JPH0614563B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0614563B2
JPH0614563B2 JP8088785A JP8088785A JPH0614563B2 JP H0614563 B2 JPH0614563 B2 JP H0614563B2 JP 8088785 A JP8088785 A JP 8088785A JP 8088785 A JP8088785 A JP 8088785A JP H0614563 B2 JPH0614563 B2 JP H0614563B2
Authority
JP
Japan
Prior art keywords
layer
thin
thin layer
crystal
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8088785A
Other languages
Japanese (ja)
Other versions
JPS61239679A (en
Inventor
武 桜井
猛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP8088785A priority Critical patent/JPH0614563B2/en
Publication of JPS61239679A publication Critical patent/JPS61239679A/en
Publication of JPH0614563B2 publication Critical patent/JPH0614563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体装置、特に赤外から遠赤外領域の高効率
発光、受光素子に関するものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor device, and more particularly to a highly efficient light emitting / receiving element in the infrared to far infrared region.

(従来技術) 光技術、とりわけ、光ファイバ作製技術の進歩は著しく
ファイバ低損失化は近赤外から赤外域にわたろうとして
いる。また近い将来、TPXの線引きによる遠赤外領域
の光技術も展開しようとしている。このような研究開発
の急進展の中で、遠赤外領域の光源としてガスレーザと
電子管以外には無い事が問題視されている。
(Prior Art) Advances in optical technology, in particular, optical fiber manufacturing technology are remarkable, and reduction of fiber loss is going from near infrared to infrared. In the near future, we will also develop optical technology in the far infrared region by drawing TPX. With such rapid progress of research and development, it is considered that there is no light source in the far infrared region other than the gas laser and the electron tube.

簡便で経済的な光源を固体素子で実現する努力が長く行
なわれてきた。それらは、イパットダイオードやSIT
の極微細化構造を用いるものであった。そこでは既に利
得を得ているために発振が可能であり、コヒーレント光
を得ることができるが、その動作周波数上限は予想以上
に低いものであった。此処の電子の走行を直接利用する
従来の素子では、バンド間、あるいはバンド内の電子緩
和等が伴うことは避けられず、それらの動作にかかわる
時間が長いため、上限周波数が低く抑えられてしまう。
Efforts have been made for a long time to realize a simple and economical light source with a solid-state element. They are Ipat diode and SIT
Was used. Since the gain is already obtained there, oscillation is possible and coherent light can be obtained, but the operating frequency upper limit was lower than expected. In the conventional device that directly uses the traveling of electrons here, it is unavoidable that electrons are relaxed between bands or within the band, and the operation time is long, so the upper limit frequency is suppressed low. .

この種の問題を解決する手段として登場したのがSi−
MOSFETの表面反転層内2次元電子のプラズモン放
射の概念である。古くは、物性研究の中でプラズモン検
出の一手法として用いられてきたのであるが、近年の良
質なMOS界面作製技術の進歩によって、遠赤外放射の
ための装置として用いることができるようになった。周
知のように、表面2次元電子ガス中には、電子の集団運
動がプラズモン量子として励起されている。プラズモン
電子は電磁波(SWC:surface wave coutled to surfa
ce charge)であるが、本質的に非輻射モードであるの
で、素子の内部に光出力としてエネルギーを取り出すこ
とは困難である。この側近に電磁回折格子を設ければ、
SWCは回折格子の持つ電磁輻射モードと結合して輻射
電磁波を励起し、素子の外部へ電磁輻射できるので、光
源としての能力を有することになる。
Si- has emerged as a means of solving this type of problem.
This is the concept of plasmon radiation of two-dimensional electrons in the surface inversion layer of the MOSFET. It has been used as a method for plasmon detection in the study of physical properties for a long time, but due to the recent progress in high-quality MOS interface fabrication technology, it can be used as a device for far infrared radiation. It was As is well known, in the surface two-dimensional electron gas, collective motion of electrons is excited as plasmon quantum. Plasmon electrons are electromagnetic waves (SWC: surface wave coutled to surfa)
However, since it is essentially a non-radiation mode, it is difficult to extract energy as light output inside the device. If an electromagnetic diffraction grating is installed near this side,
The SWC excites a radiated electromagnetic wave by combining with the electromagnetic radiation mode of the diffraction grating and can emit electromagnetic radiation to the outside of the element, and therefore has a capability as a light source.

