JPH06141886A - Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbability - Google Patents
Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbabilityInfo
- Publication number
- JPH06141886A JPH06141886A JP32262192A JP32262192A JPH06141886A JP H06141886 A JPH06141886 A JP H06141886A JP 32262192 A JP32262192 A JP 32262192A JP 32262192 A JP32262192 A JP 32262192A JP H06141886 A JPH06141886 A JP H06141886A
- Authority
- JP
- Japan
- Prior art keywords
- astaxanthin
- phaffia rhodozyma
- fusion
- yeast
- strain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は酵母によるアスタキサン
チンの生産方法に関し、さらに詳しくは高温耐性及び消
化吸収性の改善されたファフィア・ロドチーマによるア
スタキサンチンの生産方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing astaxanthin using yeast, and more particularly to a method for producing astaxanthin using Phaffia rhodozyma having improved high temperature resistance and improved digestion and absorption.
【0002】[0002]
【従来の技術】アスタキサンチンは、カロチノイド系色
素のキサントフィルに属す赤色色素であり、自然界では
動植物界において広く分布している。天然に存在するマ
ダイ・ギンザケ等は美しい赤色を帯びているが、この赤
色は食物連鎖の過程を通じて蓄積されたアスタキサンチ
ンに起因している。一方、養殖物のマダイ・ギンザケ等
は天然物に比べて赤色が落ちるため、出荷前に飼料にア
スタキサンチンを添加して消費者が好むように赤色を付
けている。BACKGROUND OF THE INVENTION Astaxanthin is a red pigment belonging to the carotenoid pigment xanthophyll, and is widely distributed in nature in the animal and plant kingdoms. Naturally occurring red sea bream, coho salmon, etc. have a beautiful red color, which is due to astaxanthin accumulated through the process of the food chain. On the other hand, farmed red sea bream, coho salmon, etc. have a reddish color compared to natural products, so astaxanthin is added to the feed before shipment so that the red color is preferred by consumers.
【0003】この様に、アスタキサンチンは主として養
殖魚あるいは観賞魚の色揚げ剤として使用されている
が、最近色素として以外にも、体内に取り込まれた後に
ビタミンAに変換されるというプロビタミンA活性、β
−カロチンよりもより強力な抗酸化作用及び免疫賦活作
用等を有することが明らかにされ、機能性色素としての
価値がより高まっている。As described above, astaxanthin is mainly used as a frying agent for cultivated fish or ornamental fish. In addition to being used as a pigment recently, the provitamin A activity of being converted into vitamin A after being taken into the body, β
-It has been clarified that it has stronger antioxidant action and immunostimulatory action than carotene, and its value as a functional dye is increasing.
【0004】アスタキサンチンには合成品と天然品とが
存在するが、現時点ではコストの点から合成品がおもに
使用されている。しかしながら、イメージの点から、合
成品より天然品が好まれる傾向は否めない。Astaxanthin is classified into synthetic products and natural products. At present, however, synthetic products are mainly used in view of cost. However, from the point of view of the image, it cannot be denied that natural products are favored over synthetic products.
【0005】アスタキサンチンの天然資源としては、オ
キアミやカニ等の殻、藻類(ヘマトコッカス等)及びフ
ァフィア・ロドチーマがあげられる。オキアミやカニ等
の殻はアスタキサンチン含量が20〜50ppm と低く、その
うえ利用しやすい形状のものではない。藻類は、アスタ
キサンチン含量が1000〜2000ppm あるものが知られてい
るが、培養に強力な光を要するため人工的な大量培養が
できず、イスラエルやオーストラリア等の太陽光の強い
地域で天然湖を利用して培養されいるが、天候の影響を
強く受けるため安定した生産が困難である。また、細胞
壁もかなり強固なためその利用も容易ではない。Natural resources of astaxanthin include shells of krill, crab and the like, algae (Hematococcus and the like) and Phaffia rhodozyma. The shells of krill and crabs have a low astaxanthin content of 20 to 50 ppm, and are not in a shape that is easy to use. It is known that astaxanthin has an astaxanthin content of 1000 to 2000 ppm, but it cannot be mass-produced artificially because strong light is required for cultivation, and natural lakes are used in areas with strong sunlight, such as Israel and Australia. However, stable production is difficult because it is strongly affected by the weather. Moreover, since the cell wall is also quite strong, its use is not easy.
