JPH06140648A - Solar cell and manufacture thereof - Google Patents

Solar cell and manufacture thereof

Info

Publication number
JPH06140648A
JPH06140648A JP4284737A JP28473792A JPH06140648A JP H06140648 A JPH06140648 A JP H06140648A JP 4284737 A JP4284737 A JP 4284737A JP 28473792 A JP28473792 A JP 28473792A JP H06140648 A JPH06140648 A JP H06140648A
Authority
JP
Japan
Prior art keywords
solar cell
electrodeposition
layer
resin
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4284737A
Other languages
Japanese (ja)
Inventor
Tsutomu Murakami
勉 村上
Takashi Midorikawa
敬史 緑川
Hirobumi Ichinose
博文 一ノ瀬
Takahiro Mori
隆弘 森
Soichiro Kawakami
総一郎 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4284737A priority Critical patent/JPH06140648A/en
Publication of JPH06140648A publication Critical patent/JPH06140648A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To prevent charge produced in a semiconductor layer from leaking through a low resistance defective part by a method wherein the low resistance defective part is selectively insulated with electro-deposited resin and a shunt resistance is increased to exceed a specific value to increase the electrical resistance of the low resistance defective part. CONSTITUTION:Semiconductor layers 103, 104 and 105 which have at least one junction and electrodes 102 and 106 are built up on a conductive substrate 101 to compose a solar cell. The low resistance defective part 109 of the solar cell is selectively insulated with electro-deposited resin 110. With the constitution, a shunt resistance which is the electrical resistance of the low resistance part is increased to exceed 1X10<3>cm<2> and charge produced in the semiconductor layer can be prevented from leaking through the defective part 109, so that the characteristics of the solar cell such as the conversion efficiency of an optoelectric transducer can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、信頼性の高い太陽電池
及びその製造方法に係わる。より詳しくは、太陽電池の
製造工程で発生する、ショートやシャントが修復され、
初期特性が高く、且つ信頼性の高い太陽電池及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable solar cell and its manufacturing method. More specifically, the shorts and shunts that occur in the solar cell manufacturing process are repaired,
The present invention relates to a solar cell having high initial characteristics and high reliability, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】太陽光を電気エネルギーに変換する光電
変換素子である太陽電池は、電卓、腕時計など民生機器
用の電源として広く応用されており、また、石油、石炭
などのいわゆる化石燃料の代替用電力として実用化可能
な技術として注目されている。
2. Description of the Related Art Solar cells, which are photoelectric conversion elements that convert sunlight into electric energy, are widely applied as a power source for consumer appliances such as calculators and wristwatches, and also substitute fossil fuels such as petroleum and coal. It is drawing attention as a technology that can be put to practical use as power for use.

【0003】太陽電池は半導体のpn接合部に発生する
拡散電位を利用した技術であり、シリコンなどの半導体
が太陽光を吸収し、電子と正孔の光キャリヤーが生成
し、該光キャリヤーをpn接合部の拡散電位により生じ
た内部電界でドリフトさせ、外部に取り出すものであ
る。
A solar cell is a technique utilizing the diffusion potential generated at a pn junction of a semiconductor. A semiconductor such as silicon absorbs sunlight to generate photo carriers of electrons and holes, and the photo carriers are pn. It is taken out to the outside by drifting by the internal electric field generated by the diffusion potential of the junction.

【0004】太陽電池の製造方法は、ほぼ、半導体素子
製造に用いられる真空プロセスにより行われる。具体的
には、CZ法などの結晶成長法によりp型、あるいはn
型に価電子制御したシリコンの単結晶を作製し、該単結
晶をスライスして約300μmの厚みのシリコンウエハ
ーを作る。さらに前記ウエハーの導電型と反対の導電型
となるように価電子制御剤を拡散などの適当な手段によ
り、異種の導電型の層を形成することでpn接合を作る
ものである。
The method for manufacturing a solar cell is almost performed by a vacuum process used for manufacturing a semiconductor element. Specifically, a p-type or n-type crystal growth method such as the CZ method is used.
A single crystal of silicon whose valence electrons are controlled is prepared in a mold, and the single crystal is sliced to prepare a silicon wafer having a thickness of about 300 μm. Further, a pn junction is formed by forming layers of different conductivity types by an appropriate means such as diffusing a valence electron control agent so as to have a conductivity type opposite to that of the wafer.

【0005】ところで、このような太陽電池の製造方法
は半導体製造の真空プロセスを用いるため、生産コスト
は高く既存の発電方法に比べて割高になってしまうとい
う問題がある。
By the way, since such a solar cell manufacturing method uses a vacuum process for manufacturing a semiconductor, there is a problem that the production cost is high and the cost is higher than that of the existing power generation method.

【0006】このような事情から太陽電池の電力用とし
ての実用化を進めるに当たって、低コスト化が重要な技
術的課題であり、様々な検討がなされており、コストの
安い材料、変換効率の高い材料などの材料の探求が行な
われている。このような太陽電池の材料としては、アモ
ルファスシリコン、アモルファスシリコンゲルマニウ
ム、アモルファスシリコンカーバイドなどのテトラヘド
ラル系のアモルファス半導体や、CdS,Cu2Sなど
のII−IV族やGaAs,GaAlAsなどのIII
−V族の化合物半導体等が挙げられる。とりわけ、アモ
ルファス半導体等を用いた薄膜太陽電池は、単結晶太陽
電池に比較して大面積の膜が作製できることや、膜厚が
薄くて済むこと、任意の基板材料に堆積できることなど
の長所があり有望視されている。
Under these circumstances, cost reduction is an important technical issue in the practical application of solar cells for electric power use, and various studies have been made. Materials with low cost and high conversion efficiency are being studied. Materials and other materials are being sought. Materials for such solar cells include tetrahedral amorphous semiconductors such as amorphous silicon, amorphous silicon germanium, and amorphous silicon carbide, group II-IV such as CdS and Cu 2 S, and III such as GaAs and GaAlAs.
Examples thereof include group V compound semiconductors. In particular, thin-film solar cells using amorphous semiconductors have advantages such as the ability to form a large-area film, the thin film thickness, and the ability to deposit on any substrate material, compared to single-crystal solar cells. Promising.

【0007】アモルファスシリコン太陽電池の構造は、
例えば、基板と反対側から光入射する場合は、基板上に
下部電極を設け、その上に薄膜のp層、i層、n層から
なる半導体接合を積層し、さらに、上部電極を設ける構
造となっている。さらに、集電の為グリッド電極やバス
バーが設けられる。
The structure of an amorphous silicon solar cell is
For example, when light is incident from the side opposite to the substrate, a lower electrode is provided on the substrate, a semiconductor junction composed of a thin p-layer, an i-layer, and an n-layer is stacked on the lower electrode, and an upper electrode is further provided. Has become. Further, a grid electrode and a bus bar are provided for collecting electricity.

【0008】また、アモルファスシリコンは結晶シリコ
ンや多結晶シリコンに比較して膜質が劣るため変換効率
が低いという欠点があるが、この問題を解決するために
半導体接合を2以上の直列に積層するいわゆるタンデム
セルも検討されている。
Amorphous silicon has a disadvantage that conversion efficiency is low because the film quality is inferior to that of crystalline silicon or polycrystalline silicon, but in order to solve this problem, two or more semiconductor junctions are stacked in series. Tandem cells are also being considered.

【0009】ところで、前述した太陽電池を例えば一般
家庭の電力供給用として用いる場合には約3KWの出力
が必要となる。変換効率10%の太陽電池を用いた場合
では30m2と大面積の太陽電池が必要とされる。しか
しながら、 太陽電池の製造工程上、大面積にわたって
欠陥のない太陽電池を作製することは困難であり、例え
ば多結晶では粒界部分に低抵抗な部分が生じてしまった
り、アモルファスシリコンのような薄膜太陽電池におい
ては、半導体層の成膜時にダストの影響などによりピン
ホールや欠陥が生じ、シャントやショートの原因とな
る。そして、これらのシャントやショートは変換効率を
著しく低下させることが知られている。
By the way, when the above-mentioned solar cell is used for supplying electric power to a general household, for example, an output of about 3 KW is required. If a solar cell with a conversion efficiency of 10% is used, a solar cell with a large area of 30 m 2 is required. However, it is difficult to make a defect-free solar cell over a large area due to the manufacturing process of a solar cell. For example, in a polycrystal, a low resistance part occurs at the grain boundary part, or a thin film such as amorphous silicon. In a solar cell, pin holes and defects are generated due to the influence of dust during the formation of a semiconductor layer, which causes shunts and shorts. It is known that these shunts and shorts significantly reduce the conversion efficiency.

【0010】ピンホールや欠陥ができる原因とその影響
についてさらに詳しく述べると、例えばステンレス基板
上に堆積したアモルファスシリコン太陽電池の場合で
は、基板表面は完全に平滑な面とは言えず傷やへこみ、
あるいはスパイク状の突起が存在することや、基板上に
光を乱反射する目的で凹凸のあるバックリフレクターを
設けたりするため、p、n層のように数100Åの厚み
の薄膜の半導体層がこのような表面を完全にカバー出来
無いことや、あるいは別の原因として成膜時のごみなど
によりピンホールが生じることなどが挙げられる。太陽
電池の下部電極と上部電極との間の半導体が、ピンホー
ルにより失われていて下部電極と上部電極とが直接接触
したり、基板のスパイク状欠陥が上部電極と接触した
り、半導体層が完全に失われないまでも低抵抗なシャン
トまたはショートとなっている場合には、光によって発
生した電流が上部電極を平行に流れて前記シャントまた
はショート部の低抵抗部分に流れ込むこととなり発生し
た電流を損失することが起こる。このような電流損失が
あると太陽電池の開放電圧が下がることとなる。とりわ
け、光強度が低い場合に太陽電池を使用した場合は光に
よって発生する電流とシャントによるリーク電流との大
きさがあまり変わらないため、顕著に開放電圧が下がる
ことになる。
The cause of pinholes and defects and their effects will be described in more detail. For example, in the case of an amorphous silicon solar cell deposited on a stainless steel substrate, the substrate surface is not a completely smooth surface and scratches or dents,
Alternatively, because of the presence of spike-shaped protrusions and the provision of a back reflector with unevenness for the purpose of irregularly reflecting light on the substrate, a thin semiconductor layer with a thickness of several hundred Å such as p and n layers is It is not possible to completely cover such a surface, or another cause is that pinholes are generated due to dust during film formation. The semiconductor between the lower electrode and the upper electrode of the solar cell is lost due to the pinhole, and the lower electrode and the upper electrode are in direct contact with each other. If the shunt or short circuit has low resistance, if not completely lost, the current generated by light will flow in parallel to the upper electrode and flow into the low resistance part of the shunt or short circuit. Can happen to be lost. If there is such a current loss, the open circuit voltage of the solar cell will drop. In particular, when a solar cell is used when the light intensity is low, the magnitude of the current generated by the light and the leak current due to the shunt do not change so much, so that the open-circuit voltage drops significantly.

