JPH06143208A - Manufacture of modified wood - Google Patents
Manufacture of modified woodInfo
- Publication number
- JPH06143208A JPH06143208A JP29718792A JP29718792A JPH06143208A JP H06143208 A JPH06143208 A JP H06143208A JP 29718792 A JP29718792 A JP 29718792A JP 29718792 A JP29718792 A JP 29718792A JP H06143208 A JPH06143208 A JP H06143208A
- Authority
- JP
- Japan
- Prior art keywords
- wood
- insoluble
- modified wood
- compound
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical And Physical Treatments For Wood And The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、住宅設備、建築材料等
に用いられる改質木材の製法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing modified wood used for housing equipment, building materials and the like.
【0002】[0002]
【従来の技術】木材に難燃性を付与する方法として、例
えば、特開昭61−246003号公報に開示されてい
る如く、互いに反応することにより不溶性化合物を生じ
させるカチオンおよびアニオンを別々に含ませた2種の
水溶液を、順に天然の原料木材に含浸させ、不溶性不燃
性の無機化合物の生成・定着を行い、木材を改質するこ
とが知られている。しかし、上記方法は、難燃性を付与
するには効果的であるが、寸法安定性を付与するには効
果的でない。これは木材を構成する親水基が吸水性を示
し、従って、寸法安定性の特性である抗膨潤率(AS
E)は改善されない。As a method of imparting flame retardancy to wood, for example, as disclosed in JP-A-61-246003, a cation and an anion which react with each other to form an insoluble compound are separately contained. It is known that a natural raw material wood is sequentially impregnated with two kinds of aqueous solutions, and an insoluble non-combustible inorganic compound is generated and fixed to modify the wood. However, although the above method is effective for imparting flame retardancy, it is not effective for imparting dimensional stability. This is because the hydrophilic groups that make up wood exhibit water absorption, and therefore the characteristic of dimensional stability is the anti-swelling ratio (AS).
E) is not improved.
【0003】一方、木材に寸法安定性を付与する方法と
して、ホルマール化処理が知られている。ホルマール化
による処理は古くから行われており、木材成分(セルロ
ース、ヘミセルロース、リグニン等)の親水性水酸基間
をホルムアルデヒドで架橋する反応である。このような
架橋により木材の親水性が低減し、5〜10%程度の低
い重量増加率で、抗膨潤率(ASE)が50〜60%の
値まで改善される。近年においては、木材の用途拡大に
伴い難燃性を備え、且つより寸法安定性の向上した改質
木材が求められている。On the other hand, as a method for imparting dimensional stability to wood, formalization treatment is known. The treatment by formalization has been performed for a long time, and is a reaction of crosslinking formaldehyde between hydrophilic hydroxyl groups of wood components (cellulose, hemicellulose, lignin, etc.). By such crosslinking, the hydrophilicity of wood is reduced, and the anti-swelling ratio (ASE) is improved to a value of 50 to 60% at a low weight gain rate of about 5 to 10%. In recent years, as wood has expanded its uses, there has been a demand for modified wood having flame retardancy and improved dimensional stability.
【0004】[0004]
【発明が解決しようとする課題】本発明は上述の事実に
鑑みてなされたもので、その目的とするところは、木材
の難燃性が保持され、且つ寸法安定性が改善された改質
木材の製法を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned facts, and an object thereof is to provide modified wood in which flame retardancy of wood is retained and dimensional stability is improved. To provide the manufacturing method of.
【0005】[0005]
【課題を解決するための手段】本発明に係る改質木材の
製法は、原料木材に含浸した2種以上の水溶性化合物の
反応生成物である不溶性不燃性化合物と、不溶性樹脂が
定着した変性木材を、ホルムアルデヒド誘導体の蒸気雰
囲気中で、且つ酸触媒の存在下で加熱してホルマール化
することを特徴とする。The method for producing a modified wood according to the present invention comprises an insoluble incombustible compound, which is a reaction product of two or more water-soluble compounds impregnated in a raw material wood, and a modification in which an insoluble resin is fixed. The wood is characterized by being formalized by heating in a vapor atmosphere of a formaldehyde derivative and in the presence of an acid catalyst.
【0006】[0006]
【作用】本発明によると、原料木材内に不溶性不燃性化
合物を生成、定着しているので、不溶性不燃性化合物に
よって、原料木材は難燃性において改質される。さら
に、本発明では原料木材内に不溶性不燃性化合物と共に
定着した不溶性樹脂は原料木材内の空隙部を満たすの
で、難燃化された改質木材が吸湿しにくくなり、吸湿寸
法変化が起きにくくなる。従って、不溶性樹脂の生成、
定着によって空隙部が消滅した変性木材をホルマール化
すると、木材中の水酸基が消滅するので寸法安定性がさ
らに増す。上記不溶性不燃性化合物と不溶性樹脂が生
成、定着した変性木材に、ホルマール化処理をすると、
木材中には水酸基が存在していないので、ホルムアルデ
ヒド誘導体の蒸気は変性木材内に不溶性不燃性化合物と
不溶性樹脂が存在していても浸透が阻害されることなく
変性木材内に拡散され、ホルマール化が施され、難燃性
と寸法安定性に優れた改質木材が得られる。逆にホルマ
ール化を先に行った後に、不溶性不燃性化合物と不溶性
樹脂を生成、定着する場合は、ホルマール化により木材
が疎水化されているため、不溶性不燃性化合物を生成す
る2種以上の水溶性化合物、不溶性樹脂を生成する有機
化合物の含浸が阻害され、難燃性の付与、および寸法安
定性の向上が難しい。According to the present invention, since the insoluble incombustible compound is produced and fixed in the raw wood, the insoluble noncombustible compound modifies the raw wood in flame retardancy. Further, in the present invention, since the insoluble resin fixed together with the insoluble noncombustible compound in the raw material wood fills the voids in the raw material wood, the flame-retardant modified wood is less likely to absorb moisture, and the moisture absorption dimension change is less likely to occur. . Therefore, the formation of insoluble resin,
When the modified wood, in which the voids have disappeared due to fixing, is formalized, the hydroxyl groups in the wood disappear, which further improves dimensional stability. The insoluble non-combustible compound and the insoluble resin are generated, the modified wood that has been fixed, formalization treatment,
Since there are no hydroxyl groups in the wood, the formaldehyde derivative vapor diffuses into the modified wood without interfering with permeation even if the insoluble incombustible compound and the insoluble resin are present in the modified wood, resulting in formalization. Thus, a modified wood having excellent flame retardancy and dimensional stability can be obtained. On the contrary, when the insoluble noncombustible compound and the insoluble resin are formed and fixed after the formalization is performed first, the wood is hydrophobized by the formalization, so two or more water-soluble compounds that generate the insoluble noncombustible compound are formed. Impregnation of the organic compound and the organic compound that forms an insoluble resin is hindered, and it is difficult to impart flame retardancy and improve dimensional stability.
