JPH06144066A - Differential limiting controller for vehicle - Google Patents

Differential limiting controller for vehicle

Info

Publication number
JPH06144066A
JPH06144066A JP32363792A JP32363792A JPH06144066A JP H06144066 A JPH06144066 A JP H06144066A JP 32363792 A JP32363792 A JP 32363792A JP 32363792 A JP32363792 A JP 32363792A JP H06144066 A JPH06144066 A JP H06144066A
Authority
JP
Japan
Prior art keywords
differential
differential limiting
limiting force
detecting
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32363792A
Other languages
Japanese (ja)
Other versions
JP2910465B2 (en
Inventor
Zensaku Murakami
善作 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP32363792A priority Critical patent/JP2910465B2/en
Publication of JPH06144066A publication Critical patent/JPH06144066A/en
Application granted granted Critical
Publication of JP2910465B2 publication Critical patent/JP2910465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arrangement And Mounting Of Devices That Control Transmission Of Motive Force (AREA)
  • Motor Power Transmission Devices (AREA)
  • Retarders (AREA)

Abstract

PURPOSE:To reconcile accelerability on a high mu road and car stability on a low mu road. CONSTITUTION:A vehicle differential limiting controller, which controls a differential limiting force by a differential limiter 3 limiting the differential rotation of symmetrical wheels 1 and 2, is provided with a road surface friction factor detecting mrans 4 detecting a friction factor on a road surface, a revolution difference detecting means 5 detecting a revolition difference between both right and left wheels 1 and 2, an engine power detecting means 6 detecting the extent of engine power, a differential limiting force setting means 7 setting a differential limiting force according to the engine power mainly when the friction factor on the road surface is large enough, and when this factor is small, setting the differential limiting force mainly according to the revolution difference between both these right and left wheels respectively, and an output means 8 outputting an indication signal to the differential limiter 3 so as to achieve the differential limiting force det by the differential limiting force setting means 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、左右の車輪の差動回
転を制限する差動制限装置に関し、特にその差動制限力
を制御する差動制限制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential limiting device for limiting the differential rotation of left and right wheels, and more particularly to a differential limiting control device for controlling the differential limiting force.

【0002】[0002]

【従来の技術】動力を伝達される左右の後輪などの駆動
輪は、円滑な旋回を可能にするために、差動装置を介し
てプロペラシャフトに連結されている。この差動装置に
おける差動作用を摩擦クラッチなどの制限手段で制限す
れば、その制限の度合いに応じて左右輪へのトルクの配
分状態が変化し、泥濘路等からの脱出が容易になる以外
に、旋回性や加速性等が変化する。すなわち差動制限の
仕方によっては、車両の挙動安定性を向上させることが
できるので、そのために例えば特開平3−86633号
公報に記載された装置では、左右輪の回転数差に応じて
差動制限力を増大制御し、かつ車速および舵角に応じて
減少補正する装置が記載されている。この装置によれ
ば、旋回時や高速走行時には、左右輪の差動回転が生じ
ても差動制限力が弱くなるので、旋回性や直進安定性が
向上するとされている。
2. Description of the Related Art Drive wheels such as left and right rear wheels to which power is transmitted are connected to a propeller shaft via a differential device in order to enable smooth turning. If the differential action of this differential device is limited by a limiting means such as a friction clutch, the distribution state of the torque to the left and right wheels changes according to the degree of the limitation, and it becomes easy to escape from a mud road or the like. In addition, the turning performance and acceleration performance change. That is, the behavior stability of the vehicle can be improved depending on the method of limiting the differential. Therefore, for example, in the device disclosed in Japanese Patent Laid-Open No. 3-86633, differential operation is performed according to the difference in the rotational speeds of the left and right wheels. There is described a device for increasing the limiting force and correcting the decrease according to the vehicle speed and the steering angle. According to this device, when the vehicle is turning or traveling at a high speed, the differential limiting force is weakened even if differential rotation of the left and right wheels occurs, so that it is said that the turning performance and the straight running stability are improved.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
の装置では、基本的には、左右輪の差動回転が発生する
ことにより差動制限トルクを増大させるよう構成されて
いるから、差動回転が生じるまでは差動制限が行われ
ず、あるいは差動制限が低い状態に維持される。そのた
め、運転者が高加速を得ようとしてアクセルペダルを踏
み込んでも、左右輪の差動回転が生じない状態では差動
制限が特には行われず、その結果、左右輪のそれぞれの
路面との間の摩擦係数に応じたトルク配分が行われない
ことになるから、運転者の意図した加速性が得られない
不都合がある。
However, in the above-mentioned conventional device, since the differential limiting torque is basically increased by the occurrence of the differential rotation of the left and right wheels, the differential rotation is prevented. Until the occurrence, the differential limitation is not performed, or the differential limitation is kept low. Therefore, even if the driver depresses the accelerator pedal to obtain high acceleration, the differential limitation is not particularly performed in the state where the differential rotation of the left and right wheels does not occur, and as a result, the difference between the left and right wheels Since the torque distribution according to the friction coefficient is not performed, there is a disadvantage in that the acceleration performance intended by the driver cannot be obtained.