【0011】アモルファスシリコン太陽電池においては
一般的に半導体自体のシート抵抗は高いため半導体全面
にわたる透明な上部電極を必要とし、通常は、Sn
2、ITO(In23+SnO2)のような導電性の反
射防止膜を設ける。このため微少な 欠陥に於いても該
欠陥に流れ込む電流はかなり大きなものとなる。さら
に、欠陥の位置がグリッド電極やバスバーから離れてい
る場合には、欠陥部分に流れ込むときの抵抗が大きいた
め電流損失は比較的少ないが逆に、欠陥部分がグリッド
電極やバスバーの下にあるときは欠陥により損失する電
流はより大きなものとなる。一方、ピンホール状の欠陥
による欠陥部分では、半導体層で発生した電荷が該欠陥
部分にリークするばかりではなく、水分との相互作用に
よりイオン性の物質が生成するので、太陽電池の使用時
に、使用時間の経過と共に次第に該欠陥部分の電気抵抗
が低下し、変換効率などの特性が劣化する現象が見られ
る。
In an amorphous silicon solar cell, the sheet resistance of the semiconductor itself is generally high, so a transparent upper electrode over the entire surface of the semiconductor is required.
A conductive antireflection film such as O 2 or ITO (In 2 O 3 + SnO 2 ) is provided. For this reason, even in the case of a minute defect, the current flowing into the defect becomes considerably large. Furthermore, when the defect is located away from the grid electrode or bus bar, the resistance when flowing into the defect is large, so the current loss is relatively small, but conversely, when the defect is under the grid electrode or bus bar. The defect causes a larger current loss. On the other hand, in the defective portion due to the pinhole-like defect, not only the charge generated in the semiconductor layer leaks to the defective portion, but also an ionic substance is generated due to the interaction with moisture, so that when the solar cell is used, There is a phenomenon in which the electric resistance of the defective portion gradually decreases with the lapse of use time, and characteristics such as conversion efficiency deteriorate.

【0012】以上のようにショートやシャントが生じて
いる場合にはその場所の上部電極を除去するかまたは絶
縁化することにより電流損失が小さくなる。シャントま
たはショート部の上部電極を選択的に除去する方法とし
て、例えば、米国特許4,729,970号公報に開示
されるいわゆるパッシベーション法が用いられる。前記
方法は、AlCl3,ZnCl2,SnCl4,SnC
2,TiCl4等のルイス酸の溶液 中に太陽電池と対
向電極とを浸漬し、電圧を印加して前記透明導電性酸化
物電極の化学量論比を変えることによって高抵抗にする
方法である。しかしながら、以上のように上部電極を高
抵抗化した場合でもグリッドを設けたときにシャント部
にグリッド電極が形成されると再びショートが生じてし
まう問題がある。このような問題の対策としては、欠陥
部分のみを選択的に絶縁性材料又は、実質的にシャント
またはショートを防ぐために充分な高抵抗を有する材料
で覆うことにより、透明電極やグリッド電極あるいはバ
スバーとの接触抵抗を高めることが変換効率減少を防ぐ
有効な手段である。
When the short circuit or the shunt is generated as described above, the current loss is reduced by removing or insulating the upper electrode at that location. As a method of selectively removing the upper electrode of the shunt or the short portion, for example, a so-called passivation method disclosed in US Pat. No. 4,729,970 is used. The method includes AlCl 3 , ZnCl 2 , SnCl 4 , and SnC.
by immersing the solar cell and the counter electrode in a solution of a Lewis acid such as l 2 or TiCl 4 and applying a voltage to change the stoichiometric ratio of the transparent conductive oxide electrode to obtain high resistance. is there. However, even if the upper electrode has a high resistance as described above, there is a problem that a short circuit occurs again when the grid electrode is formed in the shunt portion when the grid is provided. As a measure against such a problem, only the defective portion is selectively covered with an insulating material or a material having a sufficiently high resistance to prevent a shunt or a short circuit, so that a transparent electrode, a grid electrode, or a bus bar is formed. Increasing the contact resistance of is an effective means to prevent the reduction of conversion efficiency.

【0013】太陽電池の欠陥部分のみを選択的に絶縁す
る方法としては、米国特許第4,197,141号公報
に開示されるように、多結晶太陽電池を電解質溶液中に
浸漬し、電界を印加して、多結晶の結晶粒界や、格子不
整合に基づく欠陥部を酸化したり、あるいは、欠陥部に
絶縁物を堆積したりあるいは欠陥部をエッチングする方
法がある。該発明によれば絶縁物を選択的に堆積すると
いう概念はあるが、アルミニウム、クロム、銅などの金
属の酸化物を堆積するという内容であり、有機高分子材
料の堆積については述べられていない。また、開示され
た実施例は、ガリウム砒素太陽電池の欠陥部を陽極酸化
するという例であり、シリコン太陽電池などについて同
様の技術が利用できるかどうかは開示されていない。こ
れに対し、米国特許第4451970号公報に開示され
るように、太陽電池の欠陥部を検出器によって検知し、
その後、検出された欠陥部に絶縁材料をアプリケータで
塗布する方法がある。
As a method of selectively insulating only the defective portion of the solar cell, as disclosed in US Pat. No. 4,197,141, a polycrystalline solar cell is immersed in an electrolyte solution and an electric field is applied. There is a method of applying and oxidizing a polycrystalline grain boundary or a defective portion due to lattice mismatch, or depositing an insulator on the defective portion, or etching the defective portion. According to the invention, there is a concept of selectively depositing an insulator, but it is the content of depositing an oxide of a metal such as aluminum, chromium, or copper, and the deposition of an organic polymer material is not mentioned. . Further, the disclosed embodiment is an example of anodizing a defective portion of a gallium arsenide solar cell, and it is not disclosed whether a similar technique can be used for a silicon solar cell or the like. On the other hand, as disclosed in US Pat. No. 4,451,970, a defective portion of a solar cell is detected by a detector,
Then, there is a method of applying an insulating material to the detected defective portion with an applicator.

【0014】しかしながら、上述の方法では、欠陥部の
検出器とアプリケータとはともにかなり大きな装置とな
ってしまい、実際の欠陥の大きさよりも大きい範囲でし
か検出できず、また絶縁化も不要な部分まで行われ、か
つ、高く盛り上がってしまうためグリッド電極が印刷で
きないという問題がある。また、基板もしくはアプリケ
ーターを掃引する必要があり、処理速度が遅いという問
題があった。
However, in the above-mentioned method, both the detector of the defective portion and the applicator are considerably large devices, and they can be detected only in a range larger than the actual size of the defect, and insulation is not necessary. There is a problem that the grid electrode cannot be printed because it is performed up to a portion and the height is raised. Further, there is a problem that the substrate or the applicator needs to be swept, and the processing speed is slow.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は太陽電
池に於る上述した問題を解決して、特性の良好な太陽電
池の構造を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in solar cells and to provide a solar cell structure having good characteristics.

【0016】本発明の他の目的は量産性が良く、信頼性
の高い太陽電池の製造方法を提供することである。
Another object of the present invention is to provide a method of manufacturing a solar cell which has good mass productivity and high reliability.

【0017】[0017]

【課題を解決するための手段】上述した目的を達成する
ために、本発明の太陽電池は、導電性基体上に少なくと
も1つの接合を有する半導体層と電極とを積層してなる
太陽電池において、低抵抗の欠陥部分が選択的に電着樹
脂により絶縁被覆され、シャント抵抗を1×103Ωc
2以上としたことを特徴とする。
In order to achieve the above-mentioned object, the solar cell of the present invention is a solar cell in which a semiconductor layer having at least one junction and an electrode are laminated on a conductive substrate. Defects with low resistance are selectively insulation-coated with electrodeposition resin, and the shunt resistance is 1 × 10 3 Ωc
It is characterized in that it is m 2 or more.

【0018】前記電着樹脂は、前記電極上または前記電
極と前記半導体層の間に設けられていることを特徴と
し、または前記欠陥部分の電極が選択的に除去され、除
去された部分が系電着樹脂により被覆されていることを
特徴とする。
The electrodeposition resin is provided on the electrode or between the electrode and the semiconductor layer, or the electrode of the defective portion is selectively removed, and the removed portion is a system. It is characterized by being coated with an electrodeposition resin.

【0019】前記電着樹脂の大きさは、欠陥部分の大き
さの10倍以下であることが好ましい。
The size of the electrodeposition resin is preferably 10 times or less the size of the defective portion.

【0020】本発明の太陽電池の製造方法は、導電性基
体上に少なくとも1つの接合を有する半導体層と電極と
を積層してなる太陽電池の製造方法において、前記半導
体層を形成後、欠陥部分に選択的に電着樹脂膜を形成
し、その後、前記電極を形成することを特徴とする。
The method for producing a solar cell according to the present invention is the method for producing a solar cell in which a semiconductor layer having at least one junction and an electrode are laminated on a conductive substrate, and after forming the semiconductor layer, a defective portion is formed. An electrodeposition resin film is selectively formed on the electrode, and then the electrode is formed.

【0021】本発明の太陽電池の製造方法の他の形態
は、導電性基体上に少なくとも1つの接合を有する半導
体層と電極とを積層してなる太陽電池の製造方法におい
て、前記半導体層、前記電極を順次形成後、欠陥部分に
選択的に電着樹脂膜を形成することを特徴とする。前記
電極形成後、電着樹脂膜を形成する前に欠陥部の電極を
除去することが好ましく、更に前記欠陥部の電極を除去
する前に電界を印加してフォーミングを行うことが好ま
しい。
Another embodiment of the method for producing a solar cell according to the present invention is the method for producing a solar cell in which a semiconductor layer having at least one junction and an electrode are laminated on a conductive substrate. After the electrodes are sequentially formed, an electrodeposition resin film is selectively formed on the defective portion. After forming the electrode, it is preferable to remove the electrode in the defective portion before forming the electrodeposition resin film, and it is preferable to apply an electric field and perform forming before removing the electrode in the defective portion.

【0022】さらに本発明の太陽電池の製造方法の望ま
しい形態は、太陽電池のブレークダウン電圧以下の逆バ
イアスを印加して電着を行うことである。また、太陽電
池の順方向電流がシャント電流に対し2倍以下となるよ
うに順方向バイアスを印加して電着を行うことである。
Further, a desirable mode of the method for manufacturing a solar cell of the present invention is to perform electrodeposition by applying a reverse bias equal to or lower than the breakdown voltage of the solar cell. In addition, the forward bias is applied so that the forward current of the solar cell becomes equal to or less than twice the shunt current to perform electrodeposition.