(発明の解決すべき問題点) 従来から使用されてきたSi−MOSFETの表面電子
ガスの欠点は電子の平均自由行程が短かいことにあっ
た。電子は印加電界により平均自由行程内で加速され、
それ自体のエネルギーを高める。この余分に高められた
エネルギーがSWCの励起に寄与するのである。Si−
MOSFETを用いる限り短かい平均自由行程では電子
エネルギーを高めることが困難であり、したがってSW
Cの励起の効率も著しく低い値に留まっていた。
(Problems to be Solved by the Invention) A drawback of the surface electron gas of the Si-MOSFET that has been conventionally used is that the mean free path of electrons is short. The electrons are accelerated within the mean free path by the applied electric field,
Boosts its own energy. This extraly increased energy contributes to the excitation of SWC. Si-
As long as a MOSFET is used, it is difficult to increase the electron energy in a short mean free path, and therefore SW
The efficiency of C excitation was also extremely low.

仮にSi−MOSFETを低温に冷却しても、これを改
善することは困難であった。Si−MOSFETの界面
に内在するイオン化固定電荷が低温下で益々長距離オー
ダの電子散乱を起すためであり、本素子を用いる場合の
決定的な問題であった。
Even if the Si-MOSFET is cooled to a low temperature, it is difficult to improve it. This is because the ionized fixed charges existing at the interface of the Si-MOSFET cause electron scattering in the order of longer distance at low temperatures, which was a decisive problem when using this device.

(発明の目的) 本発明はこれらの欠点を除去するために、高い電子移動
度を有する構成の半導体結晶層を用いた素子構造を提供
するものである。
(Object of the Invention) In order to eliminate these drawbacks, the present invention provides a device structure using a semiconductor crystal layer having a structure having high electron mobility.

(発明の構成) 即ち、本発明は半絶縁性結晶面上にノンドープで成る第
1結晶薄層、第1結晶薄層よりも電子親和力の小さな組
成を有するノンドープで成る第2結晶極薄層、第2結晶
薄層と同一組成で高い濃度の不純物を含有する第3薄層
および第2薄層と同一組成でノンドープで成る第4薄層
を連続エピタキシャル成長したウエハであって、選択エ
ッチングで現われた第3薄層面上に2箇所のオーミック
電極を設け、該オーミック電極間の第4薄層面上に良導
体金属の回折格子を具備して、上記第1結晶薄層と上記
第2結晶薄層との界面近傍の2次元電子ガスをプラズモ
ン励起して得られる非輻射電磁波を上記回折格子と結合
させて輻射性電磁波に変換する光源の機能、さらに入射
電磁波により2次元電子ガス中に非輻射電磁波を直接励
起する機能を発現することを特徴とする半導体装置を提
供する。
(Structure of the Invention) That is, the present invention relates to a non-doped first crystal thin layer on a semi-insulating crystal plane, a non-doped second crystal ultra-thin layer having a composition having an electron affinity smaller than that of the first crystal thin layer, A wafer obtained by continuous epitaxial growth of a third thin layer having the same composition as the second crystalline thin layer and containing a high concentration of impurities, and a fourth thin layer having the same composition as the second thin layer and non-doped, which was revealed by selective etching. Two ohmic electrodes are provided on the surface of the third thin layer, and a diffraction grating of a good conductor metal is provided on the surface of the fourth thin layer between the ohmic electrodes so that the first crystal thin layer and the second crystal thin layer are formed. A function of a light source that converts a non-radiative electromagnetic wave obtained by plasmon-exciting a two-dimensional electron gas near the interface into a radiative electromagnetic wave by combining with the above diffraction grating. Further, a non-radiative electromagnetic wave is directly introduced into the two-dimensional electron gas by an incident electromagnetic wave. excitation There is provided a semiconductor device characterized by exhibiting the function of

本発明を図面に基づいて説明する。The present invention will be described with reference to the drawings.

