JPH06143131A - Part carrier - Google Patents

Part carrier

Info

Publication number
JPH06143131A
JPH06143131A JP4296093A JP29609392A JPH06143131A JP H06143131 A JPH06143131 A JP H06143131A JP 4296093 A JP4296093 A JP 4296093A JP 29609392 A JP29609392 A JP 29609392A JP H06143131 A JPH06143131 A JP H06143131A
Authority
JP
Japan
Prior art keywords
carrier
resistant layer
holding
component carrier
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4296093A
Other languages
Japanese (ja)
Inventor
Takashi Hino
高志 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4296093A priority Critical patent/JPH06143131A/en
Publication of JPH06143131A publication Critical patent/JPH06143131A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prolong the life of a part carrier by improving the abrasion- resistive strength and effectively prevent the contamination of a worked part by a part carrier. CONSTITUTION:A part carrier 8 is constituted so that a plurality of holding holes 5b for accommodating and holding a plurality of worked parts 4 one by one are formed on a carrier body 6, and the worked parts 4 are transported successively toward the working machine in the held state in the holding hole 5b, and the worked parts are transported after working. An abrasion-resistive layer 7 made of ceramics material is formed at least on the surface of the carrier body 6 including the inside surface of the holding hole 5b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は両頭研削盤などの加工機
械において被加工部品を搬送するための部品キャリアに
係り、特に部品キャリアの耐摩耗強度を改善して長寿命
化を図る一方、部品キャリアによる被加工部品の汚染を
効果的に防止できる部品キャリアに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a component carrier for transporting a component to be machined in a processing machine such as a double-headed grinder, and in particular, it improves wear resistance strength of the component carrier to prolong its service life. The present invention relates to a component carrier that can effectively prevent contamination of a component to be processed by the carrier.

【0002】[0002]

【従来の技術】従来から多数のセラミックス焼結体製部
品の表面を連続的に研磨加工する装置として図3に示す
ような両頭研削盤1が広く使用されている。この両頭研
削盤1は、対向配置され相互に反対方向に回転する1対
の円板状ディスクホイール(砥石車)2a,2bと、両
ディスクホイール2a,2b間に回転自在に配置した円
板状の部品キャリア3とを備えて構成される。
2. Description of the Related Art Conventionally, a double-sided grinder 1 as shown in FIG. 3 has been widely used as an apparatus for continuously polishing the surfaces of many ceramics sintered body parts. This double-headed grinder 1 is a pair of disc-shaped disc wheels (grinding wheels) 2a, 2b arranged facing each other and rotating in opposite directions, and a disc-shaped disc wheel rotatably arranged between the disc wheels 2a, 2b. The component carrier 3 of FIG.

【0003】部品キャリア3は主として鉄系金属材料で
形成されたものが多く、その他の材質としてはFRP
(繊維強化プラスチック)などの各種プラスチック材料
などがある。部品キャリア3の本体には、被加工部品
(ワーク)4を収容し保持するための保持穴5が回転方
向周上に沿って多数穿設されている。
Many of the component carriers 3 are mainly made of iron-based metallic materials, and other materials are FRP.
There are various plastic materials such as (fiber reinforced plastic). The main body of the component carrier 3 is provided with a large number of holding holes 5 for accommodating and holding the workpiece (work) 4 along the circumferential direction of rotation.

【0004】そして部品キャリア3の保持穴5内に収容
された被加工部品4は部品キャリア3の回転動作により
順次ディスクホイール2a,2b間に送り込まれ、所定
の研磨加工を受けた後に、さらに部品キャリア3の回転
によりディスクホイール2a,2bから連続的に排出さ
れる。
The workpiece 4 housed in the holding hole 5 of the component carrier 3 is sequentially fed between the disc wheels 2a and 2b by the rotating operation of the component carrier 3 and, after undergoing a predetermined polishing process, further components. By the rotation of the carrier 3, the disc wheels 2a and 2b are continuously ejected.

【0005】[0005]

【発明が解決しようとする課題】しかしながら従来の鉄
系金属製の部品キャリアを使用してセラミックス焼結体
製の被加工部品を連続的に研磨する場合には、部品キャ
リアの保持穴が、高硬度を有するセラミックス材と繰り
返して接触するため摩耗の進行が早く、保持穴が変形し
て被加工部品を正しい位置に保持することが困難になる
欠点がある。そのため被加工部品の加工精度が急激に低
下し、製品歩留りを悪化させる一方、保持穴の変形度合
を常に監視する必要があり、また変形した部品キャリア
を高頻度で交換する必要があり、研磨装置の保守管理が
煩雑になり、運転効率も低下し易い問題点があった。
However, in the case of continuously polishing a workpiece made of a ceramic sintered body by using a conventional iron-based metal component carrier, the holding hole of the component carrier is high. Since the ceramic material having hardness is repeatedly contacted, wear progresses quickly, and the holding hole is deformed, which makes it difficult to hold the workpiece in a correct position. As a result, the processing accuracy of the parts to be machined deteriorates sharply and the product yield deteriorates, while it is necessary to constantly monitor the degree of deformation of the holding holes, and it is necessary to replace the deformed part carrier with high frequency. However, there was a problem that the maintenance management of the above became complicated and the operation efficiency was easily lowered.

【0006】また被加工部品がAlNやAl2 3 など
の白色系セラミックス材で形成されている場合には、被
加工部品の側面にFeなどのキャリア構成成分が付着し
て汚染を発生し、製品歩留りを低下させる問題点もあっ
た。
Further, when the work part is made of a white ceramic material such as AlN or Al 2 O 3 , carrier constituents such as Fe adhere to the side surfaces of the work part to cause contamination, There is also a problem that the product yield is reduced.

【0007】さらに各種プラスチック材料で部品キャリ
アを制作した場合においても保持穴の摩耗が早いという
同様な問題点があった。
Further, even when a component carrier is made of various plastic materials, there is a similar problem that the holding holes are rapidly worn.

【0008】本発明は上記問題点を解決するためになさ
れたものであり、耐摩耗強度を改善して長寿命化を図る
一方、部品キャリアによる被加工部品の汚染を効果的に
防止できる部品キャリアを提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is possible to improve wear resistance strength and prolong the life of the component carrier, while effectively preventing contamination of the component to be processed by the component carrier. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る部品キャリアは、複数の被加工部品を
1個ずつ収容保持するための複数の保持穴がキャリア本
体に形成され、上記保持穴に被加工部品を保持した状態
で順次加工機械方向に搬送し、加工後搬出する部品キャ
リアにおいて、少くとも上記保持穴の内側面を含むキャ
リア本体表面にセラミックス材から成る耐摩耗層を形成
したことを特徴とする。
In order to achieve the above object, in the component carrier according to the present invention, a plurality of holding holes for accommodating and holding a plurality of workpieces one by one are formed in the carrier body. A wear-resistant layer made of a ceramic material is formed on the surface of the carrier body, including at least the inner surface of the holding hole, in a component carrier that sequentially carries the workpiece in the holding hole in the direction of the processing machine and then carries it out after processing. It is characterized by having done.

【0010】上記キャリア本体は、搬送動作時に高い衝
撃力を受けるため、ある程度の機械的強度を有するSS
41等の金属材料で形成することが望ましく、その厚さ
は0.8〜2mm程度が好ましい。キャリア本体の厚さ
が0.8mm未満と薄い場合には、後述する耐摩耗層を
形成する際の加熱操作によってそりや変形が生じ易くな
る一方、厚さが2mmを超える場合にも被加工部品の保
持精度の改善効果が少ないからである。
Since the carrier body is subjected to a high impact force during the carrying operation, the SS has a certain mechanical strength.
It is desirable to form it with a metal material such as 41, and its thickness is preferably about 0.8 to 2 mm. If the thickness of the carrier body is less than 0.8 mm, warping or deformation is likely to occur due to the heating operation when forming the wear resistant layer, which will be described later. This is because the effect of improving the holding accuracy of is small.

【0011】保持穴の形状としては、被加工部品の形状
および寸法に応じて図1に示すように、円形断面の保持
穴5a,5bや矩形状の保持穴5cなど種々の形状をと
り得る。
As the shape of the holding holes, as shown in FIG. 1, various shapes such as holding holes 5a and 5b having a circular cross section and holding holes 5c having a rectangular shape can be taken according to the shape and size of the workpiece.

【0012】耐摩耗層を構成するセラミックス材料とし
ては、汎用のAl2 3 などの酸化物系、Si3 4
SiC,AlNなどの非酸化物系セラミックスのいずれ
を使用してもよく、特に限定されるものではないが、プ
ラズマCVD法によって形成し易いセラミックス材、例
えばSi3 4 ,SiC,TiNおよびTiCの1種ま
たは2種以上混合した材料を使用するとよい。
As the ceramic material constituting the wear resistant layer, general-purpose oxides such as Al 2 O 3 and Si 3 N 4 ,
Any of non-oxide ceramics such as SiC and AlN may be used and is not particularly limited, but ceramic materials such as Si 3 N 4 , SiC, TiN and TiC which are easily formed by the plasma CVD method may be used. It is advisable to use one or a mixture of two or more materials.

【0013】上記セラミックス材から成る耐摩耗層はP
VD法や無電解めっき法で形成してもよいが、キャリア
本体との密着性に優れ、緻密な層とするために、特にプ
ラズマCVD法(化学蒸気析出法)によって形成すると
よい。プラズマCVD法は耐摩耗層を構成するセラミッ
クス材をプラズマによって一旦ガス状物質に分解し、こ
のガス状物質をアルゴンなどの不活性ガスや窒素などの
キャリアガスによって移送し、所定温度(300〜10
00゜程度)に加熱した部品キャリア本体等の基材表面
に析出させて薄膜を形成する方法である。 また上記耐
摩耗層の厚さは、CVD条件にもよるが2〜6μmに設
定するとよい。厚さが2μm未満の場合には、耐摩耗層
にむらが生じ易く、特に保持穴部分の耐摩耗特性が低下
する場合がある一方、厚さが6μmを超えるように形成
しても、耐摩耗性の改善効果が少なく、CVDの処理時
間が長くなる。特に厚さが10μm以上になると耐摩耗
層に剥離を生じ易くなる。従って耐摩耗層の厚さは上記
範囲内に設定するとよい。
The wear resistant layer made of the above ceramic material is P
Although it may be formed by a VD method or an electroless plating method, it is particularly preferable to form by a plasma CVD method (chemical vapor deposition method) in order to form a dense layer with excellent adhesion to the carrier body. In the plasma CVD method, the ceramic material forming the wear resistant layer is once decomposed into a gaseous substance by plasma, and the gaseous substance is transferred by an inert gas such as argon or a carrier gas such as nitrogen to a predetermined temperature (300 to 10).
It is a method of forming a thin film by depositing it on the surface of a base material such as a component carrier body heated to about 00 °. The thickness of the wear resistant layer is preferably set to 2 to 6 μm, depending on the CVD conditions. If the thickness is less than 2 μm, the wear-resistant layer is likely to have unevenness, and the wear resistance characteristics of the holding hole portion may be deteriorated. The effect of improving the property is small, and the processing time of CVD becomes long. In particular, when the thickness is 10 μm or more, the abrasion resistant layer is likely to peel off. Therefore, the thickness of the wear resistant layer is preferably set within the above range.

【0014】[0014]

【作用】上記構成に係る部品キャリアによれば、少くと
も保持穴の内側面にセラミックス材から成る耐摩耗層が
形成されているため、該部の硬度が大幅に向上し、被加
工部品に対する耐摩耗性が大幅に向上する。また保持穴
の摩耗や変形が少ないため、被加工部品の加工精度も上
昇し、部品キャリアを使用する加工装置の保守管理が容
易になる。
According to the component carrier having the above structure, since the wear-resistant layer made of the ceramic material is formed on at least the inner surface of the holding hole, the hardness of the portion is greatly improved, and the wear resistance to the workpiece is improved. Abrasion is greatly improved. Further, since the holding hole is less worn or deformed, the machining accuracy of the component to be machined is increased, and the maintenance of the machining apparatus using the component carrier is facilitated.

【0015】また金属製のキャリア本体が耐摩耗層によ
って被覆されるため、キャリア本体を構成する金属成分
が被加工部品に転移して汚染を発生することが効果的に
防止でき、製品歩留りを大幅に向上させることができ
る。
Further, since the metal carrier body is coated with the wear resistant layer, it is possible to effectively prevent the metal components constituting the carrier body from being transferred to the work piece and causing contamination, thereby significantly increasing the product yield. Can be improved.

【0016】[0016]

【実施例】次に本発明の一実施例について添付図面を参
照して説明する。
An embodiment of the present invention will now be described with reference to the accompanying drawings.

【0017】実施例1〜3 材質がJIS規格構造用鋼(SS41)であり、厚さが
1mmで直径500mmのキャリア本体6を用意し、そ
の外周縁に図1に示すように所定間隔をおいて直径3
4.5mmの保持穴5bを穿設した。次にこのキャリア
本体6の保持穴5bの内側面を含めた全表面にプラズマ
CVD法により平均厚さがそれぞれ2μm、4μm、1
0μmとなるようにSi3 4 製耐摩耗層7を形成して
図2に示すような実施例1〜3に係る部品キャリア8を
調製した。
Examples 1 to 3 The material is JIS standard structural steel (SS41), a carrier body 6 having a thickness of 1 mm and a diameter of 500 mm is prepared, and a predetermined interval is provided on the outer peripheral edge thereof as shown in FIG. Diameter 3
A 4.5 mm holding hole 5b was formed. Next, on the entire surface of the carrier body 6 including the inner surface of the holding hole 5b, the average thickness is 2 μm, 4 μm, and 1 by plasma CVD.
A wear resistant layer 7 made of Si 3 N 4 was formed so as to have a thickness of 0 μm, and component carriers 8 according to Examples 1 to 3 as shown in FIG. 2 were prepared.

【0018】実施例4〜6 また材質がJIS規格構造用鋼(SS41)であり、厚
さが1mmで直径500mmのキャリア本体6を用意
し、その外周縁に図1に示すように所定間隔をおいて直
径34mmの保持穴5bを穿設した。次にこのキャリア
本体6の保持穴5bの内側面を含めた全表面にプラズマ
CVD法により平均厚さがそれぞれ2μm、4μm、1
0μmとなるようにSiC製耐摩耗層9を形成して図2
に示すような実施例4〜6に係る部品キャリア10を調
製した。
Examples 4 to 6 Further, a carrier body 6 of JIS standard structural steel (SS41) having a thickness of 1 mm and a diameter of 500 mm is prepared, and a predetermined interval is provided on the outer peripheral edge thereof as shown in FIG. Then, a holding hole 5b having a diameter of 34 mm was formed. Next, on the entire surface of the carrier body 6 including the inner surface of the holding hole 5b, the average thickness is 2 μm, 4 μm, and 1 by plasma CVD.
The wear resistant layer 9 made of SiC is formed so as to have a thickness of 0 μm.
The component carrier 10 according to Examples 4 to 6 as shown in FIG.

【0019】実施例7〜9 PVD法により、平均厚さが、それぞれ2μm、4μ
m、10μmとなるように、Si3 4 製耐摩耗層を形
成した以外は実施例1と同様に処理して同一寸法を有す
る実施例7〜9に係る部品キャリア10をそれぞれ調製
した。
Examples 7 to 9 According to the PVD method, the average thickness was 2 μm and 4 μm, respectively.
m and 10 μm, respectively, and the component carriers 10 according to Examples 7 to 9 having the same dimensions were prepared in the same manner as in Example 1 except that the wear-resistant layer made of Si 3 N 4 was formed.

【0020】比較例1〜2 一方比較例1として耐摩耗層を全く形成せずに実施例1
と同様に保持穴を形成したキャリア本体をそのまま使用
した部品キャリアを調製した。また比較例2として耐摩
耗層の厚さを1μmとした以外は実施例1と同様な条件
で処理して同一寸法の部品キャリアを調製した。
Comparative Examples 1 and 2 On the other hand, as Comparative Example 1, Example 1 was performed without forming any wear resistant layer.
Similarly to the above, a component carrier was prepared using the carrier body with holding holes formed as it was. Further, as Comparative Example 2, a component carrier having the same dimensions was prepared by treating under the same conditions as in Example 1 except that the thickness of the wear resistant layer was 1 μm.

【0021】そして上記実施例1〜9および比較例1〜
2に係る部品キャリアを図2に示すような両頭研削盤の
ディスクホイール2a,2b間に介在させ、外径34m
m、厚さ2.5mmの円板状の白色窒化アルミニウム焼
結体を順次装填し、研磨加工を実施した。そして被加工
部品としての白色窒化アルミニウム焼結体を1000個
研磨加工した段階で、各部品キャリアの保持穴の摩耗量
を測定し、その平均値を算出するとともに、部品キャリ
アから被加工部品に転移した汚点を1以上有する部品点
数を計数して下記表1に示す結果を得た。
The above Examples 1 to 9 and Comparative Examples 1 to 1
The component carrier according to No. 2 is interposed between the disc wheels 2a and 2b of the double-headed grinder as shown in FIG.
A disk-shaped white aluminum nitride sintered body having a thickness of 2.5 mm and a thickness of 2.5 mm was sequentially loaded and subjected to polishing. Then, after polishing 1000 pieces of white aluminum nitride sintered bodies as the parts to be processed, the wear amount of the holding hole of each part carrier is measured and the average value is calculated, and the parts carrier is transferred to the part to be processed. The number of parts having one or more stain points was counted and the results shown in Table 1 below were obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示す結果から明らかなように、キャ
リア本体にSi3 4 またはSiCから成る所定厚さの
耐摩耗層を形成した実施例1,2,4,5,7,8に係
る部品キャリアは、耐摩耗層を全く形成しない比較例1
の部品キャリアと比較して保持穴の摩耗量が少なく極め
て耐久性に優れていることが確認された。またキャリア
本体の構成金属材が耐摩耗層によって被覆されているた
め、部品に金属成分が転写し汚染することが少なく、被
加工部品の製造歩留りを大幅に改善できることが確認さ
れた。なお、実施例3,6,9に係る部品キャリアでは
耐摩耗層が厚過ぎて剥離を生じ部品の汚染個数が増大し
た。したがって、耐摩耗層の厚さは2〜6μmの範囲に
設定することが好ましい。
As is clear from the results shown in Table 1, according to Examples 1, 2, 4, 5, 7, and 8 in which the wear-resistant layer of Si 3 N 4 or SiC having a predetermined thickness was formed on the carrier body. Comparative Example 1 in which the component carrier does not form any wear resistant layer
It was confirmed that the wear amount of the holding hole was smaller than that of the component carrier and the durability was extremely excellent. It was also confirmed that since the constituent metal material of the carrier body is covered with the wear resistant layer, the metal component is less likely to be transferred and contaminated to the parts, and the manufacturing yield of the parts to be processed can be significantly improved. In the component carriers according to Examples 3, 6 and 9, the wear resistant layer was too thick and peeling occurred, and the number of contaminated components increased. Therefore, the thickness of the wear resistant layer is preferably set in the range of 2 to 6 μm.

【0024】一方、耐摩耗層の平均厚さを1μmと設定
した比較例2の部品キャリアにおいては、保持穴の摩耗
量は少ないが、耐摩耗層の厚さにむらを生じ、一部に構
成金属材が露出されるため、汚染を完全に防止すること
が不可能であった。
On the other hand, in the component carrier of Comparative Example 2 in which the average thickness of the wear-resistant layer was set to 1 μm, the amount of wear of the holding holes was small, but the thickness of the wear-resistant layer was uneven, resulting in a partial structure. Since the metal material is exposed, it is impossible to completely prevent contamination.

【0025】[0025]

【発明の効果】以上説明の通り、本発明に係る部品キャ
リアによれば、少くとも保持穴の内側面にセラミックス
材から成る耐摩耗層が形成されているため、該部の硬度
が大幅に向上し、被加工部品に対する耐摩耗性が大幅に
向上する。また保持穴の摩耗や変形が少ないため、被加
工部品の加工精度も上昇し、部品キャリアを使用する加
工装置の保守管理が容易になる。
As described above, according to the component carrier of the present invention, since the wear resistant layer made of the ceramic material is formed at least on the inner surface of the holding hole, the hardness of the portion is significantly improved. However, the wear resistance of the work piece is significantly improved. Further, since the holding hole is less worn or deformed, the machining accuracy of the component to be machined is increased, and the maintenance of the machining apparatus using the component carrier is facilitated.

【0026】また金属製のキャリア本体が耐摩耗層によ
って被覆されるため、キャリア本体を構成する金属成分
が被加工部品に転移して汚染を発生することが効果的に
防止でき、製品歩留りを大幅に向上させることができ
る。
Further, since the metal carrier body is covered with the wear resistant layer, it is possible to effectively prevent the metal components constituting the carrier body from transferring to the parts to be processed and causing the contamination, thereby significantly increasing the product yield. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る部品キャリアの一実施例の形状を
示す平面図。
FIG. 1 is a plan view showing the shape of an embodiment of a component carrier according to the present invention.

【図2】図1におけるII−II矢視断面図。FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】部品キャリアを使用した両頭研削盤による研摩
操作を示す斜視図。
FIG. 3 is a perspective view showing a polishing operation by a double-headed grinder using a component carrier.

【符号の説明】[Explanation of symbols]

1 両頭研削盤 2a,2b ディスクホイール(砥石車) 3 部品キャリア 4 被加工部品(ワーク) 5,5a,5b,5c 保持穴 6 キャリア本体 7 耐摩耗層 8 部品キャリア 9 耐摩耗層 10 部品キャリア 1 Double-headed grinder 2a, 2b Disc wheel (grinding wheel) 3 Part carrier 4 Work piece (work) 5, 5a, 5b, 5c Holding hole 6 Carrier body 7 Wear resistant layer 8 Parts carrier 9 Wear resistant layer 10 Parts carrier

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の被加工部品を1個ずつ収容保持す
るための複数の保持穴がキャリア本体に形成され、上記
保持穴に被加工部品を保持した状態で順次加工機械方向
に搬送し、加工後搬出する部品キャリアにおいて、少く
とも上記保持穴の内側面を含むキャリア本体表面にセラ
ミックス材から成る耐摩耗層を形成したことを特徴とす
る部品キャリア。
1. A plurality of holding holes for accommodating and holding a plurality of workpieces, one by one, are formed in a carrier body, and the workpieces are sequentially conveyed in a state in which the workpieces are held in the holding holes, A component carrier which is carried out after processing, wherein a wear resistant layer made of a ceramic material is formed on the surface of the carrier body including at least the inner surface of the holding hole.
JP4296093A 1992-11-05 1992-11-05 Part carrier Pending JPH06143131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4296093A JPH06143131A (en) 1992-11-05 1992-11-05 Part carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4296093A JPH06143131A (en) 1992-11-05 1992-11-05 Part carrier

Publications (1)

Publication Number Publication Date
JPH06143131A true JPH06143131A (en) 1994-05-24

Family

ID=17829037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4296093A Pending JPH06143131A (en) 1992-11-05 1992-11-05 Part carrier

Country Status (1)

Country Link
JP (1) JPH06143131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506363A (en) * 1990-03-05 1996-04-09 Catalytica, Inc. Catalytic system for olefin oxidation to carbonyl products
CN110549215A (en) * 2019-09-07 2019-12-10 浙江合奥机械科技有限公司 coil housing surface grinding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5506363A (en) * 1990-03-05 1996-04-09 Catalytica, Inc. Catalytic system for olefin oxidation to carbonyl products
CN110549215A (en) * 2019-09-07 2019-12-10 浙江合奥机械科技有限公司 coil housing surface grinding device

Similar Documents

Publication Publication Date Title
KR100728513B1 (en) A tool of a surface-coated boron nitride sintered compact
RU2104826C1 (en) Cemented metal tip and method of its manufacture
US6528171B1 (en) Tool with a molybdenum sulfide containing coating and method for its production
EP0662025B1 (en) Coated grinding tools and methods for their preparation
EP3054027B1 (en) Method for enhancing adhesion of low-temperature ceramic coating
EP3287544A1 (en) Coated metal mold and method for manufacturing same
EP1198609B2 (en) Process for producing a hard-material-coated component
JP2005042146A (en) Coating with high abrasion resistance and high hardness
KR101057106B1 (en) Cutting tool and its surface treatment method
KR101643133B1 (en) Shutter disk for physical vapor deposition chamber
WO2007111293A1 (en) Cutting tool and process for manufacturing the same
JPH06143131A (en) Part carrier
KR101091594B1 (en) Modular device for coating surfaces
JP2008012820A (en) Method of manufacturing mold for forming honeycomb structure
JPH04300104A (en) Surface-coated cutting tool
US5588975A (en) Coated grinding tool
JP2006316912A (en) Piston ring having ion plating film
JPH06226509A (en) Coating cutting tool
JP2925017B2 (en) Manufacturing method of coated band saw blade
JP3132980B2 (en) Cutting whetstone
JPS62193706A (en) Cutting tool
JP2002370171A (en) Electrodeposition grinding wheel
CN115213824A (en) High-performance diamond tool containing wear-resistant matrix layer
KR20130052203A (en) Engine units and surface treatment method for the same
JPH0319727A (en) Manufacture of covered hole saw