【0007】以下、本発明を詳細に説明する。本発明に
おいて、ホルマール化を施すのは、原料木材に不溶性不
燃性化合物と不溶性樹脂が生成、定着した変性木材に限
定される。The present invention will be described in detail below. In the present invention, the formalization is limited to the modified wood in which the insoluble incombustible compound and the insoluble resin are formed and fixed in the raw wood.
【0008】上記原料木材の形状は、特に限定されず、
例えば、原木丸太、製材品、スライス単板、合板等が用
いられる。上記原料木材の樹種等についても、何ら限定
されない。[0008] The shape of the raw material wood is not particularly limited,
For example, log logs, lumber products, sliced veneer, plywood and the like are used. The tree species of the above-mentioned raw material wood is not limited at all.
【0009】本発明において、変性木材を構成する不溶
性不燃性化合物の生成、定着は、原料木材に含浸した2
種以上の水溶性化合物の反応と同時に生成することによ
って実現する。上記変性木材内に定着する不溶性不燃性
化合物としては、特に限定はされないが、例えば、ホウ
酸塩、リン酸塩、リン酸水素塩、炭酸塩、硫酸塩、硫酸
水素塩、ケイ酸塩、硝酸塩、水酸塩等が挙げられる。上
記不溶性不燃性化合物を原料木材内に反応生成物として
定着するためには、2種以上の化合物として、例えばこ
の不溶性不燃性化合物のカチオン部を構成するカチオン
種を含むカチオン含有化合物と、不溶性不燃性化合物の
アニオン部を構成するアニオン種を含むアニオン含有化
合物とを原料木材に含浸させ、これら化合物を互いに木
材内で反応させる。この不溶性不燃性化合物は、1種又
は、2種以上が木材内に共存してもよく、木材内に生成
させようとする所望の不溶性不燃性化合物の組成に応じ
て任意に選択される。In the present invention, the production and fixation of the insoluble incombustible compound constituting the modified wood is carried out by impregnating the raw wood with 2
It is realized by simultaneous production of one or more water-soluble compounds. The insoluble non-combustible compound that is fixed in the modified wood is not particularly limited, and examples thereof include borate, phosphate, hydrogen phosphate, carbonate, sulfate, hydrogen sulfate, silicate, and nitrate. , Hydrochloride and the like. In order to fix the above-mentioned insoluble incombustible compound as a reaction product in the raw material wood, two or more kinds of compounds, for example, a cation-containing compound containing a cation species constituting a cation part of the insoluble incombustible compound and an insoluble incombustible compound are used. The raw wood is impregnated with an anion-containing compound containing an anionic species forming the anionic part of the organic compound, and these compounds are reacted with each other in the wood. This insoluble noncombustible compound may be present alone or in combination of two or more in the wood, and is arbitrarily selected according to the desired composition of the insoluble noncombustible compound to be produced in the wood.
【0010】上述のカチオン含有化合物とアニオン含有
化合物を木材に含浸させる方法について説明する。上記
不溶性不燃性化合物のカチオン種としては、特に限定は
されないが、例えば、Mg,Ca,Sr,Ba等のアル
カリ土類金属イオン、Al,Fe,Cu,Co,Ni,
Mn,Pb,Zn等の金属イオンが挙げられる。また、
不溶性不燃性化合物のアニオン種としては、特に限定は
されないが、例えば、OH- ,F- ,Cl- ,Br- ,
NO3 - ,CO3 2-,BO3 2-,PO4 3-,SO4 2-等
が挙げられる。これら、カチオン種とアニオン種は1種
類でも良いし、2種類以上が共存しても良い。上記カチ
オン種を構成させるカチオン含有化合物としては、Mg
Cl2 、MgBr2 、MgSO4 ・H2 O、Mg(NO
3 )2 ・6H2 O、CaCl2 、CaBr2 、Ca(N
O3 )2 、BaCl2 ・2H2 O、BaBr2 、Ba
(NO3 )2 、AlCl3 、AlBr3 、Al(S
O4 )3、Al(NO3 )3 ・9H2 O、ZnCl2 等
があげられ、上記アニオン種を構成させるアニオン含有
化合物としてはNa2 CO3 、(NH4 )2 CO3 、H
2SO4 、Na2 SO4 、(NH4 )2 SO4 、H3 P
O4 、(NH4 )2 HPO 4 、H3 BO3 、NaB
O2 、NH4 BO2 等があげられるが、これらに限定さ
れるものではない。カチオンとアニオンの種類によって
は、生成する不溶性不燃性化合物のカチオン部を構成す
ることもあるし、アニオン部を構成することもある。上
記カチオン含有化合物とアニオン含有化合物の選択に際
しては、木材内で不溶性不燃性化合物を容易に生成する
組み合わせが好ましい。Containing the above-mentioned cation-containing compound and anion
A method of impregnating wood with the compound will be described. the above
The cation species of the insoluble incombustible compound is not particularly limited.