【0004】このような不都合を解消するために、スロ
ットル開度の増大と同時に差動制限を強めることが考え
られるが、このような制御を路面摩擦係数の小さい低μ
路で行うと、車輪のスリップが生じやすく、車両の挙動
が不安定になるおそれがある。
In order to eliminate such an inconvenience, it is conceivable to increase the throttle opening and simultaneously increase the differential limitation. However, such control is performed with a low μ having a small road surface friction coefficient.
If it is performed on a road, slipping of the wheels is likely to occur and the behavior of the vehicle may become unstable.

【0005】さらに車輪のスリップ率に応じて差動制限
の制御を行うことが考えられるが、このような制御では
車両の挙動が安定化するものの、スリップ率を無視して
車両をコントロールするスポーティ走行の場合には、旋
回性が低下して運転者の意図した走行を行えない不都合
が生じる。
Further, it is conceivable to control the differential limitation in accordance with the slip ratio of the wheels. Although such control stabilizes the behavior of the vehicle, the sporty traveling in which the slip ratio is ignored and the vehicle is controlled. In such a case, there is a problem that the turning performance is deteriorated and the driver cannot travel as intended.

【0006】この発明は上記の事情に鑑みてなされても
ので、加速性と低μ路での走行安定性とを両立させるこ
とのできる差動制限制御装置を提供することを目的とす
るものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a differential limiting control device capable of achieving both acceleration and running stability on a low μ road. is there.

【0007】[0007]

【課題を解決するための手段】この発明は、上記の目的
を達成するために、図1に示す構成としたことを特徴と
するものである。すなわちこの発明は、左右輪1,2の
差動回転を制限する差動制限装置3による差動制限力を
制御する車両用差動制限制御装置において、路面の摩擦
係数を検出する路面摩擦係数検出手段4と、左右輪1,
2の回転数差を検出する回転数差検出手段5と、機関の
出力の大きさを検出する機関出力検出手段6と、路面の
摩擦係数が大きい場合には主に機関出力に応じて差動制
限力を決定し、路面摩擦係数が小さい場合には主として
左右輪の回転数差に応じて差動制限力を決定する差動制
限力決定手段7と、差動制限力決定手段7で決定された
差動制限力を達成するよう前記差動制限装置3に指示信
号を出力する出力手段8とを具備していることを特徴と
するものである。
The present invention is characterized in that it has the structure shown in FIG. 1 in order to achieve the above object. That is, the present invention is a vehicle differential limiting control device for controlling the differential limiting force by the differential limiting device 3 that limits the differential rotation of the left and right wheels 1 and 2, and detects a road surface friction coefficient for detecting a road surface friction coefficient. Means 4 and left and right wheels 1,
The rotational speed difference detecting means 5 for detecting the rotational speed difference of No. 2, the engine output detecting means 6 for detecting the magnitude of the output of the engine, and the differential depending on the engine output when the friction coefficient of the road surface is large. When the limiting force is determined and the road surface friction coefficient is small, it is determined by the differential limiting force determining means 7 and the differential limiting force determining means 7, which mainly determines the differential limiting force according to the rotational speed difference between the left and right wheels. Output means 8 for outputting an instruction signal to the differential limiting device 3 so as to achieve the differential limiting force.