【0023】[0023]

【作用】本発明は、太陽電池に存在する欠陥に起因する
低抵抗部分を選択的に絶縁する太陽電池の製造方法につ
いて、本発明者らの実験により得た知見をさらに詳細に
検討を加えて完成したものである。その骨子は、太陽電
池を電着塗料中に浸漬し、前記太陽電池に適当な電圧を
印加することにより太陽電池の低抵抗部分のみに前記電
着塗料を堆積することにより、低抵抗部分の電気抵抗が
十分に高くなり、半導体層で発生した電荷が該欠陥部分
にリークすることを防止する。その結果、該光電変換素
子の変換効率などの太陽電池特性を向上することが可能
となる。
The present invention is based on the findings of the experiments conducted by the inventors of the present invention regarding the method of manufacturing a solar cell for selectively insulating a low resistance portion caused by a defect existing in the solar cell, and further studying the findings. It has been completed. The essence is that the solar cell is dipped in the electrodeposition paint, and by applying an appropriate voltage to the solar cell, the electrodeposition paint is deposited only on the low resistance part of the solar cell, and The resistance becomes sufficiently high to prevent the charge generated in the semiconductor layer from leaking to the defective portion. As a result, the solar cell characteristics such as the conversion efficiency of the photoelectric conversion element can be improved.

【0024】欠陥部分を前記電着塗料で絶縁したことに
より欠陥部分への水分の浸透や吸着が強く抑制されるの
で、実使用に際して起こる使用時間の経過と共に太陽電
池特性が劣化する現象も大幅に改善される。
Since the defective portion is insulated with the electrodeposition coating, the penetration and adsorption of water to the defective portion is strongly suppressed, so that the phenomenon of deterioration of the solar cell characteristics with the passage of use time that occurs during actual use is also significantly reduced. Be improved.

【0025】更に、上部電極の上にグリッド電極を設け
る構成の太陽電池の場合には、欠陥部分が電気絶縁性樹
脂で覆われているので、該欠陥部分とグリッド電極とが
直接電気的に接続されることによるシャントも防ぐこと
ができる。
Further, in the case of a solar cell having a structure in which a grid electrode is provided on the upper electrode, since the defective portion is covered with an electrically insulating resin, the defective portion and the grid electrode are directly electrically connected. It is possible to prevent shunts caused by being performed.

【0026】以下に、本発明の太陽電池の構成例につい
て図を用いて説明する。
An example of the structure of the solar cell of the present invention will be described below with reference to the drawings.

【0027】本発明の太陽電池の一例を図1及び図2
に、基本となる太陽電池の構造例を図3乃至図8に模式
的に示す。
An example of the solar cell of the present invention is shown in FIGS.
3 to 8 schematically show structural examples of a basic solar cell.

【0028】図1、図2は欠陥部分を電着樹脂で絶縁被
覆した本発明の太陽電池の一例である。図3は基板と反
対側から光入射するアモルファスシリコン太陽電池、図
4は図3の太陽電池をトリプル構造とした太陽電池、図
5はガラス基板上に堆積したアモルファスシリコン等の
薄膜の太陽電池でガラス基板側から光入射される。図6
は結晶系太陽電池、図7は薄膜多結晶の太陽電池、図8
は図3、図4及び図7の構成の太陽電池を光入射側から
見た図である。図に於いて100は太陽電池本体、10
1は基板、102は下部電極、103はn層、104は
i層、105はp層、106は上部電極、107はグリ
ッド電極、108はバスバー、l09は電着樹脂、11
0は欠陥部分を表す。図において、太陽電池を構成する
一対の電極の内、光入射側の電極を上部電極と呼ぶ。ま
た、本発明の導電性基体とは、基板と下部電極(基板が
透明で基板側から光入射する場合、即ち図5の場合は、
上部電極)とから構成されるが、基体が導電性を有する
場合には特に下部電極(または上部電極)は必要としな
い。
1 and 2 show an example of the solar cell of the present invention in which the defective portion is insulation-coated with an electrodeposition resin. 3 is an amorphous silicon solar cell in which light is incident from the side opposite to the substrate, FIG. 4 is a solar cell having a triple structure of the solar cell of FIG. 3, and FIG. 5 is a thin film solar cell such as amorphous silicon deposited on a glass substrate. Light is incident from the glass substrate side. Figure 6
Is a crystalline solar cell, FIG. 7 is a thin-film polycrystalline solar cell, and FIG.
FIG. 8 is a view of the solar cell having the configuration of FIGS. 3, 4 and 7 as viewed from the light incident side. In the figure, 100 is a solar cell main body, 10
1 is a substrate, 102 is a lower electrode, 103 is an n layer, 104 is an i layer, 105 is a p layer, 106 is an upper electrode, 107 is a grid electrode, 108 is a bus bar, l09 is an electrodeposition resin, 11
0 represents a defective portion. In the figure, of the pair of electrodes that make up the solar cell, the electrode on the light incident side is called the upper electrode. Further, the conductive substrate of the present invention means a substrate and a lower electrode (when the substrate is transparent and light is incident from the substrate side, that is, in the case of FIG. 5,
However, when the substrate has conductivity, the lower electrode (or upper electrode) is not particularly required.

【0029】基板101はアモルファスシリコンのよう
な薄膜の太陽電池の場合の半導体層103,104,1
05を機械的に支持する部材であり、また上述したよう
に場合によっては一方の電極を兼用することもある。前
記基板101は、半導体層103,l04,105を成
膜するときの加熱温度に耐える耐熱性が要求されるが導
電性のものでも電気絶縁性のものでも良く、導電性の材
料としては、具体的にはFe,Ni,Cr,Al,M
o,Au,Nb,Ta,V,Ti,Pt,Pb,Ti等
の金属またはこれらの合金、例えば真ちゅう、ステンレ
ス鋼等の薄板及びその複合体やカーボンシート、亜鉛メ
ッキ鋼板等が挙げられ、電気絶縁性材料としては、ポリ
エステル、ポリエチレン、ポリカーボネート、セルロー
スアセテート、ポリプロピレン、ポリ塩化ビニル、ポリ
塩化ビニリデン、ポリスチレン、ポリアミド、ポリイミ
ド、エポキシ等の耐熱性合成樹脂のフィルムまたはシー
ト又はこれらとガラスファイバー、カーボンファイバ
ー、ホウ素ファイバー、金属繊維等との複合体、及びこ
れらの金属の薄板、樹脂シート等の表面に異種材質の金
属薄膜及び/またはSiO2, Si34、Al23,A
lN等の絶縁性薄膜をスパッタ法、蒸着法、鍍金法等に
より表面コーティング処理を行ったものおよび、ガラ
ス、セラミックスなどが挙げられる。
The substrate 101 is a semiconductor layer 103, 104, 1 in the case of a thin film solar cell such as amorphous silicon.
05 is a member that mechanically supports 05, and may also serve as one of the electrodes, as described above. The substrate 101 is required to have heat resistance to withstand the heating temperature for forming the semiconductor layers 103, 104, and 105, but it may be a conductive material or an electrically insulating material. Fe, Ni, Cr, Al, M
Metals such as o, Au, Nb, Ta, V, Ti, Pt, Pb, and Ti, or alloys thereof, such as brass, thin plates of stainless steel and their composites, carbon sheets, galvanized steel plates, etc. As the insulating material, polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, polyimide, a film or sheet of heat-resistant synthetic resin such as epoxy, or these and glass fiber, carbon fiber , Composites with boron fibers, metal fibers, etc., and metal thin films of different materials and / or SiO 2 , Si 3 N 4 , Al 2 O 3 , A on the surface of thin plates of these metals, resin sheets, etc.
Examples thereof include those obtained by subjecting an insulating thin film such as 1N or the like to a surface coating treatment by a sputtering method, a vapor deposition method, a plating method, etc., and glass, ceramics and the like.

【0030】下部電極102は、半導体層103,10
4,105で発生した電力を取り出すための一方の電極
であり、半導体層103に対してはオーミックコンタク
トとなるような仕事関数を持つことが要求される。材料
としては、Al,Ag,Pt,Au,Ni,Ti,M
o,W,Fe,V,Cr,Cu,ステンレス,真ちゅ
う,ニクロム,SnO2,In23,ZnO,ITO
(In23+SiO2)等のいわゆる金属単体又は合金
または透明導電性酸化物(TCO)等が用いられる。前
記下部電極102の表面は平滑であることが好ましい
が、光の乱反射を起こさせる場合にはテクスチャー化し
ても良い。
The lower electrode 102 is composed of the semiconductor layers 103 and 10
It is one electrode for taking out the electric power generated at 4, 105, and is required to have a work function that makes an ohmic contact with the semiconductor layer 103. As the material, Al, Ag, Pt, Au, Ni, Ti, M
o, W, Fe, V, Cr, Cu, stainless steel, brass, nichrome, SnO 2 , In 2 O 3 , ZnO, ITO
So-called simple metal or alloy such as (In 2 O 3 + SiO 2 ) or transparent conductive oxide (TCO) is used. The surface of the lower electrode 102 is preferably smooth, but may be textured in the case of causing diffuse reflection of light.

【0031】本発明に用いられる太陽電池の半導体層と
しては、pin接合非晶質シリコン、pn接合多結晶シ
リコン、pn接合結晶シリコン、CuInSe2/Cd
Sなどの化合物半導体が挙げられる。アモルファスシリ
コン太陽電池に於いてi層104を構成する半導体材料
としては、a−Si:H、a−Si:F、a−Si:
H:F、a−SiGe:H、a−SiGe:F、a−S
iGe:H:F、a−SiC:H、a−SiC:F、a
−SiC:H:F等のいわゆるIV族及びIV族合金系
アモルファス半導体が挙げられる。p層105またはn
層l03を構成する半導体材料としては、前述したi層
104を構成する半導体材料に価電子制御剤をドーピン
グすることによって得られる。また原料としては、p型
半導体を得るための価電子制御剤としては周期律表第I
II族の元素を含む化合物が用いられる。第III族の
元素としては、B、Al、Ga、Inが挙げられる。n
型半導体を得るための価電子制御剤としては周期律表第
Vの元素を含む化合物が用いられる。第V族の元素とし
ては、P、N、As、Sbが挙げられる。
As the semiconductor layer of the solar cell used in the present invention, pin-junction amorphous silicon, pn-junction polycrystalline silicon, pn-junction crystalline silicon, CuInSe 2 / Cd
Compound semiconductors such as S may be mentioned. In the amorphous silicon solar cell, as a semiconductor material forming the i layer 104, a-Si: H, a-Si: F, a-Si:
H: F, a-SiGe: H, a-SiGe: F, a-S
iGe: H: F, a-SiC: H, a-SiC: F, a
Examples include so-called group IV and group IV alloy-based amorphous semiconductors such as —SiC: H: F. p layer 105 or n
The semiconductor material forming the layer 103 is obtained by doping the above-described semiconductor material forming the i-layer 104 with a valence electron control agent. Further, as a raw material, as a valence electron control agent for obtaining a p-type semiconductor,
A compound containing a Group II element is used. Examples of Group III elements include B, Al, Ga, and In. n
As a valence electron control agent for obtaining a type semiconductor, a compound containing an element of the periodic table V is used. Examples of the Group V element include P, N, As, and Sb.