【0006】一方、ファフィア・ロドチーマはタンク等
でも大量培養が比較的しやすく、アスタキサンチン含量
も例えばATCC66272株では1000ppm 以上あるも
のも知られており、天然資源の中では最も注目されてい
る1つである。On the other hand, Phaffia rhodozyma is relatively easy to be cultivated in large quantities even in tanks and the like, and the astaxanthin content is known to be 1000 ppm or more in the ATCC 66272 strain, for example, which is one of the most noticeable natural resources. is there.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、ファフ
ィア・ロドチーマは通常よく使用されているサッカロマ
イセス酵母等と比べて、生育至適温度が23℃と低く高温
耐性がないため生育速度が遅く生産性が低い、あるいは
細胞壁が厚いため飼料に酵母を添加して魚に与えても消
化吸収性が悪く色揚げ効果が落ちる等、工業的生産・利
用面においていくつかの問題点を抱えていた。However, Phaffia rhodozyma has a low optimal growth temperature of 23 ° C and lacks high temperature tolerance, and thus has a slow growth rate and low productivity, as compared with the commonly used Saccharomyces yeast and the like. Or, since the cell wall is thick, even if yeast is added to the feed and it is given to fish, the digestive and absorptivity is poor and the frying effect is deteriorated. Therefore, there are some problems in industrial production and utilization.
【0008】本発明の目的は、確立された育種法の一手
段である細胞融合法をファフィア・ロドチーマに適応
し、高温耐性及び消化吸収性が改善されたファフィア・
ロドチーマによるアスタキサンチン生産方法を提供する
ことにある。[0008] The object of the present invention is to adapt the cell fusion method, which is one of the established breeding methods, to Phaffia rhodozyma, and to improve the thermostability and digestive absorption of the Phaffia.
It is intended to provide a method for producing astaxanthin by Rhodochyma.
【0009】これまで、ファフィア・ロドチーマに細胞
融合を適用するという考えは、特開平3-206880号公報に
おいて述べられているが、実施例を全く伴わない空想的
なものに過ぎない。よって、細胞融合法を適用しファフ
ィア・ロドチーマの欠点であった生産性の低さ・消化吸
収性の悪さを改善した報告は全く無かった。Up to now, the idea of applying cell fusion to Phaffia rhodozyma has been described in Japanese Patent Laid-Open No. 3-206880, but it is merely a fantasy without any working examples. Therefore, there has been no report that the cell fusion method was applied to improve the low productivity and poor digestion and absorption properties which were the drawbacks of Phaffia rhodozyma.
【0010】[0010]
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意研究した結果、本発明を完成するに至っ
た。The present inventors have completed the present invention as a result of intensive studies to solve the above problems.
【0011】即ち、本発明はファフィア・ロドチーマ
と、28℃以上で生育し且つ単独の細胞壁溶解酵素のみで
容易に溶菌できる酵母との間で細胞融合を行って得られ
た、28℃以上で生育し消化吸収性が改善されたアスタキ
サンチン生産能を有する融合株を用いることを特徴とす
るアスタキサンチンの生産方法を提供するものである。That is, the present invention provides a cell fusion between Phaffia rhodozyma and a yeast that grows at 28 ° C. or higher and can be easily lysed by a single cell wall lysing enzyme, and grows at 28 ° C. or higher. The present invention provides a method for producing astaxanthin, which comprises using a fusion strain having the ability to produce astaxanthin with improved digestive and absorbability.
【0012】以下に本発明をさらに詳細に説明する。本
発明で使用するファフィア・ロドチーマとしては、野生
株例えばIFO10129,10130,ATCC24
230等の野生株でも構わないが、よりアスタキサンチ
ン生産性を高めるためアスタキサンチン生合成が強化さ
れた500ppm以上含有するものが望ましい。この様な菌株
は、例えばN−メチル−N′−ニトロ−N−ニトロソグ
アニジン(NTG)等を使用する突然変異処理を繰り返
し行うことにより、得ることが可能である。The present invention will be described in more detail below. Examples of the Phaffia rhodozyma used in the present invention include wild strains such as IFO10129, 10130 and ATCC24.