【0008】[0008]

【作用】この発明における差動制限力は、機関出力ある
いは左右輪1,2の回転数差に基づいて決定されるが、
そのいずれによるかは、路面の摩擦係数によって異な
る。すなわち路面摩擦係数が大きい場合には、主に機関
出力の増大に応じて差動制限力が決定され、これとは反
対に路面摩擦係数が小さい場合には、主に左右輪1,2
の差動回転数に応じて差動制限力が決定される。なお、
これらの路面摩擦係数や左右輪1,2の回転数差あるい
は機関出力は、それぞれの検出手段4,5,6によって
検出される。したがって高μ路ではアクセルペダルを踏
み込むなどのことにより機関出力を高めると、これと同
時に差動制限力が大きくなり、その結果、応答性の良い
加速を行うことができる。また低μ路では、機関出力が
大きくなることによるよりも、左右輪1,2の回転数差
が大きくなることにより差動制限力が大きくなり、した
がって一方の車輪のスリップ率が大きくなるなどの事態
にいたると、差動制限が強く行われて車両の挙動が安定
する。
The differential limiting force in the present invention is determined based on the engine output or the difference in rotational speed between the left and right wheels 1, 2,
Which of them depends on the friction coefficient of the road surface. That is, when the road surface friction coefficient is large, the differential limiting force is determined mainly in accordance with the increase of the engine output. On the contrary, when the road surface friction coefficient is small, the left and right wheels 1, 2 are mainly used.
The differential limiting force is determined according to the differential rotation speed of. In addition,
The road surface friction coefficient, the rotational speed difference between the left and right wheels 1 and 2, or the engine output is detected by the respective detection means 4, 5, and 6. Therefore, when the engine output is increased by depressing the accelerator pedal or the like on a high μ road, the differential limiting force is increased at the same time, and as a result, acceleration with good response can be performed. Further, on a low μ road, the differential limiting force is increased by increasing the rotational speed difference between the left and right wheels 1 and 2 rather than by increasing the engine output, and thus the slip ratio of one wheel is increased. When a situation arises, the differential limitation is strongly performed and the behavior of the vehicle is stabilized.

【0009】[0009]

【実施例】つぎにこの発明を実施例に基づいてより具体
的に説明する。図2はこの発明の一実施例を示すブロッ
ク図であり、ここに示す例は、左右の後輪10,11を
フロント側に搭載したエンジン12によって駆動するF
R(フロントエンジン・リヤドライブ)車にこの発明を
適用した例であり、プロペラシャフト13は差動制限機
構を内蔵した差動装置14を介して、左右の後輪車軸1
5,16に連結されている。
EXAMPLES Next, the present invention will be described more specifically based on examples. FIG. 2 is a block diagram showing an embodiment of the present invention. In the example shown here, an F in which the left and right rear wheels 10, 11 are driven by an engine 12 mounted on the front side
This is an example in which the present invention is applied to an R (front engine / rear drive) vehicle, in which a propeller shaft 13 is provided with a differential gear 14 having a built-in differential limiting mechanism so that the left and right rear wheel axles 1 can be driven.
5, 16 are connected.

【0010】その差動装置14としては、従来知られて
いる差動装置を使用することができ、その一例を図示す
れば図3のとおりであって、プロペラシャフト13から
動力を伝達するためのリングギヤ17を取付けたデフケ
ース18の内部に、リングギヤ17の軸線に対して直交
する方向に軸線を向けて配置したピニオンギヤ19が保
持されており、さらにこのピニオンギヤ19に噛合する
左右一対のサイドギヤ(図では一方のサイドギヤのみを
示す)20が設けられている。このサイドギヤ20に
は、シャフト21の一端部がスプライン嵌合し、またそ
のシャフト21の他端部にはスリーブ22がスプライン
嵌合しており、さらにそのスリーブ22の外周部には、
複数の摩擦板23がスプライン嵌合している。
A conventionally known differential device can be used as the differential device 14, and an example thereof is shown in FIG. 3 and is for transmitting power from the propeller shaft 13. A pinion gear 19 having its axis oriented in a direction orthogonal to the axis of the ring gear 17 is held inside a differential case 18 to which the ring gear 17 is attached. (Only one side gear is shown) 20 is provided. One end of a shaft 21 is spline-fitted to the side gear 20, and a sleeve 22 is spline-fitted to the other end of the shaft 21.
A plurality of friction plates 23 are spline-fitted.