However, for example, Mg, Ca, Sr, Ba, etc.
Potassium earth metal ion, Al, Fe, Cu, Co, Ni,
Examples thereof include metal ions such as Mn, Pb and Zn. Also,
The anionic species of the insoluble incombustible compound is not particularly limited.
Not, for example, OH-, F-, Cl-, Br-,
NO3 -, CO3 2-, BO3 2-, POFour 3-, SOFour 2-etc
Is mentioned. One of these cation and anion species
The same kind may be used, or two or more kinds may coexist. Above
As the cation-containing compound that constitutes the on-species, Mg
Cl2, MgBr2, MgSOFour・ H2O, Mg (NO
3)2・ 6H2O, CaCl2, CaBr2, Ca (N
O3)2, BaCl2・ 2H2O, BaBr2, Ba
(NO3)2, AlCl3, AlBr3, Al (S
OFour)3, Al (NO3)3・ 9H2O, ZnCl2etc
And anions containing the above-mentioned anion species are included.
Na as a compound2CO3, (NHFour)2CO3, H
2SOFour, Na2SOFour, (NHFour)2SOFour, H3P
OFour, (NHFour)2HPO Four, H3BO3, NaB
O2, NHFourBO2But not limited to these
It is not something that can be done. Depending on the type of cation and anion
Constitutes the cation part of the resulting insoluble non-combustible compound
In some cases, it may form an anion part. Up
When selecting cation-containing compounds and anion-containing compounds
Easily produce insoluble and non-combustible compounds in wood
Combinations are preferred.
【0011】上記カチオン含有化合物とアニオン含有化
合物の含浸方法については、特に限定されず、例えば、
化合物の水溶液を用いる方法、粉状の化合物を散布する
方法等が挙げられる。化合物の水溶液を用いる場合は、
カチオン含有化合物、およびアニオン含有化合物を別々
に含ませた2種の水溶液を用い、両水溶液を順に原料木
材に、浸漬、減圧下含浸、加圧下含浸等の方法により含
浸させる。この際、原料木材内への含浸を促進するため
に両水溶液が20〜80℃であることが、好ましい。上
記粉状の化合物を散布する場合の一例を挙げれば、片面
に上記カチオン含有化合物を散布した原料木材と、片面
に上記アニオン含有化合物を散布した原料木材とを、こ
れらの化合物が散布されている面を同一方向に向け、カ
チオン含有化合物が散布された原料木材とアニオン含有
化合物が散布された原料木材とを交互に重ねて含浸を行
う方法がある。上記カチオン含有化合物とアニオン含有
化合物を散布した木材は、加熱して養生を行う。この加
熱方法は特に限定されない。この養生条件の温度、時
間、方法等は、生成する不溶性不燃性化合物の種類や量
等により、適宜決定される。上記養生する際には、木材
中の溶媒が揮発して木材が乾燥しないようにすることが
好ましく、例えば、カチオン含有化合物、及びアニオン
含有化合物を散布した原料木材をシートで密封する方法
等が挙げられる。The method for impregnating the cation-containing compound and the anion-containing compound is not particularly limited.
Examples thereof include a method using an aqueous solution of the compound and a method of spraying a powdery compound. When using an aqueous solution of the compound,
Two kinds of aqueous solutions in which a cation-containing compound and an anion-containing compound are separately contained are used, and both aqueous solutions are sequentially impregnated into a raw material wood by a method such as dipping, impregnation under reduced pressure, and impregnation under pressure. At this time, it is preferable that both aqueous solutions have a temperature of 20 to 80 ° C. in order to accelerate the impregnation into the raw material wood. As an example of the case of spraying the powdery compound, a raw material wood sprayed with the cation-containing compound on one side, and a raw wood wood sprayed with the anion-containing compound on one side, these compounds are sprayed There is a method of directing the surfaces in the same direction and alternately impregnating the raw material wood sprinkled with the cation-containing compound and the raw wood material sprinkled with the anion-containing compound. The wood on which the cation-containing compound and the anion-containing compound are sprayed is heated and cured. This heating method is not particularly limited. The temperature, time, method and the like of this curing condition are appropriately determined depending on the type and amount of the insoluble incombustible compound produced. At the time of curing, it is preferable that the solvent in the wood is not volatilized so that the wood is not dried, and examples thereof include a method of sealing a raw material wood with a cation-containing compound and an anion-containing compound sprayed with a sheet. To be
【0012】変性木材内に生成される不溶性不燃性化合
物の含浸量は、特に限定されないが、木材重量に対し
て、20重量%以上が適当である。The impregnated amount of the insoluble incombustible compound formed in the modified wood is not particularly limited, but is preferably 20% by weight or more based on the weight of the wood.