第1図は本発明半導体装置の一態様を示す平面図で第1
a図その部分拡大図、第2図は装置断面図で、第2a図
はその部分拡大図である。この例における素子構造を説
明すると以下の如くである。半絶縁性結晶GaAs(3)の面
上に分子線エピタキシャル成長法を用いて、ノンドープ
GaAs(1.5ミクロン厚)の第1の層(4)、ノンドープ
Al0.28Ga0.72As(60オングストローム)の第2
の層(5)、高濃度不純物添加Al0.28Ga0.72As(ド
ナー濃度1×1018/cm3、350オングストローム)
の第3の層(6)、ノンドープAl0.28Ga0.72As(50
00オングストローム)の第4層(7)を連続成長する。こ
のウエハの第4の層を表面から一部の領域をエッチング
して除き、そのエッチング部の底が第3の層の中に止る
ようにする。AuGeNiを用いたオーミック電極(1)をこの
エッチング部に付着してアニールすることにより素子の
電極を形成する。二箇所の電極間で第4の層の表面に約
1000オングストロームの厚さのAuを蒸着し、しか
るのちリソグラフィ技術を用いてAuを加工することに
より周期が1〜5ミクロンの回折格子(2)とする。
FIG. 1 is a plan view showing one embodiment of the semiconductor device of the present invention.
FIG. 2a is a partially enlarged view of FIG. 2a, and FIG. 2 is a sectional view of the device. The element structure in this example is as follows. Non-doped on the surface of semi-insulating crystalline GaAs (3) using molecular beam epitaxy.
GaAs (1.5 micron thick) first layer (4), undoped Al 0.28 Ga 0.72 As (60 Å) second layer
Layer (5), high-concentration impurity-doped Al 0.28 Ga 0.72 As (donor concentration 1 × 10 18 / cm 3 , 350 Å)
Third layer (6) of undoped Al 0.28 Ga 0.72 As (50
A fourth layer (7) of 00 Å is continuously grown. The fourth layer of the wafer is partially etched from the surface so that the bottom of the etched portion remains in the third layer. An ohmic electrode (1) made of AuGeNi is attached to the etched portion and annealed to form an element electrode. A diffraction grating with a period of 1 to 5 microns is obtained by depositing Au with a thickness of about 1000 angstroms on the surface of the fourth layer between two electrodes, and then processing the Au using a lithography technique. And

半絶縁性結晶(3)はGaAsであるが、これ以外に、In
P、InAs、InSb、GaP、BN、BP、AlP、AlN、AlSbや半
絶縁性Si、SiC、および場合によっては、Al2O3、S
iO2、BeO等の絶縁性並びに誘電体結晶を用いる事も
できる。
The semi-insulating crystal (3) is GaAs.
P, InAs, InSb, GaP, BN, BP, AlP, AlN, AlSb, semi-insulating Si, SiC, and, in some cases, Al 2 O 3 , S
It is also possible to use insulating and dielectric crystals such as iO 2 and BeO.

第1層(4)もGaAsの他に、GaSb、InP、InSbや、これらの
III−V化合物半導体の三元、四元等、混晶化合物半導
体で比較的電子親和力が大きく移動度も大きい半導体材
料を用いてもよい。第2〜4層(5、6および7)もAl
GaAsの他に、第1層に用いる材料よりも電子親和力が小
さい条件で、GaSb、GaP及びこれらの混晶化合物半導体
等を用いてもよい。オーミック電極は通常、AuGeNiであ
るが、AuGePt、AuGe、AuSn、AgSn、InAuNi、AuSi、InT
e、NiSn、AuSbを用いてもよい。回折格子(2)はSWCと
結合して光源として作用すればAu以外の金属でもよ
く、例えば、Al、Ag、Pt、Niやこれらの合金、及び
Au/Ti/Al、Au/Pt/Ti、Au/Cr等の多層金属
が挙げられる。
The first layer (4) is not only GaAs but also GaSb, InP, InSb, and these
A mixed crystal compound semiconductor such as a ternary or quaternary III-V compound semiconductor, which has a relatively large electron affinity and a large mobility, may be used. The second to fourth layers (5, 6 and 7) are also Al
In addition to GaAs, GaSb, GaP and mixed crystal compound semiconductors thereof may be used under the condition that the electron affinity is smaller than that of the material used for the first layer. The ohmic electrode is usually AuGeNi, but AuGePt, AuGe, AuSn, AgSn, InAuNi, AuSi, InT.
You may use e, NiSn, AuSb. The diffraction grating (2) may be a metal other than Au as long as it functions as a light source in combination with SWC. For example, Al, Ag, Pt, Ni and their alloys, Au / Ti / Al, Au / Pt / Ti, A multilayer metal such as Au / Cr can be used.