【0011】一方、前記シャフト21の外周に伝達部材
24が相対回転自在に嵌合されており、その伝達部材2
4の一端部は、デフケース18にスプライン嵌合し、ま
た他方の端部は前記摩擦板23より大径の円筒状に形成
されるとともに、摩擦板23に対して交互に配列した他
の摩擦板25が、前記大径の円筒状部分の内周面にスプ
ライン嵌合されている。さらにこれらの摩擦板23,2
5と同一軸線上にピストン26が配置されており、その
ピストン26の背面側の油圧室27に差動制限油圧を供
給することにより、摩擦板23,25が押圧されて摩擦
接触し、その結果、デフケース18とサイドギヤ20と
の間でトルク伝達されて、差動制限が行われるようにな
っている。すなわちここに差動制限クラッチ28が形成
されている。
On the other hand, a transmission member 24 is relatively rotatably fitted to the outer periphery of the shaft 21, and the transmission member 2 is provided therewith.
One end of 4 is spline-fitted to the differential case 18, and the other end is formed in a cylindrical shape having a diameter larger than that of the friction plate 23, and another friction plate arranged alternately with respect to the friction plate 23. 25 is spline-fitted to the inner peripheral surface of the large-diameter cylindrical portion. Further, these friction plates 23, 2
5, the piston 26 is arranged on the same axis, and by supplying the differential limiting hydraulic pressure to the hydraulic chamber 27 on the back side of the piston 26, the friction plates 23 and 25 are pressed to make frictional contact. The torque is transmitted between the differential case 18 and the side gear 20 to limit the differential. That is, the differential limiting clutch 28 is formed here.

【0012】上記の油圧室27に対して差動制限油圧を
給排するための油圧装置29と、その油圧を制御する油
圧制御装置30とが設けられている。図4は油圧装置2
9の主要部分を示しており、リザーバタンク31からオ
イルを汲み上げて加圧するポンプ32の吐出口にはリリ
ーフ弁33が接続されている。またこの吐出口には逆止
弁34を介して電流制御減圧弁35が接続され、さらに
逆止弁34と電流制御減圧弁35との間にアキュームレ
ータ36が接続されている。したがってリリーフ弁33
とアキュームレータ36とによって定まる一定油圧が電
流制御減圧弁35に供給されるようになっている。
A hydraulic device 29 for supplying / discharging the differential limited hydraulic pressure to the hydraulic chamber 27 and a hydraulic control device 30 for controlling the hydraulic pressure are provided. FIG. 4 shows a hydraulic system 2
9, a relief valve 33 is connected to a discharge port of a pump 32 that pumps and pressurizes oil from a reservoir tank 31. A current control pressure reducing valve 35 is connected to the discharge port via a check valve 34, and an accumulator 36 is connected between the check valve 34 and the current control pressure reducing valve 35. Therefore, the relief valve 33
The constant hydraulic pressure determined by the accumulator 36 and the accumulator 36 is supplied to the current control pressure reducing valve 35.

【0013】電流制御減圧弁35は、電流値に応じて出
力圧を変えるものであって、電流値に比例して出力圧を
増大させるよう構成されており、その出力ポートが前記
油圧室27に接続されている。したがって差動制限クラ
ッチ28の付加油圧は制御電流Iに比例し、その特性の
一例を図示すれば図5のとおりである。また油圧制御装
置30は、この電流制御減圧弁35の電流を制御するも
のであって、中央演算処理装置(CPU)および記憶装
置(ROM,RAM)ならびに入出力インターフェース
を主体に構成されている。そして油圧制御装置30に
は、左右輪の回転数センサー37やスロットル開度セン
サー38、車速センサー39、加速度センサー40など
が接続されている。油圧制御装置30はこれらのセンサ
ーなどから入力されるデータに基づいて、設定するべき
付加油圧Pを演算し、その油圧Pとなる電流値をマップ
として記憶してある図5の特性線から求めて、前述した
電流制御減圧弁35に出力するようになっている。
The current control pressure reducing valve 35 changes the output pressure according to the current value, and is configured to increase the output pressure in proportion to the current value, and its output port is located in the hydraulic chamber 27. It is connected. Therefore, the additional hydraulic pressure of the differential limiting clutch 28 is proportional to the control current I, and an example of the characteristic is shown in FIG. The hydraulic control device 30 controls the current of the current control pressure reducing valve 35, and is mainly composed of a central processing unit (CPU), a storage device (ROM, RAM), and an input / output interface. The hydraulic control device 30 is connected to the left and right wheel rotation speed sensors 37, the throttle opening sensor 38, the vehicle speed sensor 39, the acceleration sensor 40, and the like. The hydraulic control device 30 calculates the additional hydraulic pressure P to be set based on the data input from these sensors, etc., and obtains the current value that is the hydraulic pressure P from the characteristic line of FIG. 5 which is stored as a map. The pressure is output to the current control pressure reducing valve 35 described above.