【0013】本発明において用いる変性木材には、前述
のとおり上記不溶性不燃性化合物と共に、不溶性樹脂が
定着している。この不溶性樹脂は木材内の空隙部を満た
すので、木材が吸湿しにくくなり、吸湿に伴う寸法安定
性を良好にする。上記不溶性樹脂の定着は、不溶性樹脂
を生成する、水溶性で、且つ熱硬化性の有機化合物を含
浸し、加熱することによって実現される。この有機化合
物は有機化合物のみ単独で含浸してもよいし、上記カチ
オン含有化合物、又はアニオン含有化合物と混合して含
浸してもよい。上記有機化合物としては、特に限定はさ
れないが、例えば、ユリア、メラミン、フェノールの誘
導体として、ジメチロールユリア、ジメチロールメチレ
ンユリア、ジメチロールジヒドロキシエチレンユリア、
メチロールメラミン、メチロールフェノール(サリゲニ
ン)、燐酸グアニジン、燐酸グアニル尿素、スルファミ
ン酸グアニジン等が挙げられる。上記有機化合物は1〜
30重量%の濃度で用いることが好ましい。As mentioned above, the insoluble resin is fixed to the modified wood used in the present invention together with the insoluble incombustible compound. Since this insoluble resin fills the voids in the wood, it becomes difficult for the wood to absorb moisture, and the dimensional stability associated with moisture absorption is improved. The fixing of the insoluble resin is realized by impregnating a water-soluble and thermosetting organic compound that produces an insoluble resin and heating. The organic compound may be impregnated with the organic compound alone, or may be impregnated with the cation-containing compound or the anion-containing compound in a mixture. The organic compound is not particularly limited, for example, urea, melamine, as a phenol derivative, dimethylol urea, dimethylol methylene urea, dimethylol dihydroxyethylene urea,
Examples thereof include methylolmelamine, methylolphenol (saligenin), guanidine phosphate, guanylurea phosphate, and guanidine sulfamate. The organic compound is 1 to
It is preferably used at a concentration of 30% by weight.
【0014】上述の不溶性不燃性化合物と不溶性樹脂を
生成した変性木材は、必要に応じて、木材表面の水洗い
を行うと、副生成物や未反応物が除去されるので好まし
い。The modified wood produced with the above-mentioned insoluble incombustible compound and insoluble resin is preferably washed with water on the surface of the wood, if necessary, because by-products and unreacted materials are removed.
【0015】次に、不溶性不燃性化合物と不溶性樹脂が
定着した変性木材に、ホルムアルデヒド誘導体の蒸気雰
囲気中で、且つ酸触媒の存在下で加熱してホルマール化
を行う。上記変性木材にホルマール化処理をすると、木
材中には水酸基が存在していないので、ホルムアルデヒ
ド誘導体の蒸気は変性木材内に不溶性不燃性化合物と不
溶性樹脂が存在していても浸透が阻害されることなく変
性木材内に拡散され、ホルマール化が施され、難燃性と
寸法安定性に優れた改質木材が得られる。本発明とは逆
にホルマール化を先に行った後に、不溶性不燃性化合物
と不溶性樹脂を生成、定着する場合は、ホルマール化に
より木材が疎水化されているため、不溶性不燃性化合物
を生成する2種以上の水溶性化合物、不溶性樹脂を生成
する有機化合物の含浸が阻害される。Next, the modified wood, on which the insoluble incombustible compound and the insoluble resin are fixed, is heated in the vapor atmosphere of the formaldehyde derivative and in the presence of an acid catalyst to be formalized. When the above modified wood is subjected to formalization, since hydroxyl groups are not present in the wood, the vapor of the formaldehyde derivative may inhibit the permeation even if the insoluble incombustible compound and the insoluble resin are present in the modified wood. Instead, it is diffused in modified wood and subjected to formalization, resulting in modified wood with excellent flame retardancy and dimensional stability. Contrary to the present invention, if the insoluble incombustible compound and the insoluble resin are produced and fixed after the formalization is performed first, the insoluble incombustible compound is produced because the wood is hydrophobized by the formalization. Impregnation with one or more water-soluble compounds and organic compounds that form insoluble resins is inhibited.
【0016】このホルマール化を行う上記変性木材は、
余分な水分を取り除ぞくため、乾燥し、含水率を10重
量%以下に調湿した木材が好ましい。これは、余分な水
分があると、ホルムアルデヒドモノマーがこの水分によ
り重合してオキシメチレン鎖になりやすく、オキシメチ
レン鎖になると、前述のホルマール化が減退し、寸法安
定性の向上効果が期待できないからである。この余分な
水分を取り除く方法は風乾、熱風乾燥、高周波乾燥等、
特に限定されない。The above-mentioned modified wood that undergoes this formalization is
In order to remove excess water, it is preferable to use wood that has been dried and adjusted to a moisture content of 10% by weight or less. This is because if there is excess water, the formaldehyde monomer is easily polymerized by this water to form an oxymethylene chain, and if it becomes an oxymethylene chain, the above-mentioned formalization is diminished and the effect of improving dimensional stability cannot be expected. Is. The method of removing this excess water is air drying, hot air drying, high frequency drying, etc.
There is no particular limitation.