【0032】本発明の太陽電池に於いては、分光感度や
電圧の向上を目的として半導体接合を2以上積層するい
わゆるタンデムセルにも用いることが出来る。
The solar cell of the present invention can be used in a so-called tandem cell in which two or more semiconductor junctions are laminated for the purpose of improving spectral sensitivity and voltage.

【0033】上部電極106は、半導体層103,10
4,105で発生した起電力を取り出すための電極であ
り、前記下部電極102と対をなすものである。前記上
部電極106はアモルファスシリコンのようにシート抵
抗が高い半導体の場合に必要であり、結晶系の太陽電池
ではシート抵抗が低いため特に必要としない。また、上
部電極106は、光入射側に位置するため、透明である
ことが必要で、透明電極とも呼ばれる。前記上部電極1
06は、太陽や白色蛍光灯等からの光を半導体層内に効
率良く吸収させるために光の透過率が85%以上である
ことが望ましく、さらに、電気的には光で発生した電流
を半導体層に対し横方向に流れるようにするためシート
抵抗値は100Ω/□以下であることが望ましい。この
ような特性を備えた材料としてSnO2,In23,Z
nO,CdO,CdSnO4、ITO(In23+Sn
2)などの金属酸化物が挙げられる。
The upper electrode 106 is composed of the semiconductor layers 103 and 10
Electrodes for extracting the electromotive force generated at 4, 105, which form a pair with the lower electrode 102. The upper electrode 106 is necessary in the case of a semiconductor having a high sheet resistance such as amorphous silicon, and is not particularly necessary in a crystalline solar cell since the sheet resistance is low. Further, since the upper electrode 106 is located on the light incident side, it needs to be transparent and is also called a transparent electrode. The upper electrode 1
06 has a light transmittance of 85% or more in order to efficiently absorb light from the sun or a white fluorescent lamp in the semiconductor layer. Further, electrically, a semiconductor generates a current generated by light. It is desirable that the sheet resistance value is 100 Ω / □ or less so that the sheet flows laterally with respect to the layer. As materials having such characteristics, SnO 2 , In 2 O 3 , Z
nO, CdO, CdSnO 4 , ITO (In 2 O 3 + Sn
Metal oxides such as O 2 ) may be mentioned.

【0034】電着樹脂109はピンホール、粒界、基板
101及び下部電極102のスパイク状欠陥その他の原
因によって発生したショートあるいはシャント等による
欠陥部分110を絶縁するために用いられ、さらには、
耐湿性を向上させる機能を合わせ持っている。太陽電池
のシャント抵抗は理想的には無限大であるが、一般的に
は1KΩcm2程度であり、この程度のシャント抵抗で
あれば太陽電池の変換効率には影響がない。しかしなが
ら、欠陥によるシャントやショートが存在し1KΩcm
2以下になると変換効率は著しく低下する。
The electrodeposition resin 109 is used to insulate a defective portion 110 due to a short circuit or a shunt caused by a pinhole, a grain boundary, a spike-shaped defect of the substrate 101 and the lower electrode 102, or other causes.
It also has the function of improving moisture resistance. Although the shunt resistance of the solar cell is ideally infinite, it is generally about 1 KΩcm 2 , and the shunt resistance of this level does not affect the conversion efficiency of the solar cell. However, there are shunts and shorts due to defects and 1KΩcm.
When it is 2 or less, the conversion efficiency is significantly reduced.

【0035】電着樹脂は欠陥部分に直接堆積しているこ
とが必要であり、堆積された電着樹脂の面積は、該欠陥
部分以上あれば良く、10倍以下が好ましい。堆積され
た電着樹脂の面積が、該欠陥部分の10倍よりも大きい
場合には上部電極とグリッド電極とのコンタクトが少な
くなり、シリーズ抵抗が上がり、グリッド電極での集電
効率が低下する。
It is necessary that the electrodeposition resin is directly deposited on the defective portion, and the area of the deposited electrodeposition resin may be at least the defective portion, and is preferably 10 times or less. When the area of the deposited electrodeposition resin is larger than 10 times that of the defective portion, the number of contacts between the upper electrode and the grid electrode is reduced, the series resistance is increased, and the collection efficiency of the grid electrode is reduced.

【0036】電着樹脂は、太陽電池の欠陥部分の面積の
1乃至10倍の被覆が要求されるため、欠陥部分近傍に
堆積した電着樹脂は、太陽光を透過する事が好ましい。
即ち、電着樹脂が透明である事が好ましい。
Since the electrodeposition resin is required to have a coverage of 1 to 10 times the area of the defective portion of the solar cell, it is preferable that the electrodeposition resin deposited near the defective portion transmits sunlight.
That is, it is preferable that the electrodeposition resin is transparent.

【0037】電着樹脂は、太陽電池の欠陥部分以外には
成膜されないことが必要であり、このためには電着後に
不要な塗料が洗浄され易いことが要求され、このために
は最低造膜温度(MFT)が望ましくは50℃以上であ
ることが必要である。
It is necessary that the electrodeposition resin is not formed on a portion other than the defective portion of the solar cell. For this purpose, it is required that unnecessary paint can be easily washed off after electrodeposition. It is necessary that the film temperature (MFT) is preferably 50 ° C. or higher.

【0038】これらの電着樹脂は均一な成膜を行うため
に溶液中では沈澱せずに安定に懸濁する事が重要であ
り、このためには、樹脂は適当な大きさのコロイド粒子
となっていることが望ましい。前記コロイド粒子の粒径
は、10nmから100nm位の範囲であることが望ま
しく、また、前記粒径は単分散であることが望ましい。
前記コロイド粒子を構成する骨格樹脂の好適な分子量と
しては重量平均分子量が1000〜20000程度であ
る。耐光性、耐熱性、耐湿性、欠陥部分の選択性などの
向上のために電着樹脂に無機顔料、セラミックス、ガラ
スフリット、微粒子ポリマーなどのフィラーを分散する
ことも可能であり所望に応じ適宜選択して用いる。
In order to form a uniform film, it is important for these electrodeposition resins to be stably suspended without precipitation in the solution. For this purpose, the resin should be colloidal particles of appropriate size. It is desirable that The particle size of the colloidal particles is preferably in the range of 10 nm to 100 nm, and the particle size is preferably monodisperse.
The weight average molecular weight of the skeleton resin constituting the colloidal particles is preferably about 1,000 to 20,000. It is also possible to disperse a filler such as an inorganic pigment, a ceramics, a glass frit, or a fine particle polymer in the electrodeposition resin in order to improve light resistance, heat resistance, moisture resistance, selectivity of defective portions, etc. To use.

【0039】太陽電池の欠陥部分を選択的に、かつ、有
効に絶縁するためには単位電気量あたりの電着膜重量が
大きい方が好ましく、このためには電着塗料のクーロン
効率は10mg/C以上であることが好ましい。
In order to selectively and effectively insulate the defective portion of the solar cell, it is preferable that the weight of the electrodeposition film per unit amount of electricity is large. For this purpose, the Coulomb efficiency of the electrodeposition coating is 10 mg / It is preferably C or more.

【0040】電着塗料の溶剤としては、透明電極、半導
体層及び下部電極などの太陽電池構成材料を容易には溶
解しない濃度の酸またはアルカリを含む溶液、又はそれ
らの金属塩を含む溶液を用いる。なお、該金属塩として
は、該塩を構成する金属が、その標準電極電位が負で、
水素過電圧の値が標準電極電位の絶対値よりも小さい塩
が用いられる。電着塗料は脱イオン水により希釈して用
いられるが、成膜性の良好な範囲としては、固形分が1
%から25%位の範囲が良い。また、電着液の電導度は
樹脂が安定に懸濁し、電気泳動が起こり易く、しかも所
望の欠陥部分に堆積が起こり易いように、100μS/
cmから2000μS/cmの範囲であることが望まし
い。
As a solvent for the electrodeposition paint, a solution containing a concentration of acid or alkali that does not easily dissolve the solar cell constituent materials such as the transparent electrode, the semiconductor layer and the lower electrode, or a solution containing a metal salt thereof is used. . As the metal salt, the metal constituting the salt has a negative standard electrode potential,
A salt whose hydrogen overvoltage value is smaller than the absolute value of the standard electrode potential is used. The electrodeposition coating is diluted with deionized water and used, but the solid content is 1 as a range of good film forming property.
% To 25% is preferable. In addition, the conductivity of the electrodeposition liquid is 100 μS / so that the resin is stably suspended, electrophoresis is likely to occur, and deposition is likely to occur at a desired defect portion.
It is preferably in the range of cm to 2000 μS / cm.

【0041】堆積した電着膜については、太陽電池の製
造方法によっては、電着後に溶剤を用いたり熱処理を行
うような工程がある場合はこれらの処理によって影響さ
れないことが要求される。また、太陽電池の欠陥部分
は、それ自体発電に寄与しない部分であるが、選択的に
電着膜の堆積が行われた場合に於いても、前記欠陥部分
の実質的な面積よりも広い面積に堆積するため、正常な
部分の光入射を妨げないように電着塗料は光透過性の材
料であることが望ましい。また、太陽電池として屋外で
使用する場合の環境を考え、耐候性が良く、熱、湿度及
び光に対する安定性が要求される。また、太陽電池の使
用時に於いて、場合によっては、太陽電池が曲げられた
り衝撃が与えられるため、機械的な強度及び剥離強度を
合わせ持つ必要がある。また、電着した塗膜の膜厚とし
ては電気的絶縁性と、耐湿性が保たれ、かつ、光透過性
を損なわれないことが好ましいことから樹脂の種類によ
り適宜選択されるが代表的には0.1μmから50μm
位が適当である。
The deposited electrodeposited film is required to be unaffected by these treatments if there is a step of using a solvent or heat treatment after electrodeposition, depending on the method of manufacturing the solar cell. Further, the defective portion of the solar cell is a portion that does not contribute to power generation itself, but even when the electrodeposition film is selectively deposited, the area is larger than the substantial area of the defective portion. Therefore, it is desirable that the electrodeposition paint is a light-transmissive material so as not to prevent light from entering a normal portion. Considering the environment when used outdoors as a solar cell, it is required to have good weather resistance and stability to heat, humidity and light. In addition, when the solar cell is used, the solar cell may be bent or impacted depending on the case, so it is necessary to have both mechanical strength and peel strength. The thickness of the electrodeposited coating film is selected appropriately depending on the type of resin because it is preferable that electrical insulation and moisture resistance are maintained, and that light transmission is not impaired. Is 0.1 μm to 50 μm
The place is appropriate.