作製した素子の第1の層(4)と第2の層(5)の界面付近に
2次元電子ガスが溜まっている。本構成の2次元電子ガ
スは、ペアレントドナーイオンが空間的に電子ガスと切
り離されるていることから著しく高い電子移動度を有す
る。還元すれば、電子は極めて長い平均自由行程を有し
ている。この特性は、素子を低温下に置くことで一層増
強されてくる。
Two-dimensional electron gas is accumulated near the interface between the first layer (4) and the second layer (5) of the manufactured device. The two-dimensional electron gas of this configuration has a remarkably high electron mobility because the parent donor ions are spatially separated from the electron gas. When reduced, the electron has an extremely long mean free path. This characteristic is further enhanced by placing the device at a low temperature.

2つのオーミック電極間(1)に電圧を印加すると、2次
元電子ガス全体が電界のもとに置かれる。個々の電子は
この電界で加速され、平均自由行程の間は衝突なしに走
りつづける。走行しながら電子は電場よりエネルギーを
獲得し、自からのエネルギーを高めるいわするホットエ
レクトロン状態へと移る。この余分なエネルギーは個々
の電子からプラズモンの形の素励起を誘起させるのに消
費されて、電子はいわゆる衝突状態に入る。もちろん光
学的フォノンの放出など他の形へのエネルギー遷移も起
る訳であるが、本実施例の範囲ではプラズモン励起に優
先的に消費されていく。かくして2次元電子ガス中に集
団運動“プラズモン”が励起され、これは素子構造全体
にわたる表面波プラズモンSWCを励起したことにつな
がる。Si−MOSFETの界面電子の平均自由行程は
本実施例のそれと比べてはるかに短かいために、Si−
MOSFETではSWCの励起効率が低いという欠点が
あった。本実施例では根本的な改善を計っていることか
ら、少ない入力電力のもとでも強いSWCを得ることが
できる利点がある。
When a voltage is applied between two ohmic electrodes (1), the entire two-dimensional electron gas is placed under an electric field. The individual electrons are accelerated by this electric field and continue to run without collision during the mean free path. While traveling, the electrons gain energy from the electric field and move to the so-called hot electron state, which boosts their own energy. This extra energy is consumed by inducing elementary excitation in the form of plasmons from the individual electrons, and the electrons enter the so-called collision state. Of course, energy transfer to other forms such as emission of optical phonons occurs, but in the range of this embodiment, they are preferentially consumed for plasmon excitation. Thus, collective motion "plasmons" are excited in the two-dimensional electron gas, which leads to the excitation of surface wave plasmons SWC over the entire device structure. Since the mean free path of interface electrons of Si-MOSFET is much shorter than that of the present embodiment, Si-
The MOSFET has a drawback that the excitation efficiency of the SWC is low. Since the fundamental improvement is made in this embodiment, there is an advantage that a strong SWC can be obtained even with a small input power.

励起されたSWCは素子表面に設けたAu回折格子(2)
と結合する。その結果、輻射性の電磁波に変換されてS
WCの電力が一部が外部へ放射されることになる。第3
図には試作素子を用いて測定された波長300ミクロン
付近の遠赤外強度の素子入力電界強度依存性を示してい
る。入力電界が50V/cmと低い範囲で、遠赤外光の放
出が始まっていることがわかる。このように低い電界で
光放出が可能になるのは本発明の大きな特徴である。
The excited SWC is an Au diffraction grating (2) provided on the element surface.
Combine with. As a result, S is converted into radiative electromagnetic waves.
Part of the power of the WC will be radiated to the outside. Third
The figure shows the element input electric field strength dependency of the far-infrared intensity near the wavelength of 300 microns measured using the prototype element. It can be seen that the emission of far-infrared light has started in the range where the input electric field is as low as 50 V / cm. It is a great feature of the present invention that light can be emitted in such a low electric field.

ここで、回折格子の周期aと輻射電波の波長λの関係に
ついて説明しておく。まず、電磁波の波長λは次式で与
えられる。
Here, the relationship between the period a of the diffraction grating and the wavelength λ of the radiated radio wave will be described. First, the wavelength λ of the electromagnetic wave is given by the following equation.

ただし、c:光速、e:素電荷、m*:GaAs中の電子の有効
質量、n:2次元電子密度、εGaAs:GaAsの誘電率、ε
AlGaAs:AlGaAsの誘電率、d:AlGaAs層(第2、第3、
第4層の和)の厚さである。
Where c: speed of light, e: elementary charge, m * : effective mass of electrons in GaAs, n: two-dimensional electron density, ε GaAs: permittivity of GaAs, ε
AlGaAs: AlGaAs dielectric constant, d: AlGaAs layer (second, third,
Thickness of the fourth layer).