Wild strains such as 230 may be used, but those containing 500 ppm or more in which astaxanthin biosynthesis is enhanced are desirable in order to further increase astaxanthin productivity. Such a strain can be obtained by repeatedly carrying out a mutation treatment using N-methyl-N'-nitro-N-nitrosoguanidine (NTG) or the like.
【0013】一方、融合相手の酵母としては、ファフィ
ア・ロドチーマへの高温耐性の付与及び摂取したときの
消化吸収性の改善から、28℃以上で生育し且つ単独の細
胞壁溶解酵素のみで容易に溶菌可能な酵母で無毒なもの
であれば特に限定はしないが、我々の食生活に馴染み深
いサッカロマイセス酵母あるいはクリベロマイセス酵母
が望ましい。On the other hand, as the yeast of the fusion partner, since it is imparted with high temperature resistance to Phaffia rhodozyma and improved in digestion and absorption when ingested, it grows at 28 ° C. or higher and is easily lysed by a single cell wall lysing enzyme. There is no particular limitation as long as it is a non-toxic yeast that can be used, but Saccharomyces yeast or Kleveromyces yeast, which is familiar to our diet, is preferable.
【0014】ここで言う細胞壁溶解酵素とは、β−1,
3−グルカナーゼを主体とするものなら問題なく、β−
1,3−グルカナーゼ以外に夾雑酵素が混入していても
構わない。例えば市販品では、ザイモリエース(キリン
ビール社製)、ファンセラーゼ(ヤクルト社製)、ノボ
ザイム234(ノボ社製)等は好ましい細胞壁溶解酵素
である。また、容易な溶菌とは通常の溶菌反応下で7割
以上のプロトプラスト形成率を示すことを言う。The cell wall lysing enzyme referred to here is β-1,
If it is mainly 3-glucanase, β-
Contaminant enzymes other than 1,3-glucanase may be mixed. For example, among commercially available products, Zymoriace (manufactured by Kirin Brewery Co., Ltd.), fancellase (manufactured by Yakult), Novozyme 234 (manufactured by Novo), etc. are preferable cell wall lysing enzymes. Further, "easy lysis" means that a protoplast formation rate of 70% or more is exhibited under a normal lysis reaction.
【0015】細胞融合は融合させる酵母のプロトプラス
ト化から始める。酵母は対数増殖期又は定常期のいずれ
の相であっても使用可能であるが、対数増殖中期にある
ものを使用するのが好ましい。Cell fusion begins with protoplasting of the yeast to be fused. Yeast can be used in either logarithmic growth phase or stationary phase, but it is preferable to use yeast in the mid-logarithmic growth phase.
【0016】ファフィア・ロドチーマは細胞壁溶解酵素
単独ではプロトプラスト化が困難なため、細胞壁溶解酵
素の組合せ、細胞壁溶解酵素とプロテアーゼやキチナー
ゼ等の併用系で行うとプロトプラスト化され易い。この
際、炭素源として2−デオキシグルコースを少量入れて
培養した酵母を用いると、よりプロトプラスト化しやす
い。Phaffia rhodozyma is difficult to form into protoplasts by cell wall lysing enzymes alone. Therefore, when combined with cell wall lysing enzymes or in a combined system of cell wall lysing enzymes and proteases, chitinase, etc., protoplasts are easily formed. At this time, if yeast in which a small amount of 2-deoxyglucose is put in as a carbon source is cultured, protoplasts are more easily formed.
【0017】融合相手である28℃以上で生育し、且つ細
胞壁溶解酵素単独で容易に溶菌可能な酵母としては、サ
ッカロマイセス・セレビシェIFO1954,133
3,0309,クリベロマイセス・フラギリスIFO1
735,1963等があげられる。Saccharomyces cerevisiae IFO 1954, 133 is a yeast that grows at 28 ° C. or higher as a fusion partner and can be easily lysed by a cell wall lysing enzyme alone.
3,0309, Kliberomyces fragilis IFO1
735, 1963 and the like.
【0018】プロトプラスト化は、常法により酵母菌体
を集菌洗浄後、pH5〜7の緩衝液中で細胞壁溶解酵素
と反応させることにより行う。酵素反応条件は、使用す
る酵素の種類により変わるので流動的であるが、通常20
〜30℃、30分〜2時間の反応で十分である。Protoplast formation is performed by collecting and washing yeast cells by a conventional method and then reacting with a cell wall lysing enzyme in a buffer solution of pH 5 to 7. Enzyme reaction conditions vary depending on the type of enzyme used, but usually 20
Reaction at -30 ° C for 30 minutes to 2 hours is sufficient.