【0014】つぎに上述した装置の作用を図6のフロー
チャートに従って説明する。まず前後加速度(Gx )を
読み込み(ステップ100)、その値が正の値か否かを
判断する(ステップ101)。すなわち加速か減速かを
判断し、加速の場合(ステップ101の判断結果が“イ
エス”の場合)には、その値を2倍にした値を採用する
(ステップ102)。これは、後2輪を駆動輪とした車
両を対象としており、加速の場合は減速の場合に対して
2倍として、車輪と路面との間の摩擦係数から得られる
加速度に一致させるためである。ステップ101の判断
結果が“ノー”の場合あるいはステップ102の処理を
行った後、横加速度(Gy )を読み込む(ステップ10
3)。ついで前後加速度Gx と横加速度Gy のベクトル
和Gxyを演算する(ステップ104)。このベクトル和
Gxyは、路面摩擦係数より小さい値になるが、路面摩擦
係数に対応して増大減少する値であるから、このベクト
ル和Gxyによって路面摩擦係数μを推定することができ
る。
Next, the operation of the above-mentioned device will be described with reference to the flowchart of FIG. First, the longitudinal acceleration (Gx) is read (step 100), and it is determined whether the value is a positive value (step 101). That is, it is determined whether to accelerate or decelerate, and in the case of acceleration (when the determination result of step 101 is "yes"), a value obtained by doubling the value is adopted (step 102). This is intended for a vehicle in which the rear two wheels are drive wheels, and in the case of acceleration is doubled compared with the case of deceleration so as to match the acceleration obtained from the friction coefficient between the wheel and the road surface. . If the determination result of step 101 is "NO" or after the process of step 102 is performed, the lateral acceleration (Gy) is read (step 10).
3). Then, the vector sum Gxy of the longitudinal acceleration Gx and the lateral acceleration Gy is calculated (step 104). This vector sum Gxy is a value smaller than the road surface friction coefficient, but since it is a value that increases or decreases in accordance with the road surface friction coefficient, the road surface friction coefficient μ can be estimated by this vector sum Gxy.

【0015】ステップ105では、駆動輪である後2輪
の回転数を読み込むとともに、これに続けてステップ1
06ではその回転数差Δωを演算する。これは左車輪の
回転数ωRLと右車輪の回転数ωRRとの差の絶対値として
求める。これにつづけて機関出力の大きさに対応するス
ロットル開度θを読み込むと(ステップ107)ととも
に、上記の回転数差Δωの補正係数Kωとスロットル開
度θの補正係数Kθとを、前記の加速度のベクトル和G
xyをパラメータとしたマップから求める。
At step 105, the rotational speeds of the two rear wheels, which are the driving wheels, are read, and subsequently, at step 1
At 06, the rotation speed difference Δω is calculated. This finds the absolute value of the difference between the rotational speed omega RR rotation speed omega RL and the right wheel of the left wheel. Subsequently, the throttle opening θ corresponding to the magnitude of the engine output is read (step 107), and at the same time, the correction coefficient Kω for the rotational speed difference Δω and the correction coefficient K θ for the throttle opening θ are calculated as described above. Acceleration vector sum G
Obtained from a map with xy as a parameter.