【0017】上記ホルムアルデヒド誘導体は、熱分解す
るとホルムアルデヒドモノマーを生成する化合物であっ
て、例えば、パラホルムアルデヒド、トリオキサン、テ
トラオキサン等が挙げられる。これらは、1種または2
種以上を用いることができる。これらのうち、トリオキ
サンやテトラオキサンは、固体でホルムマリン臭がな
く、容易に昇華し、熱分解してホルムアルデヒドモノマ
ーを生成するので、工業的に有効である。上記ホルムア
ルデヒド誘導体は、酸触媒の量やホルマール化の反応の
程度により、適宜決定されるが、ホルムアルデヒド誘導
体は熱分解して、ホルムアルデヒドモノマーになった場
合に換算して、10〜300モル/m3 (反応容器の容
量)が適当である。The formaldehyde derivative is a compound which forms a formaldehyde monomer when thermally decomposed, and examples thereof include paraformaldehyde, trioxane and tetraoxane. These are 1 or 2
More than one species can be used. Among these, trioxane and tetraoxane are industrially effective because they are solid and have no formmarin odor, easily sublime, and thermally decompose to form formaldehyde monomer. The formaldehyde derivative is appropriately determined depending on the amount of the acid catalyst and the degree of the formalization reaction, but the formaldehyde derivative is 10 to 300 mol / m 3 in terms of thermal decomposition to formaldehyde monomer. (Capacity of reaction vessel) is appropriate.
【0018】上記ホルムアルデヒド誘導体の蒸気の浸透
形態については、特に限定されず、例えば、固体のホル
ムアルデヒド誘導体を反応容器内で揮発させ、変性木材
に浸透させてもよいし、また、すでに揮発したホルムア
ルデヒド誘導体の蒸気を反応容器に導入し、変性木材に
浸透させてもよい。The form of vapor permeation of the formaldehyde derivative is not particularly limited. For example, a solid formaldehyde derivative may be volatilized in a reaction vessel to permeate modified wood, or the formaldehyde derivative that has already volatilized may be vaporized. May be introduced into the reaction vessel to penetrate the modified wood.
【0019】又、本発明におけるホルマール化には、酸
触媒を用いる。この酸触媒としては、例えば、二酸化硫
黄、塩化水素、塩酸塩、硫酸塩、亜硫酸塩、ほう酸等が
挙げられる。これらは、1種または2種以上を用いるこ
とができる。これら酸触媒のうち、特に、二酸化硫黄を
用いると、ホルムアルデヒドと水からヒドロキシメチル
スルホン酸を生じ、これが有効に木材との反応に促進す
る。上記酸触媒の濃度は、特に限定されないが、通常は
1〜15モル/m3 (反応容器の容量)が適当である。An acid catalyst is used for the formalization in the present invention. Examples of the acid catalyst include sulfur dioxide, hydrogen chloride, hydrochloride, sulfate, sulfite, boric acid and the like. These can use 1 type (s) or 2 or more types. Among these acid catalysts, particularly when sulfur dioxide is used, hydroxymethylsulfonic acid is generated from formaldehyde and water, which effectively promotes the reaction with wood. The concentration of the acid catalyst is not particularly limited, but usually 1 to 15 mol / m 3 (volume of reaction vessel) is suitable.
【0020】なお、必要に応じてホルムアルデヒド誘導
体からホルムアルデヒドモノマーへの熱分解を促進する
助触媒を用いると、反応が促進される点で有効である。
助触媒としては、塩化水素、塩化亜鉛、塩化鉄等の塩化
物、硫酸鉄等の硫酸塩、及びほう酸とその塩が挙げられ
る。上述の変性木材内の上記不溶性不燃性化合物の生成
に伴って副生成物や未反応物を生じる。この副生成物や
未反応物の一部を残留させておいて、上記助触媒を用い
ないようにすることもできる。。It is effective to use a co-catalyst that accelerates the thermal decomposition of formaldehyde derivative into formaldehyde monomer, if necessary, in that the reaction is accelerated.
Examples of the promoter include hydrogen chloride, zinc chloride, chlorides such as iron chloride, sulfates such as iron sulfate, and boric acid and salts thereof. By-products and unreacted substances are produced along with the formation of the insoluble and non-combustible compound in the modified wood. It is also possible not to use the cocatalyst by leaving a part of this by-product or unreacted material. .
【0021】上記酸触媒の浸透方法については、特に限
定されず、例えば、酸触媒が気体の場合はボンベを用い
て反応容器に導入し、変性木材に浸透させ、また、酸触
媒が液体や固体の場合は変性木材と共に反応容器内でガ
ス化させ、変性木材に浸透する。このホルマール化を減
圧下や加圧下で行う場合は、反応容器は耐圧性を持つも
のであることが必要である。The method of permeating the above-mentioned acid catalyst is not particularly limited. For example, when the acid catalyst is a gas, it is introduced into a reaction vessel using a cylinder to permeate the modified wood, and the acid catalyst is liquid or solid. In the case of 1, the modified wood is gasified in the reaction vessel and penetrates the modified wood. When this formalization is carried out under reduced pressure or under pressure, the reaction vessel must have pressure resistance.