式(1)、(2)が示すように、輻射電磁波の波長λはa、d、
nの選び方で決まるので、広範な領域にわたって選び得
ることが判る。d、nの値は半導体層のエピタキシャル成
長時に概ね設定できる。実際に回折格子を数mm×数mmの
領域に一様に作ることの方が難かしいので、余り回折格
子の周期aを細かく設定するのは得策でない。aを1ミク
ロン以上に設定するのは安全策であるが、必要以上に大
きくとると、逆に2次元電子密度nを大きく設計しなけ
ればならなくなるという問題がある。現実にはn<1×
1012/cm2であるから、一例として、波長300ミク
ロンの遠赤外を発光させるにはa<5ミクロンと定ま
る。いずれにせよ、本発明素子の輻射電磁波の波長はパ
ラメータのとり方で広範に選べ得ることを強調してお
く。
As shown in equations (1) and (2), the wavelength λ of the radiated electromagnetic wave is a, d,
Since it is decided by how to select n, it can be understood that it can be selected over a wide range. The values of d and n can be generally set during the epitaxial growth of the semiconductor layer. Actually, it is more difficult to make the diffraction grating uniform in a region of several mm × several mm, so it is not a good idea to set the period a of the remaining diffraction grating fine. It is a safety measure to set a to 1 micron or more, but if it is made larger than necessary, there is a problem that the two-dimensional electron density n must be designed conversely. In reality n <1x
Since it is 10 12 / cm 2 , for example, in order to emit far infrared rays having a wavelength of 300 μm, a <5 μm is determined. In any case, it is emphasized that the wavelength of the radiated electromagnetic wave of the device of the present invention can be widely selected by taking parameters.

次に本素子を光検出に用いる実施例を示す。遠赤外光を
素子表面に照射する際に、素子の回折格子の法線角度を
調節すると入射光のエネルギーは素子内で2次元電子ガ
スのSWCを直接励起する。素子の電極間の電流−電圧
特性には外部的SWC励起に基ずく微分抵抗増が顕著に
あらわれ、この信号を増幅してとり出すことで高い感度
のセンサーとなる。
Next, an example in which this element is used for light detection will be described. When irradiating the device surface with far infrared light, the normal angle of the diffraction grating of the device is adjusted, and the energy of the incident light directly excites the SWC of the two-dimensional electron gas in the device. In the current-voltage characteristics between the electrodes of the device, a differential resistance increase is remarkably exhibited due to the external SWC excitation, and a sensor having high sensitivity can be obtained by amplifying and extracting this signal.

第2の実施例を第4図および第5図に示す。また、これ
らの部分拡大部を第4a図および第5a図に示す。この
実施例が前述の第1の実施例と異なるのは、結晶ウエハ
の第4の層(16)の表面とAu回折格子(11)の間に5
0Åの厚さのニオブ(Nb)金属膜(17)を設けていること
である。この金属膜は可視光に対しても半透明であり、
もちろん赤外、遠赤外光に対してもそうである。したが
って2次元電子ガスに伴なうSWCもその金属膜下に透
過して、回折格子と結合できる。本実施例ではこのNb
膜をゲートとして第3の電極に用いる。この作用は、ゲ
ートに印加した直流電圧がその直下の2次元電子ガスに
電界効果を誘起し、その結果として2次元電子ガス密度
に変調をかけて、発光波長を可変にできることである。
本実施例により、遠赤外発光波長を300ミクロンから
長波長側に容易に電子的に変化させることができた。
A second embodiment is shown in FIGS. 4 and 5. Also, these partially enlarged portions are shown in FIGS. 4a and 5a. This embodiment differs from the first embodiment described above in that there is a gap between the surface of the fourth layer (16) of the crystal wafer and the Au diffraction grating (11).
That is, a niobium (Nb) metal film (17) having a thickness of 0Å is provided. This metal film is also translucent to visible light,
Of course, the same applies to infrared and far infrared light. Therefore, the SWC accompanying the two-dimensional electron gas can also be transmitted under the metal film and can be coupled with the diffraction grating. In this embodiment, this Nb
The film is used as a gate for the third electrode. This action is that the direct-current voltage applied to the gate induces a field effect in the two-dimensional electron gas immediately below it, and as a result, the two-dimensional electron gas density is modulated, and the emission wavelength can be made variable.
According to this example, the far infrared emission wavelength could be easily electronically changed from 300 microns to the long wavelength side.