【0019】この様にして得られたプロトプラストは、
次に既知の細胞融合法、例えば融合促進剤としてポリエ
チレングリコール(PEG)を使用する方法、あるいは
市販の細胞融合装置を用いる方法等を使用して融合を行
わせる。The protoplast thus obtained is
Then, fusion is performed using a known cell fusion method, for example, a method using polyethylene glycol (PEG) as a fusion accelerator, a method using a commercially available cell fusion device, or the like.
【0020】融合後の細胞は、プロトプラスト再生培養
地を用いプロトプラストを埋没させた後にプレートを30
℃前後で5〜10日間インキュベートして融合再生株を得
ることができる。この細胞融合を行う際に、菌株にアミ
ノ酸要求性等の栄養マーカーを付与した菌株を使用し、
融合株の選択効率を上げることが望ましい。The cells after fusion were plated on a plate after burying the protoplasts in a protoplast regeneration medium.
The fusion regenerated strain can be obtained by incubating at around 0 ° C for 5 to 10 days. When carrying out this cell fusion, use a strain to which a nutrition marker such as an amino acid requirement is added to the strain,
It is desirable to increase the selection efficiency of fusion strains.
【0021】このようにして得られた融合株は、高温耐
性を示し28℃以上で生育が可能なため、親株であるファ
フィア・ロドチーマと比べて生育速度が数倍以上高く、
アスタキサンチン含量も親株と同じ程度のものを得るこ
とができる。The thus-obtained fusion strain exhibits high temperature resistance and can grow at 28 ° C. or higher, and therefore has a growth rate several times higher than that of the parent strain Phaffia rhodozyma.
It is possible to obtain astaxanthin having the same content as that of the parent strain.
【0022】また、細胞壁溶解酵素に対する感受性につ
いては、ファフィア・ロドチーマ以外の酵母の性質が発
現しているため、単独の細胞壁溶解酵素のみで溶菌が可
能であることから、魚が摂取したときの消化吸収性も大
幅に改善され、色揚げ効果も優れていることが期待でき
る。Regarding the sensitivity to cell wall lysing enzymes, since the characteristics of yeasts other than Phaffia rhodozyma are expressed, it is possible to lyse with only a single cell wall lysing enzyme. It can be expected that the absorption will be greatly improved and the color frying effect will be excellent.
【0023】[0023]
【実施例】以下、実施例にて本発明をさらに具体的に説
明する。EXAMPLES The present invention will be described in more detail with reference to the following examples.
【0024】(実施例1)ファフィア・ロドチーマ I
FO10129株にNTG処理を繰り返し行い、アスタ
キサンチン含量が 1200ppmに増加したF−29株を保存
スラントから一白金耳とり、2%MY培地(500ml 容バ
ッフル付き三角フラスコ)に植菌し、23℃で3日間振と
う培養を行った。この培養液1mlを0.02%2−デオキシ
グルコース含有1%MY培地に植菌し、23℃・1日間振
とう培養を行った。培養液10mlを遠心分離して得られた
菌体を 0.1Mトリスー塩酸緩衝液(pH 7.5)5mlに懸
濁し、25℃・30分間プレインキュベーションを行った。(Example 1) Phaffia rhodozyma I
The FO10129 strain was repeatedly subjected to NTG treatment, and one platinum loop of the F-29 strain with an astaxanthin content increased to 1200 ppm was taken from the preserved slant and inoculated into a 2% MY medium (500 ml Erlenmeyer flask with baffles) and incubated at 23 ° C for 3 days. Shaking culture was performed for a day. 1 ml of this culture solution was inoculated into a 1% MY medium containing 0.02% 2-deoxyglucose, and shake culture was carried out at 23 ° C. for 1 day. The cells obtained by centrifuging 10 ml of the culture solution were suspended in 5 ml of 0.1 M Tris-hydrochloric acid buffer (pH 7.5) and preincubated at 25 ° C. for 30 minutes.