【0022】本発明における改質木材のホルマール化を
固体のホルムアルデヒド誘導体と、気体の酸触媒と、固
体の助触媒を用いる場合の一例を挙げると、次のように
して行う。まず、加温した反応容器内に、不溶性不燃性
化合物の生成した所定量の変性木材、ホルムアルデヒド
誘導体、及び助触媒を入れ、密封する。次に、真空ポン
プを用いて、反応容器内を減圧状態にする。この時の減
圧度は100mmHg以下が好ましい。上記反応容器内の
温度は90〜120℃が好ましい。その後、真空ポンプ
を止め、気体の酸触媒を反応容器内に所定量導入し、反
応容器内を所定の温度に加熱保持し、ホルマール化を行
う。酸触媒の導入は減圧直後でもよいし、減圧後ホルム
アルデヒド誘導体の蒸気が揮発してからでもよい。減圧
後ホルムアルデヒド誘導体の蒸気が揮発してから酸触媒
を導入すると酸触媒による木材の変色を少なくできるの
で好ましい。この時のホルマール化の温度は、特に限定
されないが、90〜120℃が好ましい。ホルマール化
の処理時間は、特に限定されない。ホルマール化を行っ
た後に、反応容器内の気体を加熱下で減圧排気する。こ
の排気を十分行うことにより、木材内の未反応気体をほ
とんど除去することができる。なお、ホルマール化の方
法は上述に限定されるものではない。Formalization of the modified wood in the present invention is carried out as follows, as an example of using a solid formaldehyde derivative, a gaseous acid catalyst and a solid cocatalyst. First, a predetermined amount of modified wood, in which an insoluble incombustible compound is produced, a formaldehyde derivative, and a co-catalyst are placed in a heated reaction vessel and sealed. Next, the inside of the reaction vessel is depressurized using a vacuum pump. The degree of pressure reduction at this time is preferably 100 mmHg or less. The temperature in the reaction vessel is preferably 90 to 120 ° C. After that, the vacuum pump is stopped, a predetermined amount of a gaseous acid catalyst is introduced into the reaction container, the inside of the reaction container is heated and maintained at a predetermined temperature, and formalization is performed. The acid catalyst may be introduced immediately after the decompression, or after vaporization of the formaldehyde derivative vapor after the decompression. It is preferable to introduce the acid catalyst after the vapor of the formaldehyde derivative is volatilized after the pressure reduction because the discoloration of the wood due to the acid catalyst can be reduced. The temperature of formalization at this time is not particularly limited, but is preferably 90 to 120 ° C. The processing time for formalization is not particularly limited. After performing the formalization, the gas in the reaction vessel is evacuated under reduced pressure while being heated. By sufficiently exhausting this gas, most of the unreacted gas in the wood can be removed. The method of forming formal is not limited to the above.
【0023】[0023]
【実施例】以下、本発明の実施例および比較例を挙げ
る。EXAMPLES Examples and comparative examples of the present invention will be given below.
【0024】実施例1 原料木材として、30×60mm角のナラ材を用意し
た。この木材をカチオン含有化合物として、塩化バリウ
ム25重量%の水溶液に30mmHgの減圧下で3時間、
3kg/cm2 の加圧下で3時間浸漬した後、次に、ア
ニオン含有化合物としてリン酸水素2アンモニウム40
重量%と、有機化合物として、ジメチロールユリア10
重量%からなる水溶液に30mmHgの減圧下で3時間、
3kg/cm2 の加圧下で3時間浸漬し、さらに105
℃で6時間乾燥し、リン酸バリウムを成分とした不溶性
不燃性化合物と、ユリアを成分とした不溶性樹脂が生
成、定着した変性木材を得た。Example 1 As raw material wood, 30 × 60 mm square oak wood was prepared. Using this wood as a cation-containing compound in an aqueous solution of 25% by weight of barium chloride under a reduced pressure of 30 mmHg for 3 hours,
After soaking under a pressure of 3 kg / cm 2 for 3 hours, diammonium hydrogen phosphate 40 was added as an anion-containing compound.
% By weight, and as an organic compound, dimethylol urea 10
3% under reduced pressure of 30 mmHg in an aqueous solution consisting of
Immerse under a pressure of 3 kg / cm 2 for 3 hours, then add 105
After drying at 6 ° C. for 6 hours, a modified wood in which an insoluble nonflammable compound containing barium phosphate as a component and an insoluble resin containing urea as a component were produced and fixed was obtained.
【0025】その後、水洗いにより副生成物を除去し、
105℃で8時間乾燥させた上記変性木材を、あらかじ
め100℃に加温した反応容器に入れ、さらに、この反
応容器内にホルムアルデヒド誘導体として、トリオキサ
ンを、反応容器容積当たり50モル/m3 入れた。Thereafter, by-products are removed by washing with water,
The modified wood dried at 105 ° C. for 8 hours was placed in a reaction container preheated to 100 ° C., and trioxane as a formaldehyde derivative was further placed in the reaction container at 50 mol / m 3 per volume of the reaction container. .
【0026】次に、容器を密封し、真空ポンプを用い
て、50mmHgに減圧し,2時間保持して、反応容器内
のホルムアルデヒド誘導体を十分揮発させた後に、酸触
媒として、二酸化硫黄(SO2 )を、反応容器容積当た
り5モル/m3 導入した。その後、100℃で24時間
保持し、ホルマール化を行った。ホルマール化終了後、
反応容器内の残留ガスを十分に減圧下で排気し、改質木
材を得た。Next, the vessel was sealed, the pressure was reduced to 50 mmHg by using a vacuum pump and kept for 2 hours to sufficiently volatilize the formaldehyde derivative in the reaction vessel, and then sulfur dioxide (SO 2 was used as an acid catalyst. 5 mol / m 3 was introduced per volume of the reaction vessel. Then, it hold | maintained at 100 degreeC for 24 hours, and formalized. After the formalization,
The residual gas in the reaction vessel was sufficiently exhausted under reduced pressure to obtain modified wood.
【0027】得られた改質木材の含浸率と、改質木材の
寸法安定性として抗膨潤率(ASE)と、難燃性を測定
し、評価した。The impregnation rate of the obtained modified wood, the anti-swelling rate (ASE) as the dimensional stability of the modified wood, and the flame retardancy were measured and evaluated.
【0028】含浸率は、下記の式に従って求めた。 ・ 含浸率(%)={(W2 −W1 )/W1 }×
100 ・ W1 は原料木材の絶乾重量を表す。 ・ W2 は得られた改質木材の絶乾重量を表す。The impregnation rate was determined according to the following formula. - impregnation rate (%) = {(W 2 -W 1) / W 1} ×
100 · W 1 represents the absolute dry weight of the raw wood. · W 2 represents the absolute dry weight of the resulting modified wood.