【0016】回転数差Δωの補正係数Kωを求めるため
のマップは、図7に示すとおりであり、その値は、加速
度のベクトル和Gxyが小さいほど大きい値に設定され、
ベクトル和Gxyの増大に伴って減少し、ベクトル和Gxy
が所定の値以上では、一定値となるよう設定されてい
る。またスロットル開度θの補正係数Kθは、これとは
反対に、ベクトル和Gxyが前記所定の値以下では、一定
値に設定されるとともに、それ以上ではベクトル和Gxy
の増大に応じて大きい値になるよう設定され、かつ最大
値が規定されている。
The map for obtaining the correction coefficient Kω for the rotational speed difference Δω is as shown in FIG. 7, and its value is set to a larger value as the acceleration vector sum Gxy is smaller.
It decreases as the vector sum Gxy increases, and the vector sum Gxy
Is set to be a constant value when is a predetermined value or more. The correction coefficient K theta throttle opening theta Further, contrary to this, in the vector sum Gxy is than the predetermined value, while being set to a constant value, vector sum Gxy at higher
Is set to a large value in accordance with the increase of, and the maximum value is specified.

【0017】前記差動制限クラッチ28に供給する付加
油圧Pは、回転数差Δωとその補正係数Kωとの積と、
スロットル開度θとその補正係数Kθとの積との和とし
て算出され(ステップ109)、このようにして算出さ
れた付加油圧Pを達成する制御電流Iを前述した図5に
示すマップから求め、これを出力する(ステップ11
0)。
The additional hydraulic pressure P supplied to the differential limiting clutch 28 is the product of the rotational speed difference Δω and its correction coefficient Kω,
It is calculated as the sum of the product of the throttle opening θ and its correction coefficient K θ (step 109), and the control current I for achieving the additional hydraulic pressure P thus calculated is obtained from the map shown in FIG. , Output this (step 11
0).

【0018】したがって加速度のベトクル和Gxyが大き
い値として現れる高μ路を走行している場合には、前記
補正係数Kω,Kθのうち後者のスロットル開度θの補
正係数Kθの値が大きく、前者の回転数差Δωの補正係
数Kωが小さい値となるので、スロットル開度θの増大
が付加油圧Pすなわち差動制限力の増大要因として大き
く働く。すなわち高μ路では、左右輪の回転数差ωの増
大よりもスロットル開度θの増大によって差動制限が行
われる。そのため例えば運転者がアクセルペダルを踏み
込んで加速しようとすれば、スロットル開度θの増加に
伴って差動制限力が大きくなるので、左右の車輪ので路
面μに応じた駆動トルクを発生し、高加速性を得ること
ができる。
Therefore, when the vehicle runs on a high μ road where the acceleration vector sum Gxy appears as a large value, the value of the latter correction coefficient K θ of the throttle opening θ is large among the correction coefficients Kω and K θ. Since the former correction coefficient Kω for the rotational speed difference Δω has a small value, the increase in the throttle opening θ largely acts as a factor for increasing the additional hydraulic pressure P, that is, the differential limiting force. That is, on the high μ road, the differential limitation is performed by increasing the throttle opening θ rather than increasing the rotational speed difference ω between the left and right wheels. Therefore, for example, when the driver attempts to accelerate by depressing the accelerator pedal, the differential limiting force increases as the throttle opening θ increases, so that the left and right wheels generate drive torque according to the road surface μ and Acceleration can be obtained.

【0019】これに対して加速度のベトクル和Gxyが小
さい値として現れる低μ路を走行している場合には、前
記補正係数Kω,Kθのうち前者の回転数差ωの補正係
数Kωが大きく、後者のスロットル開度θの補正係数K
θの値が小さい値となるので、回転数差Δωの増大が付
加油圧Pすなわち差動制限力の増大要因として大きく働
く。すなわち低μ路では、スロットル開度θの増大より
も左右輪の回転数差Δωの増大によって差動制限が行わ
れる。そのため低μ路の走行時には、アクセルペダルを
踏み込んでも差動制限が特には強くはならず、左右輪の
回転数差Δωが変化することにより差動制限が強まるの
で、一方の車輪がスリップする等の事態を抑制し、車両
の安定性を確保することができる。
[0019] When the vehicle runs a low μ road is appearing as Betokuru sum Gxy a small value of acceleration with respect to this, the correction coefficient K?, Large correction coefficient K? Of the former rotational speed difference ω of K theta , Correction coefficient K for the latter throttle opening θ
Since the value of θ becomes a small value, the increase of the rotation speed difference Δω largely works as a factor for increasing the additional hydraulic pressure P, that is, the differential limiting force. That is, on the low μ road, the differential limitation is performed by increasing the rotational speed difference Δω between the left and right wheels rather than increasing the throttle opening θ. Therefore, when traveling on a low μ road, the differential limitation does not become particularly strong even when the accelerator pedal is depressed, and the differential limitation becomes stronger due to the change in the rotational speed difference Δω between the left and right wheels, so that one wheel slips, etc. It is possible to suppress the situation and secure the stability of the vehicle.