【0025】その後 0.8MKCl含有リン酸緩衝液(p
H 6.7)で2回洗浄後、プロトプラスト形成反応液(0.2
%2−メルカプトエタノール、 0.8MKCl、ザイモリ
エース 100T 0.4mg/ml、ファンセラーゼ1mg/ml、キ
チナーゼ1mg/ml、ヘリカーゼ1mg/ml含有 0.1Mリン
酸緩衝液pH 6.7)5mlに懸濁し30℃・1時間インキュ
ベートした。Thereafter, 0.8 M KCl-containing phosphate buffer solution (p
After washing twice with H 6.7), the protoplast formation reaction solution (0.2
% 2-mercaptoethanol, 0.8M KCl, zymolyase 100T 0.4mg / ml, fanserase 1mg / ml, chitinase 1mg / ml, helicase 1mg / ml 0.1M phosphate buffer pH 6.7) 5ml suspended at 30 ° C ・ 1 Incubated for hours.
【0026】一方、融合相手の酵母としてはサッカロマ
イセス・セレビシェIFO1333にマーカーとしてア
ルギニン要求性を付与した株を用いた。本菌株の保存ス
ラントから一白金耳とり、2%MY培地に植菌し、30℃
で2日間振とう培養した。培養液1mlを1%MY培地に
植菌し30℃・14時間振とう培養した。培養液5mlを集菌
洗浄後、同様にプレインキュベーションした。その後
0.8MKCl含有リン酸緩衝液(pH 6.7)で2回洗浄
後、プロトプラスト形成酵素反応液(0.2%2−メルカプ
トエタノール、 0.8MKCl、ザイモリエース 100T
0.4mg/ml含有 0.1Mリン酸緩衝液pH 6.7)5mlに懸
濁し、30℃・1時間インキューベーションした。On the other hand, as the yeast of the fusion partner, a strain in which Saccharomyces cerevisiae IFO1333 was provided with arginine requirement as a marker was used. Take one platinum loop from the preserved slant of this strain and inoculate it in 2% MY medium at 30 ℃
The cells were shaken and cultured for 2 days. 1 ml of the culture solution was inoculated into a 1% MY medium and shake-cultured at 30 ° C. for 14 hours. After collecting and washing 5 ml of the culture broth, preincubation was performed in the same manner. afterwards
After washing twice with 0.8MKCl-containing phosphate buffer (pH 6.7), protoplast-forming enzyme reaction solution (0.2% 2-mercaptoethanol, 0.8MKCl, Zymoriace 100T)
The suspension was suspended in 5 ml of 0.1 M phosphate buffer (pH 6.7) containing 0.4 mg / ml, and incubated at 30 ° C for 1 hour.
【0027】得られた各プロトプラストを菌数が2×10
8 個/mlになるように調製後、プロトプラスト懸濁液を
1:1に混合した。次いで融合緩衝液(10mMCaC
l2 ,0.8MKCl,PEG6000 30%)を添加し、プ
ロトプラスト融合を行った。次に再生培地(イーストナ
イトロジェンベース0.67%,KCl 0.8M,グルコース
1%,寒天2%)のプレート上に塗沫後、再生培地を重
層してプロトプラストを埋没させた。このプレートを30
℃、5〜10日間培養して再生した融合した再生株を得る
ことができた。得られた融合株はアミノ酸要求性を相補
し非要求性の株に変化しており、最少培地でも十分生育
可能であった。The number of bacteria in each of the obtained protoplasts was 2 × 10.
After preparing 8 cells / ml, the protoplast suspension was mixed 1: 1. Then the fusion buffer (10 mM CaC
( 12 , 0.8 MKCl, PEG6000 30%) was added to carry out protoplast fusion. Next, after spreading on a plate of a regeneration medium (0.67% yeast nitrogen base, 0.8 M KCl, 1% glucose, 2% agar), the regeneration medium was overlaid to bury the protoplasts. 30 this plate
It was possible to obtain a fused regenerated strain that was regenerated by culturing at 5 ° C for 5 to 10 days. The obtained fused strain complemented the amino acid auxotrophy and changed into a non-auxotrophic strain, and was able to grow sufficiently even in the minimal medium.