【0029】抗膨潤率は、下記の式に従って求めた。 ・ 抗膨潤率(%)={(S1 −S2 )/S1 }
×100 ・S1 は原料木材の膨潤率を表す。S1 は原料木材の絶
乾後の寸法Aと、この原料木材を真空状態で水中に72
時間浸した後の寸法Bを測定し、下式に基づいて算出し
た。 ・ S1 (%)={(B−A)/A}×100 ・S2 は改質木材の膨潤率を表す。S2 は改質木材の絶
乾後の寸法Cと、この改質木材を真空状態で水中に72
時間浸した後の寸法Dを測定し、下式に基づいて算出し
た。 ・ S2 (%)={(D−C)/C}×100 難燃性はJIS−A−1321に基づいて6分間の表
面燃焼試験を行い、難燃3級の規格で合否を判定した。The anti-swelling ratio was determined according to the following formula. - anti-swelling rate (%) = {(S 1 -S 2) / S 1}
× 100 · S 1 represents the swelling ratio of the raw wood. S 1 is the dimension A of the raw wood after drying, and 72
The dimension B after immersion in time was measured and calculated based on the following formula. · S 1 (%) = { (B-A) / A} × 100 · S 2 represents the swelling rates of the reforming timber. S 2 is the dimension C of the modified wood after drying, and 72
The dimension D after immersion in time was measured and calculated based on the following formula.・ S 2 (%) = {(D−C) / C} × 100 Flame retardance was determined by passing a surface burning test for 6 minutes based on JIS-A-1321, and judging whether the flame retardance was 3rd grade. .
【0030】結果は表1の通りであった。難燃性が保持
され、且つ抗膨潤率が60%を越える65%であった。The results are shown in Table 1. The flame retardancy was maintained, and the anti-swelling ratio was 65%, which exceeded 60%.
【0031】比較例1 原料木材として、30×60mm角のナラ材を用意し
た。この木材をカチオン含有化合物として、塩化バリウ
ム25重量%の水溶液に30mmHgの減圧下で3時間、
3kg/cm2 の加圧下で3時間浸漬した後、次に、ア
ニオン含有化合物としてリン酸水素2アンモニウム40
重量%の水溶液に30mmHgの減圧下で3時間、3kg
/cm2 の加圧下で3時間浸漬し、不溶性不燃性化合物
が生成、定着した木材を得た。Comparative Example 1 As a raw material wood, a 30 × 60 mm square oak wood was prepared. Using this wood as a cation-containing compound in an aqueous solution of 25% by weight of barium chloride under a reduced pressure of 30 mmHg for 3 hours,
After soaking under a pressure of 3 kg / cm 2 for 3 hours, diammonium hydrogen phosphate 40 was added as an anion-containing compound.
3% under a reduced pressure of 30 mmHg for 3 hours in a wt% aqueous solution
Immersion under a pressure of / cm 2 for 3 hours gave a wood in which an insoluble incombustible compound was formed and fixed.
【0032】その後、水洗いにより副生成物を除去し、
105℃で8時間乾燥させた上記木材を、あらかじめ1
00℃に加温した反応容器に入れ、さらに、この反応容
器内にホルムアルデヒド誘導体として、トリオキサン
を、反応容器容積当たり50モル/m3 入れた。Thereafter, by-products are removed by washing with water,
The above wood dried at 105 ° C for 8 hours was
The reaction vessel was heated to 00 ° C., and trioxane as a formaldehyde derivative was placed in the reaction vessel in an amount of 50 mol / m 3 per volume of the reaction vessel.
【0033】次に、容器を密封し、真空ポンプを用い
て、50mmHgに減圧し,2時間保持して、反応容器内
のホルムアルデヒド誘導体を十分揮発させた後に、酸触
媒として、二酸化硫黄(SO2 )を、反応容器容積当た
り5モル/m3 導入した。その後、120℃で16時間
保持し、ホルマール化を行った。ホルマール化終了後、
反応容器内の残留ガスを十分に減圧下で排気した。Next, the vessel was sealed, the pressure was reduced to 50 mmHg by using a vacuum pump, and the vessel was kept for 2 hours to sufficiently volatilize the formaldehyde derivative in the reaction vessel. Then, as an acid catalyst, sulfur dioxide (SO 2 5 mol / m 3 was introduced per volume of the reaction vessel. Then, it hold | maintained at 120 degreeC for 16 hours, and formalized. After the formalization,
The residual gas in the reaction vessel was thoroughly exhausted under reduced pressure.
【0034】次に、実施例1と同様に、含浸率、抗膨潤
率、及び難燃性を測定した。結果は表1の通りであっ
た。難燃性は保持されたが、抗膨潤率は60%に達しな
い50%であった。Then, in the same manner as in Example 1, the impregnation rate, anti-swelling rate, and flame retardancy were measured. The results are shown in Table 1. Although the flame retardancy was retained, the anti-swelling ratio was 50%, which did not reach 60%.
【0035】比較例2 原料木材として、予め溶媒に水を用い飽水状態にした、
3mm厚のアガチスロータリー材の単板を、水1リット
ル当たり、アニオン含有化合物としてリン酸水素2アン
モニウムを3.5モル溶解した80℃の水溶液に2時間
浸漬した後、さらに、水1リットル当たり、カチオン含
有化合物として塩化バリウムを2モル溶解した80℃の
水溶液に4時間浸漬し、木材中に不溶性不燃性化合物を
生成、定着させた。その後、水洗いにより副生成物を除
去し、乾燥した。Comparative Example 2 As raw material wood, water was previously used as a solvent to make it saturated.