【0042】電着樹脂は大別してアニオン系、カチオン
系樹脂がある。本発明では、どちらも好適に用いること
ができるが、カチオン系樹脂の方がアニオン系樹脂より
も防錆性、スローイングパワーが高く、電着樹脂塗料の
安定性、管理が容易である。ここで防錆性とは一般に金
属板などの錆止め効果を指し、この防錆性が高いほど、
水分、水蒸気、あるいは金属イオンの透過性が低く、電
気絶縁性に優れた材料と言える。さらに、スローイング
パワーとは塗膜がどれだけの複雑な形状の基材に一様な
厚みで形成されるかを示すパラメーターであり、つきま
わり性とも呼ばれる。前記スローイングパワーが高いほ
ど太陽電池の微小な欠陥部分にもある一定の厚みの電着
樹脂が被覆されることになる。電着塗料の汚染において
も、アニオン系樹脂でみられるような基板側の電極の金
属の溶出がカチオン系樹脂では全くなく塗料管理が容易
である。さらに、前記金属の溶出がないため、基材上に
堆積する樹脂中に金属イオンの混入の懸念がなくより高
い透明性、より良好な電気絶縁性が期待できる。
The electrodeposition resin is roughly classified into anion type and cation type resins. In the present invention, both can be preferably used, but the cation resin has higher rust prevention and throwing power than the anion resin, and the stability and control of the electrodeposition resin coating are easy. Here, rust prevention generally refers to the rust preventive effect of a metal plate, etc.
It can be said that the material has a low permeability to moisture, water vapor, or metal ions, and is excellent in electrical insulation. Further, the throwing power is a parameter indicating how much a coating film is formed on a substrate having a complicated shape and having a uniform thickness, and is also called throwing power. As the throwing power is higher, the electrodeposition resin having a certain thickness is coated even on the minute defect portion of the solar cell. Even when the electrodeposition paint is contaminated, the metal elution of the electrode on the substrate side, which is seen in the anion resin, is not in the cation resin and the paint control is easy. Furthermore, since there is no elution of the metal, there is no concern that metal ions will be mixed in the resin deposited on the substrate, and higher transparency and better electrical insulation can be expected.

【0043】電着樹脂の骨格樹脂としては、一般に知ら
れている樹脂を用いる事ができるが、絶縁性、耐湿性を
有する電着樹脂の骨格樹脂としては、アクリル樹脂、エ
ポキシ樹脂、フッ素樹脂、ウレタン樹脂、ポリブタジエ
ン樹脂の中から所望に応じて適宜選択される。あるい
は、耐候性、耐湿性、可とう性、密着性、反応性、コス
トの改良のために上記樹脂を2種以上併用することも可
能である。これらの樹脂を太陽電池側に電気泳動し析出
させるために、水中で電離が起き、太陽電池側で析出す
るような官能基を導入することが必要である。
As the skeleton resin of the electrodeposition resin, a generally known resin can be used. As the skeleton resin of the electrodeposition resin having insulation and moisture resistance, acrylic resin, epoxy resin, fluororesin, It is appropriately selected from urethane resin and polybutadiene resin as desired. Alternatively, it is possible to use two or more of the above resins in combination in order to improve weather resistance, moisture resistance, flexibility, adhesion, reactivity, and cost. In order to cause these resins to electrophoretically deposit on the solar cell side, it is necessary to introduce a functional group that causes ionization in water and deposits on the solar cell side.

【0044】官能基としてはカチオン系樹脂の場合、ア
ミノ基が一般的である。4級リン酸塩、4級硫酸塩、4
級アンモニウムカルボン酸塩などの官能基を用いても良
い。また、アニオン系樹脂の場合、カルボキシル基が挙
げられる。
In the case of a cationic resin, the functional group is generally an amino group. Quaternary phosphate, quaternary sulfate, 4
A functional group such as a quaternary ammonium carboxylate may be used. Further, in the case of an anionic resin, a carboxyl group can be mentioned.

【0045】カチオン系樹脂としては、ジメチルアミノ
エチルメタクリレート、トリエチルアミノメタクリレー
ト、4級化アミン含有の(メタ)アクリレートに代表さ
れるアミノ基含有の(メタ)アクリレートをメチルメタ
クリレート、2−エチルヘキシルメタクリレート、スチ
レン等のベースモノマーと共重合し、酸で中和する事に
よって得られる。エポキシ樹脂の場合にはエピクロルヒ
ドリン/ビスフェノールA型エポキシ樹脂に代表される
ポリグリシジルエーテルに、1級、2級または3級アミ
ンを反応させてカチオン基を導入する方法がある。次
に、有機酸で中和して親水化もしくは水溶化する方法が
用いられる。1級アミンは2個のエポキシ基を鎖長延長
させることができ、2級アミンの場合は端末エポキシ基
に付加する。1級アミンとしてはモノエタノールアミ
ン、2級アミンとしてはジエチルアミン、ジエタノール
アミン、3級アミンとしては、トリメチルアミン、トリ
エチルアミン、トリブルチルアミン等が挙げられる。カ
チオン型フッ素樹脂の場合は、前記アクリル樹脂と同様
に一部フッ素置換された(メタ)アクリレートと共重合
する事によって得る事ができる。ウレタン樹脂では、ポ
リエーテルジオール、ポリエステルジオールとトリレン
ジイソシアナート(TDI),メチレンジ(フェニルイ
ソシアナート)(MDI)との鎖長延長物の一部(イソ
シアナート末端のウレタン樹脂)の末端に1,2あるい
は3級アミンを付加する方法がある。ポリブタジエン樹
脂においては、マイレン化ポリブタジエン、エポキシ化
ポリブタジエンに、1,2あるいは3級アミンを付加す
ることによってカチオン系電着樹脂が合成される。
Examples of the cationic resin include dimethylaminoethyl methacrylate, triethylaminomethacrylate, amino group-containing (meth) acrylate represented by quaternized amine-containing (meth) acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, and styrene. It can be obtained by copolymerizing with a base monomer such as and neutralizing with an acid. In the case of an epoxy resin, there is a method of introducing a cation group by reacting a polyglycidyl ether represented by epichlorohydrin / bisphenol A type epoxy resin with a primary, secondary or tertiary amine. Next, a method of neutralizing with an organic acid to make it hydrophilic or water-soluble is used. The primary amine can extend the chain length of two epoxy groups, and in the case of the secondary amine, it is added to the terminal epoxy group. Examples of the primary amine include monoethanolamine, examples of the secondary amine include diethylamine, diethanolamine, and examples of the tertiary amine include trimethylamine, triethylamine, tribrutylamine and the like. In the case of a cation type fluororesin, it can be obtained by copolymerizing with a partially fluorinated (meth) acrylate similarly to the acrylic resin. In the urethane resin, a part of the chain extension of polyether diol, polyester diol and tolylene diisocyanate (TDI), methylene di (phenyl isocyanate) (MDI) (isocyanate-terminated urethane resin) has 1, There is a method of adding a secondary or tertiary amine. In the polybutadiene resin, a cationic electrodeposition resin is synthesized by adding 1,2 or tertiary amine to mylenized polybutadiene and epoxidized polybutadiene.

【0046】さらに耐熱性を向上させるためにカチオン
系電着樹脂を架橋する事が好ましい。架橋反応が起こる
ような官能基を骨格樹脂まはた側鎖に適宜導入する。具
体的には、エポキシ基、(ブロックド)イソシアネート
基、N−メチロール基、ビニル基など有する化合物が挙
げられる。あるいは別途架橋剤(エポキシ基、(ブロッ
クド)イソシアナート基含有の低分子化合物、メラミ
ン、多官能(メタ)アクリレート、トリアリルイソシア
ヌレート)を併用する事も可能である。場合によって
は、架橋反応を促進するために触媒を添加しても良い。
架橋温度は適宜決めればよいが、一般には100乃至1
80℃が好ましい。
In order to further improve heat resistance, it is preferable to crosslink the cationic electrodeposition resin. A functional group capable of causing a crosslinking reaction is appropriately introduced into the skeleton resin or the side chain. Specific examples thereof include compounds having an epoxy group, a (blocked) isocyanate group, an N-methylol group, a vinyl group and the like. Alternatively, a cross-linking agent (epoxy group, low-molecular compound containing (blocked) isocyanate group, melamine, polyfunctional (meth) acrylate, triallyl isocyanurate) can be used in combination. In some cases, a catalyst may be added to accelerate the crosslinking reaction.
The crosslinking temperature may be appropriately determined, but is generally 100 to 1
80 ° C. is preferred.

【0047】アニオン系樹脂では前述したようにカルボ
キシル基を導入しており、樹脂は陽極側に電気泳動して
析出する。さらに電着樹脂を硬化させるために、硬化剤
を加えるがメチロール化メラミンによるメラミン架橋、
側鎖にスチレンやブタジエン導入することにより炭素−
炭素二重結合(>C=C<)を利用した酸化重合や、そ
の他にもブロック化イソシアネート基(ROCONH
−)のウレタン結合を利用したものなどが用いられる。
In the anionic resin, the carboxyl group is introduced as described above, and the resin is electrophoresed and deposited on the anode side. Furthermore, in order to cure the electrodeposition resin, a curing agent is added, but melamine crosslinking by methylolated melamine,
By introducing styrene or butadiene into the side chain, carbon-
Oxidative polymerization using carbon double bond (> C = C <), and other blocked isocyanate groups (ROCONH
Those using the urethane bond of −) are used.