【0020】なお、この発明は上記の実施例に限定され
るものではないのであって、適用できる車両の駆動形式
や差動装置の構造などは、上記の実施例で示した構成以
外のものであってもよい。またスロットル開度θに基づ
いて機関出力を検出する替わりに、吸気管負圧等の他の
パラメータに基づいて機関出力を検出してもよい。さら
に路面の摩擦係数は、加速度以外のパラメータに基づい
て検出することとしてもよい。
It should be noted that the present invention is not limited to the above-described embodiments, and applicable vehicle drive types, structures of differential devices, etc. are other than those shown in the above-mentioned embodiments. It may be. Further, instead of detecting the engine output based on the throttle opening θ, the engine output may be detected based on other parameters such as the intake pipe negative pressure. Further, the friction coefficient of the road surface may be detected based on a parameter other than acceleration.

【0021】[0021]

【発明の効果】以上の説明から明らかなようにこの発明
の差動制限制御装置は、高μ路では主に機関出力の大き
さに応じて差動制限を行い、低μ路では主に左右輪の差
動回転数に応じて差動制限を行うから、高μ路ではアク
セル操作に迅速に応答して高い加速性能を得ることがで
きると同時に、低μ路では車両の挙動の安定性を確保で
き、運転者の意図した走行と走行安定性とを両立させる
ことができる。
As is apparent from the above description, the differential limiting control device of the present invention performs differential limiting mainly on the high μ road in accordance with the magnitude of the engine output, and on the low μ road, mainly the left and right sides. Since the differential limitation is performed according to the differential rotation speed of the wheels, it is possible to respond quickly to accelerator operation on high μ roads and obtain high acceleration performance, while at the same time stabilize vehicle behavior on low μ roads. This can be ensured, and both the running intended by the driver and the running stability can be made compatible.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の基本的な構成を示すブロック図であ
る。
FIG. 1 is a block diagram showing a basic configuration of the present invention.

【図2】この発明の一実施例を概略的に示すブロック図
である。
FIG. 2 is a block diagram schematically showing an embodiment of the present invention.

【図3】差動装置の断面図である。FIG. 3 is a sectional view of a differential device.

【図4】差動制限クラッチ圧を制御するための油圧回路
図である。
FIG. 4 is a hydraulic circuit diagram for controlling differential limiting clutch pressure.

【図5】差動制限クラッチ油圧と制御電流との関係を示
すマップである。
FIG. 5 is a map showing the relationship between differential limiting clutch hydraulic pressure and control current.

【図6】差動制限クラッチ油圧を制御するためのルーチ
ンを示すフローチャートである。
FIG. 6 is a flowchart showing a routine for controlling differential limiting clutch hydraulic pressure.

【図7】加速度のベクトル和に基づいて左右輪の回転数
差の補正係数を求めるマップである。
FIG. 7 is a map for obtaining a correction coefficient for the rotational speed difference between the left and right wheels based on the vector sum of accelerations.

【図8】加速度のベクトル和に基づいてスロットル開度
の補正係数を求めるマップである。
FIG. 8 is a map for obtaining a correction coefficient for the throttle opening based on the vector sum of accelerations.