After immersing a 3 mm-thick single plate of Agathis rotary material in an aqueous solution of 80 ° C. in which 3.5 mol of diammonium hydrogen phosphate as an anion-containing compound was dissolved for 2 hours per 1 liter of water, further, per 1 liter of water, It was immersed in an aqueous solution of 2 mol of barium chloride as a cation-containing compound at 80 ° C. for 4 hours to form and fix an insoluble incombustible compound in wood. Then, by-products were removed by washing with water and dried.
【0036】次に、実施例1と同様に、含浸率、抗膨潤
率、及び難燃性を測定した。結果は表1の通りであっ
た。難燃性は保持されたが、抗膨潤率は20%と非常に
低い値であった。Then, in the same manner as in Example 1, the impregnation rate, anti-swelling rate, and flame retardancy were measured. The results are shown in Table 1. Although flame retardancy was retained, the anti-swelling rate was a very low value of 20%.
【0037】[0037]
【表1】 [Table 1]
【0038】[0038]
【発明の効果】本発明の製法によると、木材の難燃性が
保持され、且つ寸法安定性が改善された。According to the manufacturing method of the present invention, the flame retardancy of wood is maintained and the dimensional stability is improved.
Claims (5)
合物の反応生成物である不溶性不燃性化合物と、不溶性
樹脂が定着した変性木材を、ホルムアルデヒド誘導体の
蒸気雰囲気中で、且つ酸触媒の存在下で加熱してホルマ
ール化することを特徴とする改質木材の製法。1. An insoluble non-combustible compound, which is a reaction product of two or more water-soluble compounds impregnated into a raw material wood, and a modified wood on which an insoluble resin has been fixed, in a formaldehyde derivative vapor atmosphere and with an acid catalyst. A method for producing a modified wood, which comprises heating in the presence of the material to form it.
性の有機化合物を原料木材に含浸させることにより定着
することを特徴とする請求項1の改質木材の製法。2. The method for producing modified wood according to claim 1, wherein the insoluble resin is fixed by impregnating the raw wood with a water-soluble and thermosetting organic compound.
ミン、フェノール誘導体であることを特徴とする請求項
2の改質木材の製法。3. The method for producing modified wood according to claim 2, wherein the organic compound according to claim 2 is urea, melamine or a phenol derivative.
ラホルムアルデヒド、トリオキサン、テトラオキサンの
うち少なくとも1種以上を用いることを特徴とする請求
項1乃至3いずれかの改質木材の製法。4. The method for producing modified wood according to claim 1, wherein at least one of paraformaldehyde, trioxane and tetraoxane is used as the formaldehyde derivative.
化物、硫酸塩、亜酸塩、硼酸のうち少なくとも1種以上
を用いることを特徴とする請求項1乃至4いずれかの改
質木材の製法。5. The modified wood according to claim 1, wherein the acid catalyst is at least one selected from the group consisting of sulfur dioxide, hydrogen chloride, chloride, sulfate, phosphite and boric acid. Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29718792A JPH06143208A (en) | 1992-11-06 | 1992-11-06 | Manufacture of modified wood |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29718792A JPH06143208A (en) | 1992-11-06 | 1992-11-06 | Manufacture of modified wood |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06143208A true JPH06143208A (en) | 1994-05-24 |
Family
ID=17843308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29718792A Pending JPH06143208A (en) | 1992-11-06 | 1992-11-06 | Manufacture of modified wood |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06143208A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110434966A (en) * | 2019-08-01 | 2019-11-12 | 普洱林达木业有限责任公司 | A kind of production technology of environment friendly artificial board |
-
1992
- 1992-11-06 JP JP29718792A patent/JPH06143208A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110434966A (en) * | 2019-08-01 | 2019-11-12 | 普洱林达木业有限责任公司 | A kind of production technology of environment friendly artificial board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4010296A (en) | Compositions for imparting fire retardance to wood | |
JPH06143208A (en) | Manufacture of modified wood | |
US5009964A (en) | Composition and process for imparting fire retardant properties and improved thermal stability to cellulosic materials | |
JPH06143209A (en) | Manufacture of modified wood | |
JPH06143207A (en) | Manufacture of modified wood | |
JPH06134709A (en) | Manufacture of modified wood | |
JP2881592B2 (en) | Method for producing modified wood | |
JPH0663907A (en) | Manufacture of modified wood | |
JPH0550407A (en) | Manufacture of modified timber | |
JPH04259503A (en) | Modified wood and its manufacture | |
JPH0482702A (en) | Production of modified wood | |
JPH0482710A (en) | Production of modified wood | |
JPH0657402B2 (en) | Modified wood manufacturing method | |
JPH02307703A (en) | Manufacture of modified wood | |
JPH05269707A (en) | Manufacture of modified lumber | |
JPH02116510A (en) | Manufacture of modified lumber | |
JPS63293006A (en) | Manufacture of improved wood | |
JPH03277502A (en) | Manufacture of modified wood | |
JPH01271203A (en) | Manufacture of modified wood | |
JPH0260705A (en) | Manufacture of modified wood | |
JPH0482709A (en) | Production of modified wood | |
JPH02258201A (en) | Manufacture of modified wood | |
JPH05318416A (en) | Production of modified lumber | |
JPH0655509A (en) | Manufacture of modified wood | |
JPH06218708A (en) | Production of modified wood |