【0028】このようにして得られた融合株のいくつか
は、かなりの赤色を呈し、生育速度も早かった。表1に
融合と親株とのアスタキサンチン生産性の比較結果を示
す。Some of the fusion strains thus obtained exhibited a considerable red color and had a fast growth rate. Table 1 shows the comparison results of astaxanthin productivity between the fusion and the parent strain.
【0029】[0029]
【表1】 [Table 1]
【0030】この様に、アスタキサンチン生産性は親株
に比べ約 2.5倍に上がっていた。また、融合株はザイモ
リエース 100Tのみで容易に溶菌可能であり。細胞壁構
造が親株と比べて壊れ易くなっていた。Thus, the astaxanthin productivity was about 2.5 times higher than that of the parent strain. In addition, the fusion strain can be easily lysed with only Zymoriace 100T. The cell wall structure was more fragile than the parent strain.
【0031】(実施例2)実施例1で得られた融合株を
用い、養殖マダイの色揚げ効果を調べた。養殖マダイは
次の条件で飼育した。Example 2 Using the fusion strain obtained in Example 1, the effect of frying the red sea bream culture was examined. The cultured red sea bream was bred under the following conditions.
【0032】 [0032]
【0033】・供試魚 養殖マダイ 体重 650±25g ・試験区 A,B,C 各20匹 ・給 餌 1日2回 15g/匹 投与 対照区 : ビール酵母添加飼料 (A) 試験区1 : ファフィア酵母添加飼料 (B) 試験区2 : 融合酵母添加飼料 (C) ・飼育期間 60日間Test fish Cultured red sea bream Weight 650 ± 25 g ・ Test group A, B, C 20 each ・ Feed twice a day 15 g / mouse Administration control group: Beer yeast supplemented feed (A) Test group 1: Phaffia Yeast-added feed (B) Test section 2: Fusion yeast-added feed (C) -Breeding period 60 days
【0034】飼育後、目視により各試験区のマダイ表皮
の色を比較した。また、表皮中の総カロチノイド量につ
いては、一定部位から一定面積(50cm2 )の表皮を剥離
し、アセトン−エーテル抽出による比色定量法により定
量を行った。結果を表2に示す。After breeding, the color of the red sea bream skin of each test plot was visually compared. Further, the total amount of carotenoid in the epidermis was quantified by peeling the epidermis of a certain area (50 cm 2 ) from a certain site and performing a colorimetric method by acetone-ether extraction. The results are shown in Table 2.
【0035】[0035]
【表2】 [Table 2]
【0036】試験区1と2では明らかに差がみられ、本
発明で用いた融合株を用いた方が、細胞壁がこわれやす
いため消化吸収性が改善されており、色揚げ効果が高く
より天然に近いものであった。There is a clear difference between test sections 1 and 2, and when the fusion strain used in the present invention is used, the cell wall is more easily broken and the digestive and absorptive properties are improved. Was close to.
【0037】[0037]
【発明の効果】本発明方法によれば、アスタキサンチン
生産面において、28℃以上において培養が可能となるた
め、生産性が上がると共に冷却水等のランニングコスト
の低減も可能となる。また、利用面においては消化吸収
性が改善されるため、色揚げ効果をより天然に近づける
ことができる。According to the method of the present invention, in terms of astaxanthin production, culturing can be performed at 28 ° C. or higher, so that productivity can be increased and running cost of cooling water and the like can be reduced. In addition, in terms of utilization, since the digestive absorbability is improved, the fried effect can be made closer to natural.
フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12P 23/00 C12R 1:645) (C12N 1/19 C12R 1:645 1:85) (C12N 1/19 C12R 1:645) Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location (C12P 23/00 C12R 1: 645) (C12N 1/19 C12R 1: 645 1:85) (C12N 1/19 C12R 1: 645)
Claims (4)
生育可能で且つ単独の細胞壁溶解酵素のみで容易に溶菌
可能な酵母と細胞融合を行って得られた、28℃以上で生
育可能でなお且つ消化吸収性の改善されたアスタキサン
チン生産能を有する融合株を用いることを特徴とするア
スタキサンチンの生産方法。1. A cell fusion with Phaffia rhodozyma and a yeast that can grow at 28 ° C. or higher and that can be easily lysed only by a single cell wall lysing enzyme, that is capable of growing at 28 ° C. or higher, and A method for producing astaxanthin, which comprises using a fusion strain having an astaxanthin-producing ability with improved digestion and absorption.