【図面の簡単な説明】[Brief description of drawings]

第1図および第2図は各々本実施例の平面図、断平面図
を示す図で、第1a図および第2a図は第1図および第
2図の部分拡大図で、第3図は本実施例の素子を用いた
遠赤外放射実験の1例で印加電界強度と放射遠赤外出力
の関係を示す図、第4図および第5図は本実施例の別の
態様の平面図、断面図を示す。第4a図および第5a図
は第4図および第5図の部分拡大図である。 図中の記号は以下の通りである。 1……AuGeNiオーミック電極、 2……Au回折格子、 3……半絶縁性GaAs基板、 4……ノンドープGaAs、 5……ノンドープAlGaAs、 6……n+AlGaAs、 7……ノンドープAlGaBs、 10……AuGeNiオーミック電極、 11……ニオブ(Nb)金属膜上に形成されたAu回折格子、 12……半絶縁性GaAs基板、 13……ノンドープGaAs、 14……ノンドープAlGaAs、 15……n+AlGaAs、 16……ノンドープAlGaAs、 17……ニオブ薄膜上に形成したAu回折格子。
1 and 2 are a plan view and a sectional plan view, respectively, of this embodiment, FIGS. 1a and 2a are partially enlarged views of FIGS. 1 and 2, and FIG. FIG. 4 is a diagram showing the relationship between applied electric field strength and radiated far-infrared output in an example of a far-infrared radiation experiment using the element of the embodiment, FIGS. 4 and 5 are plan views of another embodiment of the present embodiment, A sectional view is shown. 4a and 5a are partially enlarged views of FIGS. 4 and 5. The symbols in the figure are as follows. 1 ... AuGeNi ohmic electrode, 2 ... Au diffraction grating, 3 ... semi-insulating GaAs substrate, 4 ... non-doped GaAs, 5 ... non-doped AlGaAs, 6 ... n + AlGaAs, 7 ... non-doped AlGaBs, 10 ... … AuGeNi ohmic electrode, 11 …… Au diffraction grating formed on niobium (Nb) metal film, 12 …… Semi-insulating GaAs substrate, 13 …… Non-doped GaAs, 14 …… Non-doped AlGaAs, 15 …… n + AlGaAs , 16 ... Non-doped AlGaAs, 17 ... Au diffraction grating formed on a niobium thin film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性結晶面上にノンドープで成る第1
結晶薄層、第1結晶薄層よりも電子親和力の小さな組成
を有するノンドープで成る第2結晶極薄層、第2結晶薄
層と同一組成で高い濃度の不純物を含有する第3薄層お
よび第2薄層と同一組成でノンドープで成る第4薄層を
連続エピタキシャル成長したウエハであって、選択エッ
チングで現れた第3薄層面上に2箇所のオーミック電極
を設け、該オーミック電極間の第4薄層面上に良導体金
属の回折格子を具備して、上記第1結晶薄層と上記第2
結晶薄層との界面近傍の2次元電子ガスをプラズモン励
起して得られる非輻射電磁波を上記回折格子と結合させ
て輻射電磁波に変換する光源の機能、さらに入射電磁波
により2次元電子ガスA中に非輻射電磁波を直接励起す
る機能を発現することを特徴とする半導体装置。
1. A first non-doped first semi-insulating crystal plane.
A thin crystal layer, an undoped second ultrathin crystal layer having a composition having an electron affinity smaller than that of the first thin crystal layer, a third thin layer having the same composition as the second thin crystal layer and containing a high concentration of impurities, and A wafer in which a fourth thin layer having the same composition as the second thin layer and not doped is continuously epitaxially grown, and two ohmic electrodes are provided on the surface of the third thin layer exposed by selective etching, and the fourth thin layer between the ohmic electrodes is provided. A diffraction grating of a good conductor metal is provided on the layer surface, and the first crystal thin layer and the second crystal thin layer are provided.
A function of a light source that converts a non-radiative electromagnetic wave obtained by plasmon-exciting a two-dimensional electron gas near the interface with a thin crystal layer into a radiant electromagnetic wave by coupling with the diffraction grating, and further, by incident electromagnetic waves, the A semiconductor device having a function of directly exciting a non-radiation electromagnetic wave.
【請求項2】オーミック電極間の第4薄層面上に金属極
薄膜を30〜100Åの厚さで設けてゲート電極とし、
該金属極薄膜上に良導体金属の回折格子を備える第1項
記載の半導体装置。
2. A gate electrode comprising a metal thin film having a thickness of 30 to 100 Å on the fourth thin layer surface between ohmic electrodes,
The semiconductor device according to claim 1, further comprising a diffraction grating of a good conductor metal on the metal ultrathin film.
JP8088785A 1985-04-15 1985-04-15 Semiconductor device Expired - Lifetime JPH0614563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088785A JPH0614563B2 (en) 1985-04-15 1985-04-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8088785A JPH0614563B2 (en) 1985-04-15 1985-04-15 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61239679A JPS61239679A (en) 1986-10-24
JPH0614563B2 true JPH0614563B2 (en) 1994-02-23