【符号の説明】[Explanation of symbols]

1,2 車輪 3 差動制限装置 4 路面摩擦係数検出手段 5 回転数差検出手段 6 機関出力検出手段 7 差動制限力決定手段 8 出力手段 1 and 2 wheels 3 differential limiting device 4 road surface friction coefficient detecting means 5 rotational speed difference detecting means 6 engine output detecting means 7 differential limiting force determining means 8 output means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 左右輪の差動回転を制限する差動制限装
置による差動制限力を制御する車両用差動制限制御装置
において、 路面の摩擦係数を検出する路面摩擦係数検出手段と、左
右輪の回転数差を検出する回転数差検出手段と、機関の
出力の大きさを検出する機関出力検出手段と、路面の摩
擦係数が大きい場合には主として機関出力に応じて差動
制限力を決定し、路面摩擦係数が小さい場合には主とし
て左右輪の回転数差に応じて差動制限力を決定する差動
制限力決定手段と、差動制限力決定手段で決定された差
動制限力を達成するよう前記差動制限装置に指示信号を
出力する出力手段とを具備していることを特徴とする車
両用差動制限制御装置。
1. A vehicle differential limiting control device for controlling a differential limiting force by a differential limiting device for limiting differential rotation of left and right wheels, and road surface friction coefficient detecting means for detecting a friction coefficient of a road surface, and right and left. Rotational speed difference detection means for detecting the rotational speed difference of the wheels, engine output detection means for detecting the magnitude of the output of the engine, and when the friction coefficient of the road surface is large, the differential limiting force is mainly applied according to the engine output. When the road surface friction coefficient is small, the differential limiting force determining means determines the differential limiting force mainly according to the rotational speed difference between the left and right wheels, and the differential limiting force determining means determines the differential limiting force. And a means for outputting an instruction signal to the differential limiting device so as to achieve the above.
JP32363792A 1992-11-09 1992-11-09 Vehicle differential limiting control device Expired - Lifetime JP2910465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32363792A JP2910465B2 (en) 1992-11-09 1992-11-09 Vehicle differential limiting control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32363792A JP2910465B2 (en) 1992-11-09 1992-11-09 Vehicle differential limiting control device

Publications (2)

Publication Number Publication Date
JPH06144066A true JPH06144066A (en) 1994-05-24
JP2910465B2 JP2910465B2 (en) 1999-06-23

Family

ID=18156951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32363792A Expired - Lifetime JP2910465B2 (en) 1992-11-09 1992-11-09 Vehicle differential limiting control device

Country Status (1)

Country Link
JP (1) JP2910465B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122683A (en) * 2009-12-11 2011-06-23 Ud Trucks Corp Differential lock control device
JP2012081821A (en) * 2010-10-08 2012-04-26 Mitsubishi Motors Corp Vehicle integrated control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122683A (en) * 2009-12-11 2011-06-23 Ud Trucks Corp Differential lock control device
JP2012081821A (en) * 2010-10-08 2012-04-26 Mitsubishi Motors Corp Vehicle integrated control device

Also Published As

Publication number Publication date
JP2910465B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP3272617B2 (en) Vehicle yaw moment control device
JPH0729556B2 (en) Drive force distribution controller for four-wheel drive vehicle
JP2946251B2 (en) Drive wheel torque control device for vehicle
JP3467973B2 (en) Driving force distribution control device
JP2910465B2 (en) Vehicle differential limiting control device
JPH0699752A (en) Drive force distribution control device for four-wheel drive vehicle
JP2882219B2 (en) Vehicle differential limiting control device
JP3582375B2 (en) 4 wheel drive vehicle
JP5125669B2 (en) Vehicle speed estimation device for four-wheel drive vehicles
JP3412313B2 (en) Driving force distribution control device for four-wheel drive vehicle
JPH0635259B2 (en) Vehicle drive system clutch control device
JP2507608B2 (en) Driving force distribution control device
JP3575223B2 (en) Driving force control device for vehicles
JP2518444B2 (en) Driving force distribution switchable four-wheel drive vehicle
JP2950070B2 (en) Vehicle differential limiting control device
JP2794207B2 (en) Drive control device for four-wheel drive vehicle
JP3412404B2 (en) Engine output control device for vehicle
JP3551038B2 (en) Torque distribution device for four-wheel drive vehicles
JP2679302B2 (en) Vehicle differential limiting control device
JP3409418B2 (en) Differential limit torque control device
JP3182996B2 (en) Wheel slip control device
JP3509982B2 (en) Vehicle acceleration slip control device
JPH109007A (en) Vehicle behavior control device
JP2679070B2 (en) Vehicle differential limiting control device
JPH0260841A (en) Device for controlling differential limiting force