B2 (en) Hydraulic controller for power farm machine
JPH08228509A (en) Lift-controlling apparatus for tiller
JP3221065B2 (en) Cover rotation control device in tillage device
JP3074812B2 (en) Plow-in control device for ground work machine
JP2569699B2 (en) Tractor lifting control
JPH05336804A (en) Depth controller of rotary tiller
JPH05292803A (en) Control device for rise and fall of working machine
JPH0724487B2 (en) Feed back controller for ground work machine
JPH0436105A (en) Apparatus for controlling tilling depth of ground-working machine
JPH04365402A (en) Lift control unit for working machine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees