JPH06142064A - Amplifier-built-in type probe for organic diagnosis - Google Patents

Amplifier-built-in type probe for organic diagnosis

Info

Publication number
JPH06142064A
JPH06142064A JP4295455A JP29545592A JPH06142064A JP H06142064 A JPH06142064 A JP H06142064A JP 4295455 A JP4295455 A JP 4295455A JP 29545592 A JP29545592 A JP 29545592A JP H06142064 A JPH06142064 A JP H06142064A
Authority
JP
Japan
Prior art keywords
vibration
probe
measuring means
amplifier
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4295455A
Other languages
Japanese (ja)
Inventor
Yoshinori Ishii
義則 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4295455A priority Critical patent/JPH06142064A/en
Publication of JPH06142064A publication Critical patent/JPH06142064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To provide an amplifier-built-in type probe for organic diagnosis by allowing reducing of a noise attributed to a cable from a probe and the amplifying of an electrical signal outputted from an impedance head and a load measuring means immediately to improve an S/N ratio. CONSTITUTION:A probe for organic diagnosis is made up at least of a tip chip 6 contacting an organic tissue to be diagnosed, a vibrator 3 to generate vibration with a frequency proportional to the frequency of an input signal, an impedance head 5 which detects acceleration of the vibration of the vibrator 3 and a vibration stress generated in the organic tissue vibrated with the vibrator 3 through the tip chip 6 to generate an electrical signal proportional to them and a load measuring means 4 to measure a contact load between the organic tissue and the impedance head 5 by way of the tip chip 6. This amplifier built-in type probe 2 for organic diagnosis is also provided with amplifiers 8. 9 and 10 to amplify electrical signals to be outputted from the impedance head 5 and the load measuring means 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、生体組織の粘弾性特性
(皮膚の硬さ、歯の動揺度等)を診断する測定装置の一
部を構成する生体診断用プローブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodiagnostic probe which constitutes a part of a measuring device for diagnosing viscoelastic properties (skin hardness, tooth mobility, etc.) of living tissue.

【0002】[0002]

【従来の技術】従来この種の測定装置の生体診断用プロ
ーブとして、例えば特開昭62-172946号公報記載の「歯
の機械インピーダンス測定装置」の生体診断用プローブ
は先端チップ、ランダム信号発生器の出力により駆動さ
れる加振器、加振器の振動の加速度と先端チップを通じ
て該加振器により加振された歯周組織に生じる振動応力
を検出してそれらに比例する電気信号を発生するインピ
ーダンスヘッド、歯周組織にかかる静的な接触荷重を測
定するロードセル(荷重測定手段)で構成され、また、
例えば特願平3-253037号出願明細書記載の「超磁歪材料
を用いた生体診断用プローブ」は、先端チップ、芯材に
超磁歪材料を用いた加振器、インピーダンスヘッド、荷
重測定手段で構成されていた。
2. Description of the Related Art Conventionally, as a bio-diagnosis probe of this type of measuring apparatus, for example, a bio-diagnosis probe of "Machine impedance measuring device for teeth" described in Japanese Patent Laid-Open No. 62-172946 is a tip chip, a random signal generator Of the vibrator driven by the output of the vibrator, the vibration acceleration of the vibrator and the vibration stress generated in the periodontal tissue vibrated by the vibrator through the tip, and the electric signal proportional to them is generated. It consists of an impedance head and a load cell (load measuring means) that measures the static contact load applied to the periodontal tissue.
For example, "Biomedical diagnostic probe using a giant magnetostrictive material" described in Japanese Patent Application No. 3-253037 is a tip chip, an exciter using a giant magnetostrictive material as a core material, an impedance head, and a load measuring means. Was configured.

【0003】このような従来の生体診断用プローブで
は、インピーダンスヘッドや荷重測定手段から出力され
る電気信号は、プローブ外に配置されたデータ処理部の
中の増幅器までケーブル等を介して送伝されていた。
In such a conventional biopsy probe, an electric signal output from the impedance head or the load measuring means is transmitted via a cable or the like to an amplifier in a data processing unit arranged outside the probe. Was there.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の生体診
断用プローブにおいて、インピーダンスヘッドから出力
される二つの信号(ランダム振動の加速度に比例した電
気信号とランダム振動により加振された生体組織に生ず
る振動応力に比例した電気信号)は、電荷信号であるた
め測定時のケーブルの振動等によりノイズが大きくな
り、またロードセルからの出力信号も微小信号(電圧信
号)であるため増幅器までの距離が長いとノイズが大き
くなるという問題があった。
However, in the conventional biomedical probe, two signals output from the impedance head (an electrical signal proportional to the acceleration of random vibration and a biological tissue excited by the random vibration) are generated. Since the electric signal proportional to the vibration stress is a charge signal, the noise increases due to the vibration of the cable at the time of measurement, and the output signal from the load cell is a minute signal (voltage signal), so the distance to the amplifier is long. There was a problem that the noise increased.

【0005】本発明の目的は、この問題点の解決にあ
る。
An object of the present invention is to solve this problem.

【0006】[0006]

【課題を解決するための手段】そのため、本発明は「少
なくとも、診断対象の生体組織に接触する先端チップ、
入力信号の周波数に比例する周波数の振動を発生する加
振器、該加振器の振動の加速度と該先端チップを通じて
該加振器により加振された該生体組織に生じる振動応力
を検出してそれらに比例する電気信号を発生するインピ
ーダンスヘッド、該先端チップを介した該生体組織と該
インピーダンスヘッドの間の接触荷重を測定する荷重測
定手段からなる生体診断用プローブにおいて、前記イン
ピーダンスヘッドと前記荷重測定手段から出力される電
気信号をそれぞれ増幅する増幅器を設けたことを特徴と
する増幅器内蔵型生体診断用プローブ」を提供する。
Therefore, the present invention provides "at least a tip that comes into contact with a living tissue to be diagnosed,
A vibration exciter that generates a vibration having a frequency proportional to the frequency of the input signal, and detects the acceleration of vibration of the vibration exciter and the vibration stress generated in the living tissue excited by the vibration exciter through the tip chip. An impedance head that generates an electrical signal proportional to them, and a load measuring means that measures a contact load between the living tissue and the impedance head through the tip chip, wherein the impedance head and the load are used. There is provided an amplifier built-in type biopsy probe, which is provided with an amplifier for amplifying each electric signal output from the measuring means.

【0007】[0007]

【作用】本発明の増幅器内蔵型生体診断用プローブ2
は、プローブ2内に先端チップ6、加振器3、荷重測定
手段(例えばロードセル)4、インピーダンスヘッド5
等の他に増幅器8,9,10を内蔵して一体となってい
る。プローブ2外のランダム信号発生器1から出力され
たランダム周波数の信号は、プローブ2内の加振器3に
入力され、加振器3により入力周波数に比例したランダ
ム周波数の振動が発生する。この振動は荷重測定手段
4、インピーダンスヘッド5、先端チップ6を介して診
断対象の生体組織を加振する。
Operation: The amplifier built-in type biopsy probe 2 of the present invention
Is a tip 2, a vibrator 3, a load measuring means (for example, a load cell) 4, an impedance head 5 in the probe 2.
In addition to the above, amplifiers 8, 9 and 10 are built in and integrated. The random frequency signal output from the random signal generator 1 outside the probe 2 is input to the vibrator 3 in the probe 2, and the vibrator 3 generates vibration of a random frequency proportional to the input frequency. This vibration excites the living tissue to be diagnosed via the load measuring means 4, the impedance head 5, and the tip 6.

【0008】インピーダンスヘッド5は、前記ランダム
周波数の振動の加速度と前記加振された生体組織に生ず
る振動応力を測定し、それらに比例した電気(電荷)信
号を出力する。これらの電荷信号は、プローブ2に内蔵
された二つの電荷増幅器8,9により電圧信号に変換さ
れた後、プローブ2外のデータ処理部11に入力され、こ
れらの信号を基に生体組織の粘弾性特性を診断する。
The impedance head 5 measures the acceleration of the vibration of the random frequency and the vibration stress generated in the vibrated living tissue, and outputs an electric (charge) signal proportional to them. These charge signals are converted into voltage signals by the two charge amplifiers 8 and 9 built in the probe 2, and then input to the data processing unit 11 outside the probe 2, and based on these signals, the viscosity of the biological tissue is detected. Diagnose elastic properties.

【0009】尚、生体組織の粘弾性特性の診断結果は、
生体組織とプローブ2との静的な接触荷重の値に依存す
るので、接触荷重を測定する荷重測定手段4の出力をモ
ニターすることにより接触荷重を一定にして診断を行う
必要がある。この時、荷重測定手段4からの信号(電圧
信号)を、プローブ2に内蔵された荷重測定手段用増幅
器10により増幅した後、データ処理部11に入力してその
出力をモニターする。
The diagnosis result of the viscoelastic property of the living tissue is
Since it depends on the value of the static contact load between the living tissue and the probe 2, it is necessary to make the diagnosis with the contact load kept constant by monitoring the output of the load measuring means 4 for measuring the contact load. At this time, the signal (voltage signal) from the load measuring means 4 is amplified by the load measuring means amplifier 10 built in the probe 2 and then input to the data processing section 11 to monitor its output.

【0010】電荷増幅器8,9を通った後の電気信号は
電圧信号になるのでプローブ2から出るケーブル12には
電荷信号が含まれず、ノイズが減少する。また、インピ
ーダンスヘッド5や荷重測定手段4から増幅器8,9,
10までの距離が短くなり、インピーダンスヘッド5や荷
重測定手段4から出力された電気信号が直ちに増幅され
のでS/N比が向上する。
Since the electric signal after passing through the charge amplifiers 8 and 9 becomes a voltage signal, the cable 12 coming out from the probe 2 does not contain a charge signal, and noise is reduced. Further, the impedance head 5 and the load measuring means 4 are connected to the amplifiers 8, 9,
The distance to 10 is shortened, and the electrical signals output from the impedance head 5 and the load measuring means 4 are immediately amplified, so that the S / N ratio is improved.

【0011】以下、実施例によって本発明をより具体的
に説明するが、本発明はこれに限定されるものではな
い。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

【0012】[0012]

【実施例】図1は、実施例の増幅器内蔵型生体診断用プ
ローブ2とランダム信号発生器1及びデータ処理部11を
示す概略図である。ランダム信号発生器1から出力した
ランダム周波数の信号を、プローブ2内の加振器3に入
力し、加振器3により入力周波数に比例したランダム周
波数の振動を発生させた。この振動はロードセル(荷重
測定手段の一例)4、インピーダンスヘッド5、先端チ
ップ6を介して生体組織(図示せず)を加振した。
FIG. 1 is a schematic diagram showing an amplifier built-in type living body diagnostic probe 2, a random signal generator 1 and a data processing section 11 of an embodiment. The random frequency signal output from the random signal generator 1 was input to the vibrator 3 in the probe 2, and the vibrator 3 generated vibration of a random frequency proportional to the input frequency. This vibration vibrates a living tissue (not shown) through the load cell (an example of load measuring means) 4, the impedance head 5, and the tip 6.

【0013】インピーダンスヘッド5は、前記ランダム
周波数の振動の加速度と前記加振された生体組織に生ず
る振動応力を測定し、それらに比例した電気(電荷)信
号を出力する。これらの電荷信号を、ケース7に内蔵さ
れた電荷増幅器8,9により電圧信号に変換した後、デ
ータ処理部11に入力して、これらの信号を基に生体組織
の粘弾性特性を診断した。
The impedance head 5 measures the acceleration of the vibration of the random frequency and the vibration stress generated in the vibrated living tissue, and outputs an electric (charge) signal proportional to them. These charge signals were converted into voltage signals by the charge amplifiers 8 and 9 incorporated in the case 7, and then input to the data processing unit 11 to diagnose the viscoelastic characteristics of the living tissue based on these signals.

【0014】尚、生体組織の粘弾性特性の診断結果は、
生体組織とプローブ2との静的な接触荷重の値に依存す
るので、接触荷重を測定するロードセル4の出力をモニ
ターすることにより接触荷重を一定にして診断を行っ
た。この時、ロードセル4からの信号(電圧信号)を、
ケース7に内蔵されたロードセル用増幅器10により増幅
した後、データ処理部11に入力してその出力をモニター
した。
The diagnostic result of the viscoelastic property of the living tissue is
Since it depends on the value of the static contact load between the living tissue and the probe 2, the contact load was kept constant by diagnosing the output by monitoring the output of the load cell 4 for measuring the contact load. At this time, the signal (voltage signal) from the load cell 4 is
After amplification by the load cell amplifier 10 incorporated in the case 7, the data was input to the data processing unit 11 and its output was monitored.

【0015】このようにして行った生体組織の粘弾性特
性の診断では、プローブ2から出るケーブル12によるノ
イズが減少し、またインピーダンスヘッド5やロードセ
ル4から出力された電気信号が直ちに増幅されてS/N
比が向上した。
In the diagnosis of the viscoelastic property of the living tissue carried out in this way, the noise due to the cable 12 coming out from the probe 2 is reduced, and the electric signal outputted from the impedance head 5 and the load cell 4 is immediately amplified and S / N
The ratio has improved.

【0016】[0016]

【発明の効果】以上説明したように、本発明の増幅器内
蔵型生体診断用プローブ2は、増幅器8,9,10を内蔵
しており、プローブ2から出るケーブル12には電荷信号
が含まれないのでノイズが減少し、またインピーダンス
ヘッド5や荷重測定手段4から出力された電気信号が直
ちに増幅されるのでS/N比が向上する。
As described above, the amplifier built-in type biopsy probe 2 of the present invention has the amplifiers 8, 9 and 10 built therein, and the cable 12 coming out of the probe 2 does not contain a charge signal. Therefore, noise is reduced, and the electric signals output from the impedance head 5 and the load measuring means 4 are immediately amplified, so that the S / N ratio is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】は、実施例の増幅器内蔵型生体診断用プローブ
2とランダム信号発生器1及びデータ処理部11を示す概
略図である。
FIG. 1 is a schematic diagram showing an amplifier built-in type biopsy probe 2, a random signal generator 1, and a data processing unit 11 of an embodiment.

【符号の説明】[Explanation of symbols]

1・・・ランダム信号発生器 2・・・プローブ 3・・・加振器 4・・・ロードセル(荷重測定手段の一例) 5・・・インピーダンスヘッド 6・・・先端チップ 7・・・ケース 8・・・電荷増幅器 9・・・電荷増幅器 10・・・ロードセル(荷重測定手段)用増幅器 11・・・データ処理部 12・・・ケーブル 以 上 DESCRIPTION OF SYMBOLS 1 ... Random signal generator 2 ... Probe 3 ... Vibrator 4 ... Load cell (an example of load measuring means) 5 ... Impedance head 6 ... Tip chip 7 ... Case 8 ... Charge amplifier 9 ... Charge amplifier 10 ... Amplifier for load cell (load measuring means) 11 ... Data processing unit 12 ... Cable

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、診断対象の生体組織に接触
する先端チップ、入力信号の周波数に比例する周波数の
振動を発生する加振器、該加振器の振動の加速度と該先
端チップを通じて該加振器により加振された該生体組織
に生じる振動応力を検出してそれらに比例する電気信号
を発生するインピーダンスヘッド、該先端チップを介し
た該生体組織と該インピーダンスヘッドの間の接触荷重
を測定する荷重測定手段からなる生体診断用プローブに
おいて、前記インピーダンスヘッドと前記荷重測定手段
から出力される電気信号をそれぞれ増幅する増幅器を設
けたことを特徴とする増幅器内蔵型生体診断用プロー
ブ。
1. A tip chip contacting at least a living body tissue to be diagnosed, a vibrator for generating a vibration having a frequency proportional to a frequency of an input signal, an acceleration of vibration of the vibrator and the vibration applied through the tip chip. An impedance head that detects a vibration stress generated in the living tissue vibrated by a shaker and generates an electric signal proportional thereto, and measures a contact load between the living tissue and the impedance head through the tip tip. In the biomedical probe including the load measuring means, an amplifier built-in type biometric probe is provided, which is provided with an amplifier that amplifies each of the electric signals output from the impedance head and the load measuring means.
JP4295455A 1992-11-05 1992-11-05 Amplifier-built-in type probe for organic diagnosis Pending JPH06142064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4295455A JPH06142064A (en) 1992-11-05 1992-11-05 Amplifier-built-in type probe for organic diagnosis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4295455A JPH06142064A (en) 1992-11-05 1992-11-05 Amplifier-built-in type probe for organic diagnosis

Publications (1)

Publication Number Publication Date
JPH06142064A true JPH06142064A (en) 1994-05-24

Family

ID=17820812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4295455A Pending JPH06142064A (en) 1992-11-05 1992-11-05 Amplifier-built-in type probe for organic diagnosis

Country Status (1)

Country Link
JP (1) JPH06142064A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824164A (en) * 2012-08-28 2012-12-19 常州市钱璟康复器材有限公司 ECG (electroglottograph) measuring method and device for vocal cords
WO2016194468A1 (en) * 2015-06-05 2016-12-08 日立マクセル株式会社 Viscoelasticity calculation system and viscoelasticity measurement method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102824164A (en) * 2012-08-28 2012-12-19 常州市钱璟康复器材有限公司 ECG (electroglottograph) measuring method and device for vocal cords
WO2016194468A1 (en) * 2015-06-05 2016-12-08 日立マクセル株式会社 Viscoelasticity calculation system and viscoelasticity measurement method
JPWO2016194468A1 (en) * 2015-06-05 2018-03-29 マクセル株式会社 Viscoelasticity calculation system and viscoelasticity measurement method
US11219407B2 (en) 2015-06-05 2022-01-11 Maxell, Ltd. Viscoelasticity calculation system and viscoelasticity measurement method
US11737703B2 (en) 2015-06-05 2023-08-29 Maxell, Ltd. Viscoelasticity calculation system and viscoelasticity measurement method

Similar Documents

Publication Publication Date Title
JP3151153B2 (en) Frequency deviation detection circuit and measuring instrument using the same
CN104068888A (en) Detection circuit, driving method, probe, and subject information acquiring apparatus
NO890496L (en) PROCEDURE AND DEVICE FOR NON-POWERFUL ACOUSTIC EXAMINATION OF THE ELASTICITY OF SOFT, BIOLOGICAL WEB.
CA2823923A1 (en) Improvements in or relating to ultrasound generating apparatus, and methods for generating ultrasound
WO2006041114A1 (en) Ultrasonographic device
JP2863448B2 (en) Tooth mobility measurement device
US3653373A (en) Apparatus for acoustically determining periodontal health
DE69003726D1 (en) Method and device for checking the response signal of a mechanical voltage wave sensor.
JPH06142064A (en) Amplifier-built-in type probe for organic diagnosis
JP3907267B2 (en) Vibrator with built-in sensor for measuring mechanical properties of biological surface
JPS63186122A (en) Abnormality diagnosing system for structure
JP2822876B2 (en) Surface potential sensor
JP3686698B2 (en) Tactile sensor probe
JPH07155297A (en) Probe for diagnosing living body
Kim et al. Investigation of displacement of intracranial electrode induced by focused ultrasound stimulation
JPH0431259B2 (en)
JPH07100155A (en) Probe for diagnosing living body
JPH10104146A (en) Hardness measuring apparatus
JP4748405B2 (en) Material hardness measuring device
JPH07116125A (en) Biodiagnosis apparatus
JPH04279157A (en) Tooth oscillation measuring method and apparatus therefor
EP4382051A1 (en) Ultrasonic receiver and sensor for measuring anisotropy in a sample by means of torsional waves, method and uses thereof
JPH0793929B2 (en) Ultrasonic diagnostic equipment
JPH0996600A (en) Tactile sensor signal processor
Umchid Calibration of ultrasonic hydrophone probes in the frequency range from 250 kHz to 1 MHz