チン生産能が、23℃・2日間の培養で500ppm以上である
請求項1記載のアスタキサンチンの生産方法。2. The method for producing astaxanthin according to claim 1, wherein the astaxanthin-producing ability of Phaffia rhodozyma is 500 ppm or more when cultured at 23 ° C. for 2 days.
ッカロマイセス属酵母又はクリベロマイセス属酵母であ
る請求項1又は2記載のアスタキサンチンの生産方法。3. The method for producing astaxanthin according to claim 1, wherein the fusion partner of Phaffia rhodozyma is Saccharomyces yeast or Kliberomyces yeast.
を施し、アスタキサンチン含量を上げる請求項1〜3ま
でのいずれか1項記載のアスタキサンチンの生産方法。4. The method for producing astaxanthin according to any one of claims 1 to 3, wherein the fusion strain obtained is subjected to mutagenesis treatment once or more to increase the astaxanthin content.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32262192A JPH06141886A (en) | 1992-11-06 | 1992-11-06 | Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32262192A JPH06141886A (en) | 1992-11-06 | 1992-11-06 | Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbability |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06141886A true JPH06141886A (en) | 1994-05-24 |
Family
ID=18145763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32262192A Pending JPH06141886A (en) | 1992-11-06 | 1992-11-06 | Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06141886A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012525846A (en) * | 2009-05-06 | 2012-10-25 | ウェイク・フォレスト・ユニバーシティー・スクール・オブ・メディシン | Composition, method and kit of polyunsaturated fatty acids derived from microalgae |
-
1992
- 1992-11-06 JP JP32262192A patent/JPH06141886A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012525846A (en) * | 2009-05-06 | 2012-10-25 | ウェイク・フォレスト・ユニバーシティー・スクール・オブ・メディシン | Composition, method and kit of polyunsaturated fatty acids derived from microalgae |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Orosa et al. | Comparison of the accumulation of astaxanthin in Haematococcus pluvialis and other green microalgae under N-starvation and high light conditions | |
JP4427167B2 (en) | Production of carotenoid pigments | |
IL133981A (en) | Carotenoid-producing bacterial species and process for production of carotenoids using same | |
US5182208A (en) | Processes for in vivo production of astaxanthin and phaffia rhodozyma yeast of enhanced astaxanthin content | |
WO2003027267A1 (en) | Process to produce astaxanthin from haematococcus biomass | |
Zhang et al. | Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1 | |
JP3163127B2 (en) | Method for producing astaxanthin | |
US20220340950A1 (en) | Method for culturing haematococcus pluvialis to produce astaxanthin | |
JPH0746980A (en) | New phaffia rhodozyma strain having highly concentrated astaxanthin | |
DK175766B1 (en) | Process for making a yeast with increased astaxanthin content and using the yeast as a feed supplement | |
Dufossé | Microbial and microalgal carotenoids as colourants and supplements | |
CN101091510B (en) | Preparation method of feedstuff of zeaxanthin powder fermented by Neurospora sitophila | |
Phaff | Industrial microorganisms | |
JPH06141886A (en) | Production of astaxanthin with phaffia rhodozyma improved in high temperature resistance and digestive absorbability | |
US20220290119A1 (en) | Astaxanthin Over-Producing Strains of Phaffia Rhodozyma | |
CA3153203A1 (en) | Method for producing astaxanthin by heterotrophic culture of haematococcus pluvialis | |
KR20010044210A (en) | Mutant of Phaffia rhodozyma producing astaxanthin and fermentation method thereof | |
JPH0348792B2 (en) | ||
O’Callaghan | Biotechnology in natural food colours: The role of bioprocessing | |
RU2273667C2 (en) | YEAST STRAIN Xanthophyllomyces dendrorhous AS PRODUCER OF ASTAXANTHINE | |
EP3839056A1 (en) | Astaxanthin over-producing strains of phaffia rhodozyma | |
KR100249731B1 (en) | Mutant yeast producing astaxanthin and method of preparation thereof | |
CN109527202B (en) | Method for preparing feed rich in docosahexaenoic acid and beta carotene and feed | |
JP2707572B2 (en) | Method for producing astaxanthin-rich green algae | |
JPH0126675B2 (en) |