Family

ID=13730854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088785A Expired - Lifetime JPH0614563B2 (en) 1985-04-15 1985-04-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0614563B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4599546B2 (en) 2001-03-12 2010-12-15 独立行政法人科学技術振興機構 Low-dimensional plasmon light emitting device
DE102006061586B4 (en) * 2006-12-27 2009-01-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Connection network between semiconductor structures and thus equipped circuit and method for data transmission
JP2009238940A (en) * 2008-03-26 2009-10-15 National Univ Corp Shizuoka Univ Photodiode and imaging element including the same
WO2012073539A1 (en) 2010-12-01 2012-06-07 住友電気工業株式会社 Light-receiving element, detector, semiconductor epitaxial wafer, and method for producing these
WO2012073934A1 (en) * 2010-12-01 2012-06-07 住友電気工業株式会社 Light receiving element, semiconductor epitaxial wafer, method for manufacturing the light receiving element and the semiconductor epitaxial wafer, and detecting apparatus
JP5975417B2 (en) * 2010-12-01 2016-08-23 住友電気工業株式会社 Manufacturing method of light receiving element
JP6080092B2 (en) 2012-05-30 2017-02-15 住友電気工業株式会社 Light receiving element, semiconductor epitaxial wafer, detection device, and method for manufacturing light receiving element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851575A (en) * 1981-09-22 1983-03-26 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS61239679A (en) 1986-10-24

Similar Documents

Publication Publication Date Title
US11231318B2 (en) Photoconductive detector device with plasmonic electrodes
US7933305B2 (en) Device for generating or detecting electromagnetic radiation, and fabrication method of the same
JP3338228B2 (en) Unipolar semiconductor laser
US7915641B2 (en) Terahertz electromagnetic wave radiation element and its manufacturing method
US4163238A (en) Infrared semiconductor device with superlattice region
Otsuji et al. Emission of terahertz radiation from two-dimensional electron systems in semiconductor nano-heterostructures
US5914497A (en) Tunable antenna-coupled intersubband terahertz (TACIT) detector
EP2853866A1 (en) Photodetector
US20060153262A1 (en) Terahertz quantum cascade laser
US7382806B2 (en) THz semiconductor laser incorporating a controlled plasmon confinement waveguide
JPH0614563B2 (en) Semiconductor device
Choi et al. THz hot-electron micro-bolometer based on low-mobility 2-DEG in GaN heterostructure
Sharma et al. Recent advances of efficient design of terahertz quantum-cascade lasers
US9618823B2 (en) Photo mixer and method for manufacturing same
US9812642B2 (en) Radiation source and method for the operation thereof
JPH06109534A (en) Semiconductor element which causes adiabatic transfer in edge channel
Ramaswamy et al. 2DEG GaN hot electron microbolometers and quantum cascade lasers for THz heterodyne sensing
Kesselring et al. Picosecond response of photon‐drag detectors for the 10‐μm wavelength range
Batke et al. Tunable far‐infrared photovoltaic response in semiconductor field‐effect devices
JPH01179490A (en) Semiconductor radiating device
EP0468691B1 (en) Optical semiconductor device for emitting or sensing light of desired wavelength
Hayashi et al. Longitudinal Optical Phonon Resonant THz–Mid Infrared Radiation From Surface Metal-Semiconductor Microstructures
RU2226306C2 (en) Quantum-beat based resonance-tuned semiconductor device
Liu et al. Quasi-continuous-wave operation of AlGaAs/GaAs quantum cascade lasers
Kolodzey et al. The design and operation of TeraHertz sources based on silicon germanium alloys