【0048】上述したように、絶縁性、耐湿性を有する
電着樹脂の骨格樹脂としては、アクリル樹脂、エポキシ
樹脂、ウレタン樹脂、ポリブタジエン樹脂等の中から所
望に応じて適宜選択されるが、太陽電池の使用環境など
を考えると、ある程度の耐熱性を有していることが望ま
しい。即ち、ガラス転移温度で表せば、100℃以上が
好ましい。100℃未満では上記樹脂を用いても屋外の
真夏日に樹脂が軟化するあるいは樹脂の電気絶縁性が低
下するという問題が生じる懸念がある。柔らかい樹脂を
ガラス転移温度100℃以上にする方法として、上記骨
格樹脂にハードセグメント(フェニル基、側鎖がアルキ
ル基の場合短くする)等を導入するか、骨格樹脂の分子
の対称性を高めるか、前記架橋剤を増量して用いる等が
挙げられる。
As described above, the skeleton resin of the electrodeposition resin having insulation and moisture resistance is appropriately selected from acrylic resin, epoxy resin, urethane resin, polybutadiene resin and the like as desired. Considering the environment in which the battery is used, it is desirable that the battery has some heat resistance. That is, the glass transition temperature is preferably 100 ° C. or higher. If the temperature is lower than 100 ° C., even if the above resin is used, there is a concern that the resin may soften or the electrical insulation of the resin may be deteriorated on the midsummer day outdoors. As a method of making the soft resin have a glass transition temperature of 100 ° C. or higher, whether to introduce a hard segment (shorten when the phenyl group or the side chain is an alkyl group) or the like into the skeleton resin, or to increase the symmetry of the skeleton resin molecule , Increasing the amount of the cross-linking agent, and the like.

【0049】次に、グリッド電極107は半導体層10
3,104,105で発生した起電力を取り出すための
電極であり集電電極と呼ばれる。前記グリッド電極10
7は半導体層105あるいは上部電極106のシート抵
抗の大きさから好適な配置が決定されるがほぼ串状に形
成され、光の入射をできるだけ妨げないように設計され
る。グリッド電極は比抵抗が低く太陽電池の直列抵抗と
ならないことが要求され、所望の比抵抗としては10-2
Ωcm〜10-5Ωcmであり、グリッド電極の材料とし
ては、Ti、Cr、Mo、W、Al、Ag、Ni、C
u、Sn等の金属材料及びAg、Pt、Cu、C等の金
属またはこれらの合金の粉末にポリマーのバインダー、
バインダーの溶剤を適度な比率で混合し、ペースト状と
したいわゆる導電性ペーストが挙げられる。
Next, the grid electrode 107 is formed on the semiconductor layer 10.
It is an electrode for taking out the electromotive force generated at 3, 104, 105 and is called a collecting electrode. The grid electrode 10
Although the suitable arrangement of 7 is determined by the size of the sheet resistance of the semiconductor layer 105 or the upper electrode 106, it is formed in a substantially comb shape and designed so as not to interfere with the incidence of light as much as possible. The grid electrode is required to have a low specific resistance and not become a series resistance of the solar cell, and the desired specific resistance is 10 -2.
Ωcm to 10 −5 Ωcm, and the material of the grid electrode is Ti, Cr, Mo, W, Al, Ag, Ni, C.
Metallic materials such as u and Sn and powders of metals such as Ag, Pt, Cu and C or alloys thereof, and a polymer binder,
A so-called conductive paste that is made into a paste by mixing the binder solvent in an appropriate ratio can be used.

【0050】本発明において用いられるバスバー108
は、グリッド電極107を流れる電流を更に一端に集め
るための電極である。電極材料としてはAg、Pt、C
u、等の金属やCまたはこれらの合金からなるものを用
いることができ、形態としてはワイヤー状、箔状のもの
を張り付けたり前記グリッド電極107と同様の導電性
ペーストを用いても良い。箔状のものとしては例えば銅
箔や、或いは銅箔にスズメッキしたもので、場合によっ
ては接着剤付きのものが用いられる。
The bus bar 108 used in the present invention
Is an electrode for further collecting the current flowing through the grid electrode 107 at one end. Ag, Pt, C as electrode materials
It is possible to use a metal such as u, C, or an alloy thereof, and as a form, a wire-shaped or foil-shaped one may be stuck, or the same conductive paste as the grid electrode 107 may be used. As the foil-shaped material, for example, a copper foil, or a copper foil plated with tin, and an adhesive-attached material may be used in some cases.

【0051】以上のように作製された太陽電池は、屋外
使用の際、耐候性を良くし機械的強度を保つために公知
の方法でエンカプシュレーションをしてモジュール化さ
れる。具体的にはエンカプシュレーション用材料として
は、接着層については、太陽電池との接着性、耐候性、
緩衝効果の点でEVA(エチレンビニールアセテート)
が好適に用いられる。また、さらに耐湿性や耐傷性を向
上させるために、表面保護層としては弗素系の樹脂が積
層される。弗素系の樹脂としては、例えば4フッ化エチ
レンの重合体TFE(デュポン製テフロンなど)、4フ
ッ化エチレンとエチレンの共重合体ETFE(デュポン
製テフゼルなど)、ポリフッ化ビニル(デュポン製テド
ラーなど)、ポリクロロフルオロエチレンCTFE(ダ
イキン工業製ネオフロン)等が挙げられる。またこれら
の樹脂に紫外線吸収剤を加えることで耐候性を向上させ
ても良い。
The solar cell produced as described above is modularized by encapsulation by a known method in order to improve weather resistance and maintain mechanical strength when used outdoors. Specifically, as an encapsulation material, for the adhesive layer, adhesiveness with solar cells, weather resistance,
EVA (ethylene vinyl acetate) in terms of buffering effect
Is preferably used. Further, in order to further improve the moisture resistance and the scratch resistance, a fluorine resin is laminated as the surface protective layer. Examples of the fluorine-based resin include a polymer of tetrafluoroethylene TFE (such as Teflon manufactured by DuPont), a copolymer of ethylene tetrafluoride and ethylene ETFE (such as Tefzel manufactured by DuPont), and polyvinyl fluoride (Tedlar manufactured by DuPont). , Polychlorofluoroethylene CTFE (Neotron manufactured by Daikin Industries, Ltd.) and the like. The weather resistance may be improved by adding an ultraviolet absorber to these resins.

【0052】以下に本発明の太陽電池の製造方法を説明
する。本発明の製造方法において、電着は半導体形成後
に行ってもよく、また電極形成後に行ってもよい。また
潜在的欠陥を顕在化するためにフォーミングを行った
後、電着を行うのが太陽電池特性の長期安定性の観点か
ら好ましい。さらに、電極形成後に電着を行う場合は、
パッシベーション等により欠陥部の電極を除去または高
抵抗化した後に電着するのがより好ましい。
The method for manufacturing the solar cell of the present invention will be described below. In the manufacturing method of the present invention, electrodeposition may be performed after semiconductor formation or after electrode formation. From the viewpoint of long-term stability of solar cell characteristics, it is preferable to perform electrodeposition after forming to reveal latent defects. Furthermore, when electrodeposition is performed after forming the electrodes,
It is more preferable to perform electrodeposition after removing the electrode in the defective portion or increasing the resistance by passivation or the like.

【0053】本発明の太陽電池製造方法に於いては、半
導体層103,104,105及び下部電極102、上
部電極106、グリッド電極107、バスバー108等
の形成方法は大略公知の方法により作製される。
In the solar cell manufacturing method of the present invention, the semiconductor layers 103, 104, 105 and the lower electrode 102, the upper electrode 106, the grid electrode 107, the bus bar 108, etc. are formed by a generally known method. .

【0054】アモルファスシリコン半導体層の成膜法と
しては、蒸着法、スパッタ法、RFプラズマCVD法、
マイクロ波プラズマCVD法、ECR法、熱CVD法、
LPCVD法等公知の方法を所望に応じて用いる。工業
的に採用されている方法としては、原料ガスをプラズマ
で分解し、基板状に堆積させるRFプラズマCVD法が
好んで用いられる。さらには、RFプラズマCVDが、
原料ガスの分解効率が約10%と低いことや、堆積速度
が1Å/secから10Å/sec程度と遅いことが問
題であるのに対し、この点を改良したマイクロ波プラズ
マCVD法も用いることができる。
As the film forming method of the amorphous silicon semiconductor layer, vapor deposition method, sputtering method, RF plasma CVD method,
Microwave plasma CVD method, ECR method, thermal CVD method,
A known method such as the LPCVD method is used as desired. As an industrially adopted method, an RF plasma CVD method of decomposing a source gas with plasma and depositing it on a substrate is preferably used. Furthermore, RF plasma CVD
While the decomposition efficiency of the raw material gas is as low as about 10% and the deposition rate is slow at about 1Å / sec to about 10Å / sec, it is possible to use a microwave plasma CVD method that improves this point. it can.

【0055】多結晶シリコンの場合は、溶融シリコンの
シート化により、CuInSe2/CdSの場合、電子
ビーム蒸着、スパッタリング、電 解液の電気分解によ
る析出などの方法で形成される。
In the case of polycrystalline silicon, molten silicon is formed into a sheet, and in the case of CuInSe 2 / CdS, it is formed by a method such as electron beam evaporation, sputtering, or precipitation by electrolytic decomposition of an electrolytic solution.

【0056】以上の成膜を行うための反応装置として
は、バッチ式の装置や連続成膜装置などが所望に応じて
使用できる。
A batch type apparatus or a continuous film forming apparatus can be used as a reaction apparatus for carrying out the above film formation, if desired.

【0057】下部電極の作製法はメッキ、蒸着、スパッ
タ等の方法を用いる。上部電極の作製方法としては、抵
抗加熱蒸着法、電子ビーム加熱蒸着法、スパッタリング
法、スプレー法等を用いることができ所望に応じて適宜
選択される。
As a method of manufacturing the lower electrode, a method such as plating, vapor deposition or sputtering is used. As a method for manufacturing the upper electrode, a resistance heating vapor deposition method, an electron beam heating vapor deposition method, a sputtering method, a spray method, or the like can be used, and is appropriately selected as desired.

【0058】太陽電池の欠陥は、ショートやシャントを
引き起こすような顕在化したもの以外に、程度が軽いた
め初期には問題とならず、長期使用時に問題となるよう
な潜在的欠陥が存在する。このような欠陥に対し、後工
程のパッシベーションや電着が有効になされるために
は、予め欠陥を顕在化させる、いわゆるフォーミング工
程が必要である。このようなフォーミングの工程は具体
的には太陽電池に対し適当な電圧を印加することで達成
でき、電圧としては、2Vから20V程度の範囲が用い
られる。極性は、太陽電池に対し逆バイアスとする事で
有効なフォーミングが可能であるが、極性が反転するよ
うな方法でも良い。前記フォーミングを行う装置として
は、例えば図10のような装置が挙げられる。図に於い
て、401はステージ、402は太陽電池、403は導
電性ブラシ、404はレール、405は電源、406は
導線を示す。
The defects of the solar cell are not so obvious that they cause a short circuit or a shunt, and because of their lightness, they do not pose a problem in the initial stage, and there are potential defects that pose a problem during long-term use. In order to effectively perform the passivation and the electrodeposition in the post-process for such defects, a so-called forming process for revealing the defects in advance is necessary. Such a forming process can be specifically achieved by applying an appropriate voltage to the solar cell, and a voltage in the range of about 2V to 20V is used. The polarity can be effectively formed by applying a reverse bias to the solar cell, but a method of reversing the polarity may be used. Examples of the forming device include a device as shown in FIG. In the figure, 401 is a stage, 402 is a solar cell, 403 is a conductive brush, 404 is a rail, 405 is a power source, and 406 is a conducting wire.

【0059】前記透明導電性酸化物からなる上部電極の
選択的除去法(パッシベーション)としては、公知の方
法を用いることができ、例えば、米国特許4,729、
970号公報に開示されるような方法が用いられる。
As a method for selectively removing (passivating) the upper electrode made of the transparent conductive oxide, a known method can be used, for example, US Pat. No. 4,729,
The method disclosed in Japanese Patent Publication No. 970 is used.

【0060】このようなパッシベーションを行うに好適
な装置の一例を図9に示す。図9において、302は電
解液、303は対向電極、304は基板、305は上部
電極106までの全ての層、306は電源、307は導
線を示す。電解液としてはAlCl3,ZnCl2,Sn
Cl2,SnCl4、TiCl4等のルイス酸が好適に用
いられ、また、前記電解液の濃度はパッシベーションの
速度との関係で決定され、通常0.1%から10%の範
囲が好ましい。電解条件としては、電圧は2Vから10
Vの範囲が好ましく電解の時間は電圧や電解液濃度との
関係で好適な範囲が決定されるが1秒から30秒の範囲
が好ましい。
An example of an apparatus suitable for performing such passivation is shown in FIG. In FIG. 9, 302 is an electrolytic solution, 303 is a counter electrode, 304 is a substrate, 305 is all layers up to the upper electrode 106, 306 is a power source, and 307 is a conducting wire. As the electrolyte, AlCl 3 , ZnCl 2 , Sn
A Lewis acid such as Cl 2 , SnCl 4 or TiCl 4 is preferably used, and the concentration of the electrolyte is determined in relation to the passivation rate, and usually 0.1% to 10% is preferable. As electrolysis conditions, the voltage is from 2V to 10
The range of V is preferable, and the electrolysis time is determined to be a suitable range in relation to the voltage and the concentration of the electrolytic solution, but the range of 1 second to 30 seconds is preferable.

【0061】欠陥部分に選択的に電着樹脂を堆積する工
程は、欠陥部分を有する太陽電池と対向電極とを電着塗
料中に浸漬し、前記太陽電池と前記対向電極との間に電
圧を印加して欠陥部分に電着樹脂を堆積することにより
行われる。前記太陽電池に電圧を印加する場合には導電
性基体に印加すれば良い。前記対向電極の材質として
は、電着塗料中で腐食されないことが要求され、耐食性
のある白金、炭素、ニッケル、ステンレスなどが好適に
用いられる。また、前記対向電極の面積は、前記太陽電
池の面積に対して一定の比率とする事が電着を均一にす
るために必要であり、いわゆる極比としては、前記太陽
電池面積と前記対向電極面積との比は1/2から2/1
の範囲であることが好ましい。また、前記太陽電池と前
記対向電極との極間距離は電着の均一性を保つために重
要な因子であるが、電着塗料の電導度や印加する電圧な
どの諸条件により好適な範囲があり一般的には10mm
から100mmが望ましい。電着膜が太陽電池の欠陥部
分のみに選択的に堆積するために、基板などの導電性部
分を電着塗料中にさらすことは好ましくなくこのため、
前記太陽電池の光入射側の裏面となる導電性基板表面
を、プラスチックフィルムやゴム磁石などの絶縁性被覆
材で覆うことが望ましい。また、太陽電池に光照射され
ると欠陥部分以外の正常部分では光起電力により低抵抗
化するため欠陥部分の抵抗値と正常部分の抵抗値の相対
比が小さくなり選択性が低くなってしまう。従って、必
要に応じて暗中で電着する事で所望の選択性が達成でき
るようになる。
In the step of selectively depositing the electrodeposition resin on the defective portion, the solar cell having the defective portion and the counter electrode are immersed in the electrodeposition coating material, and a voltage is applied between the solar cell and the counter electrode. It is performed by applying and depositing an electrodeposition resin on the defective portion. When a voltage is applied to the solar cell, it may be applied to a conductive substrate. As the material of the counter electrode, it is required that it is not corroded in the electrodeposition coating, and corrosion-resistant platinum, carbon, nickel, stainless steel or the like is preferably used. Further, the area of the counter electrode is required to have a constant ratio with respect to the area of the solar cell in order to make electrodeposition uniform. As a so-called polar ratio, the solar cell area and the counter electrode are Area ratio is 1/2 to 2/1
It is preferably in the range of. Further, the distance between the solar cell and the counter electrode is an important factor for maintaining the uniformity of electrodeposition, but a suitable range depending on various conditions such as the electrical conductivity of the electrodeposition coating and the applied voltage. Yes Generally 10 mm
To 100 mm is desirable. Since the electrodeposition film is selectively deposited only on the defective portion of the solar cell, it is not preferable to expose the conductive portion such as the substrate in the electrodeposition coating, and therefore,
It is desirable to cover the surface of the conductive substrate, which is the back surface of the solar cell on the light incident side, with an insulating coating material such as a plastic film or a rubber magnet. Further, when the solar cell is irradiated with light, the normal portion other than the defective portion has a low resistance due to the photovoltaic power, so that the relative ratio of the resistance value of the defective portion and the resistance value of the normal portion becomes small and the selectivity becomes low. . Therefore, if desired, the desired selectivity can be achieved by electrodeposition in the dark.

【0062】電着は、定電圧法でも定電流法でも行うこ
とが出来るが、例えば、定電圧法では、前記太陽電池に
印加する電圧は、ネルンストの式で定義される電極電位
から計算される水素発生電位以上の電圧、具体的には、
水の理論分解電圧に過電圧を加えた値である2ボルト以
上の電圧が必要である。さらに、電着塗料の電導度や太
陽電池に印加する電圧の極性が逆バイアスである場合と
順バイアスである場合とでは好ましい印加電圧の範囲は
異なるためそれぞれの太陽電池の構成、面積及び、電着
塗料の電導度などの物性、印加電圧の極性など種々の点
から好適な電圧範囲が決定されるが、およそ2Vから2
00Vの範囲である。また、印加した電圧の一部は太陽
電池にも印加されることになるため、前記太陽電池に対
して逆バイアスとなるような極性の場合には、前記太陽
電池がプレークダウンしない範囲の電圧でなければなら
ない。一方、前記太陽電池に対して順バイアスとなるよ
うな極性の場合には太陽電池の順方向電流が流れるため
選択性が劣ることになり、この点を考慮して選択性を損
なわない電圧としなければならない。具体的には、太陽
電池の順方向電流がシャント電流の2倍以下とすること
が好ましい。2倍より大きくすると電着の選択性が失わ
れて欠陥部位外にも電着樹脂が堆積し、グリッド電極の
集電効率が低下することになる。
The electrodeposition can be performed by a constant voltage method or a constant current method. For example, in the constant voltage method, the voltage applied to the solar cell is calculated from the electrode potential defined by the Nernst equation. A voltage higher than the hydrogen generation potential, specifically,
A voltage of 2 volts or more, which is a value obtained by adding an overvoltage to the theoretical decomposition voltage of water, is required. Furthermore, since the preferred applied voltage range is different when the conductivity of the electrodeposition paint and the polarity of the voltage applied to the solar cell are reverse bias and forward bias, the configuration, area, and electric power of each solar cell are different. The suitable voltage range is determined from various points such as the physical properties such as the conductivity of the coating material and the polarity of the applied voltage.
It is in the range of 00V. In addition, since a part of the applied voltage is also applied to the solar cell, in the case of a polarity such that the solar cell is reverse biased, a voltage within a range in which the solar cell does not break down. There must be. On the other hand, when the polarity is such that it becomes a forward bias with respect to the solar cell, the forward current of the solar cell flows, resulting in poor selectivity, and in consideration of this point, the voltage must not impair the selectivity. I have to. Specifically, it is preferable that the forward current of the solar cell is not more than twice the shunt current. If it is more than twice, the selectivity of electrodeposition is lost and the electrodeposition resin is deposited also on the outside of the defective portion, so that the current collecting efficiency of the grid electrode is lowered.

【0063】定電流法による電着に於いでは、前記太陽
電池のシャントの程度にもよるが緻密な電着膜を形成す
るために電流密度は、好ましくは0.1から10A/d
2の範囲である。
In the electrodeposition by the constant current method, the current density is preferably 0.1 to 10 A / d in order to form a dense electrodeposition film depending on the degree of shunt of the solar cell.
It is in the range of m 2 .

【0064】上記の定電圧法、定電流法の何れの方法に
於いても電着の終点の決定の仕方としては、時間による
方法、クーロン量による方法等が可能である。電着塗膜
は高抵抗であるため、一定の膜厚になるとその部分には
成膜がなされないため、太陽電池の構成によっては欠陥
部分の堆積がなされたときに電着が自動的に終了し、電
流が流れなくなることも可能である。しかしながら、前
記太陽電池に対して順方向バイアスを印加するような場
合は電着初期には選択性があっても時間の経過とともに
正常部分にも堆積が起こるため、前述したように、時間
やクーロン量による電着終点の管理が必要となる。上述
の電着工程を行う装置としては例えば前記図9のパッシ
ベーションに用いる装置が好適に用いられる。この場合
302を電着液とすれば良い。
In any of the constant voltage method and the constant current method described above, the method of determining the end point of electrodeposition may be a method based on time, a method based on Coulomb amount, or the like. Since the electrodeposition coating film has a high resistance, no film is formed on that part when the film thickness reaches a certain value.Therefore, depending on the configuration of the solar cell, electrodeposition will automatically end when a defective part is deposited. However, it is possible for the current to stop flowing. However, in the case where a forward bias is applied to the solar cell, even if there is selectivity at the initial stage of electrodeposition, deposition also occurs in a normal portion with the passage of time. It is necessary to manage the electrodeposition end point by the amount. As the apparatus for performing the above-mentioned electrodeposition step, for example, the apparatus used for passivation shown in FIG. 9 is preferably used. In this case, 302 may be used as the electrodeposition liquid.

【0065】以上の説明に於いては太陽電池はカットシ
ート状であり、パッシベーションおよび電着のプロセス
は枚葉処理であったが、必要に応じてロールツーロール
で行うことも可能である。ロールツーロール処理に適す
る電着装置を図11に示す。また、パッシベーションと
電着を連続的に行う装置を図12に示す。図に於いて5
01は基板、502は基板送り出しローラー、503は
基板巻き取りローラー、504,514は電解槽、50
5,515は洗浄槽、506,516は乾燥炉、50
7,517は電源、508,518はマスクフィルム送
り出しローラー、509,519はマスクフィルム巻き
取りローラー、510,520はマスクフィルム、51
1,521は対向電極、512,522は導電性ローラ
ーを示す。この図に於けるこのましい実施態様例として
は、太陽電池はステンレス基板状に堆積されたnip型
アモルファスシリコンであり、光入射側にITOの上部
電極が形成されている。前記太陽電池基板501は送り
出しロール502から送り出され電解槽504に浸漬さ
れ、洗浄槽505、乾燥炉506を通過した後巻き取り
ロール503に巻き取られる。電解槽504に浸漬する
前にプラスチックフィルムロール508から太陽電池裏
面マスク用のフィルム510が送り出されて前記太陽電
池基板501の裏面と張り合わせられる。電着が完了し
た後は再び剥離され洗浄乾燥後巻き取りローラー509
に巻き取られる。太陽電池基板501と接する導電性ロ
ーラー512と電解槽504内に浸漬された対向電極5
11との間に電源507の電圧が印加される。
In the above description, the solar cell is in the form of a cut sheet, and the passivation and electrodeposition processes are single-wafer processing, but roll-to-roll processing may be performed if necessary. An electrodeposition apparatus suitable for roll-to-roll processing is shown in FIG. FIG. 12 shows an apparatus for continuously performing passivation and electrodeposition. 5 in the figure
01 is a substrate, 502 is a substrate feeding roller, 503 is a substrate winding roller, 504 and 514 are electrolytic baths, 50
5, 515 is a cleaning tank, 506, 516 are drying ovens, 50
7, 517 is a power source, 508, 518 are mask film feeding rollers, 509, 519 are mask film take-up rollers, 510, 520 are mask films, 51
1, 521 is a counter electrode and 512, 522 are conductive rollers. In this preferred embodiment shown in this figure, the solar cell is nip type amorphous silicon deposited on a stainless substrate, and an ITO upper electrode is formed on the light incident side. The solar cell substrate 501 is delivered from a delivery roll 502, immersed in an electrolytic bath 504, passed through a cleaning bath 505 and a drying furnace 506, and then wound up on a winding roll 503. Before being immersed in the electrolytic cell 504, the film 510 for the solar cell backside mask is sent out from the plastic film roll 508 and bonded to the backside of the solar cell substrate 501. After the electrodeposition is completed, it is peeled off again, washed and dried, and then the winding roller 509 is used.
To be wound up. A conductive roller 512 in contact with the solar cell substrate 501 and the counter electrode 5 immersed in the electrolytic cell 504.
The voltage of the power supply 507 is applied between the power supply terminal 11 and the terminal 11.

【0066】グリッド電極l07は串状に形成するた
め、形成方法には、マスクパターンを用いたスパッタリ
ング、抵抗加熱、CVDの蒸着方法、あるいは全面に金
属層を蒸着した後にエッチングしてパターニングする方
法、光CVDにより直接グリッド電極パターンを形成す
る方法、グリッド電極パターンのネガパターンのマスク
を形成した後にメッキにより形成する方法、導電性ペー
ストを印刷して形成する方法などがある。前記スクリー
ン印刷法はポリエステルやステンレスで出来たメッシュ
に所望のパターニングを施したスクリーンを用いて導電
性ペーストを印刷インキとして用いるものであり電極幅
としては、最小で50μm位とする事ができる。印刷機
は市販のスクリーン印刷機が好適に用いられる。スクリ
ーン印刷した導電性ペーストはバインダーを架橋させる
ためと溶剤を揮発させるために乾燥炉で加熱する。
Since the grid electrode 1007 is formed in a comb shape, the forming method is a sputtering method using a mask pattern, a resistance heating method, a CVD method, or a method in which a metal layer is deposited on the entire surface and then etched and patterned. There are a method of directly forming a grid electrode pattern by photo CVD, a method of forming a negative pattern mask of the grid electrode pattern and then forming, a method of printing a conductive paste, and the like. In the screen printing method, a conductive paste is used as a printing ink by using a screen in which a mesh made of polyester or stainless steel is subjected to desired patterning, and the electrode width can be set to about 50 μm at the minimum. A commercially available screen printing machine is preferably used as the printing machine. The screen-printed conductive paste is heated in a drying oven to crosslink the binder and volatilize the solvent.

【0067】バスバー108の形成方法としては、金属
ワイヤーを導電性接着剤で固定したり、銅箔を張り付け
たりあるいは、グリッド電極107と同様に形成しても
良い。 エンカプシュレーションの方法としては、例え
ば真空ラミネーターのような市販の装置を用いて、太陽
電池基板と前記樹脂フィルムとを真空中で加熱圧着する
方法が望ましい。
As a method of forming the bus bar 108, a metal wire may be fixed with a conductive adhesive, a copper foil may be attached, or the same as the grid electrode 107. As a method of encapsulation, it is desirable to use a commercially available device such as a vacuum laminator to heat and pressure bond the solar cell substrate and the resin film in vacuum.

【0068】[0068]

【実施例】以下、実施例により、本発明の太陽電池の構
成及び本発明の太陽電池製造方法を更に詳しく説明する
が、本発明はこれらの実施例により限定されるものでは
ない。
EXAMPLES Hereinafter, the structure of the solar cell of the present invention and the method for manufacturing a solar cell of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0069】(実施例1)図3に示す層構成の太陽電池
100を以下のようにして作製した。まず、十分に脱
脂、洗浄を行ったSUS430BA製基板(30cm×
30cm、厚み0.2mm)101を不図示のDCスパ
ッタ装置に入れCrを2000Å堆積し、下部電極10
2を形成した。基板101を取り出し、不図示のRFプ
ラズマCVD成膜装置に入れn層103、i層104、
p層105の順で堆積を行った。その後、不図示の抵抗
加熱の蒸着装置に入れて、酸素を導入しながら1×10
-4Torrの内圧に保ち、InとSnの合金を抵抗加熱
により蒸着し、反射防止効果を兼ねた機能を有する透明
なITOの上部電極106を700Å堆積した。
Example 1 A solar cell 100 having the layer structure shown in FIG. 3 was produced as follows. First, a substrate made of SUS430BA that has been thoroughly degreased and washed (30 cm x
(30 cm, thickness 0.2 mm) 101 is put in a DC sputtering device (not shown) to deposit 2000 liters of Cr, and the lower electrode 10
Formed 2. The substrate 101 is taken out and put in an RF plasma CVD film forming apparatus (not shown), and the n layer 103, i layer 104,
Deposition was performed in order of the p layer 105. Then, it is placed in a resistance heating vapor deposition device (not shown) and 1 × 10 5 is introduced while introducing oxygen.
While keeping the internal pressure at -4 Torr, an alloy of In and Sn was vapor-deposited by resistance heating, and 700 Å of transparent ITO upper electrode 106 having a function also as an antireflection effect was deposited.

【0070】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い電着時に基板101裏面
に電着が施されないようにして図9の電解槽に浸漬し
た。対向電極303として、極比が1:1となるように
30cm×30cmの大きさで、前記基板101に対し
て裏側をプラスチック製の絶縁性フィルムを用いてシー
ルしたSUS304ステンレス板を用いた。電着塗料3
02は固形分10%のアクリル系アニオン電着塗料を用
いた。基板304にプラス10Vの電圧を印加して10
秒間保持し、電着を行った。太陽電池100を電解槽3
01から引き上げ、純水で十分に洗浄を行い、未反応の
電着塗料を洗い流し、50℃のオーブンに投入し、30
分放置して水分を乾燥させた。その後、オーブンの温度
を10℃/分の速度で昇温し、180℃に達してから3
0分保持し電着樹脂の硬化を行った。その後、基板10
1をオーブンから取り出し冷却後基板101の一部を切
り出して走査型電子顕微鏡で観察したところ上部電極1
06の表面には、約5μm〜50μmの径の半球状の堆
積物110が点在して観察された。この部分の赤外吸収
を、顕微機能付きFTIRを用いて分析したところ、カ
ルボニル基の吸収があり電着塗料が堆積していることが
確認された。さらに、この試料のOBIC(光励起電流
顕微鏡)像を観察したところ、前記電着塗料の堆積部分
のみが発電せず、従って、前記堆積膜はシャント部分に
のみ堆積していることが確認された。さらに、電着樹脂
の堆積した面積はシャント部分の面積の10倍以下であ
り不要な部分への電着膜の堆積はほとんど無かった。
Next, the back surface side of the substrate 101 was covered with an insulating film made of plastic so as to prevent the back surface of the substrate 101 from being electrodeposited at the time of electrodeposition, and was immersed in the electrolytic bath of FIG. As the counter electrode 303, a SUS304 stainless plate having a size of 30 cm × 30 cm so that the polar ratio was 1: 1 and the back side of which was sealed with an insulating film made of plastic was used. Electro-deposition paint 3
For No. 02, an acrylic anionic electrodeposition paint having a solid content of 10% was used. Apply a voltage of + 10V to the substrate 304
It was held for a second and electrodeposition was performed. Solar cell 100 in electrolyzer 3
01, wash thoroughly with pure water, wash away unreacted electrodeposition paint, put in an oven at 50 ° C., and
It was left to dry for a minute. After that, the temperature of the oven is raised at a rate of 10 ° C / min, and after reaching 180 ° C, 3
It was held for 0 minutes to cure the electrodeposition resin. Then the substrate 10
After removing 1 from the oven and cooling, a part of the substrate 101 was cut out and observed with a scanning electron microscope.
Hemispherical deposits 110 having a diameter of about 5 μm to 50 μm were scattered on the surface of 06. When the infrared absorption of this portion was analyzed by using FTIR with a microscopic function, it was confirmed that there was carbonyl group absorption and the electrodeposition coating material was deposited. Further, when an OBIC (optical excitation current microscope) image of this sample was observed, it was confirmed that only the deposited portion of the electrodeposition coating did not generate power, and therefore the deposited film was deposited only on the shunt portion. Furthermore, the area where the electrodeposition resin was deposited was 10 times or less the area of the shunt portion, and there was almost no deposition of the electrodeposition film on the unnecessary portion.

【0071】次に、基板101を不図示のスクリーン印
刷機に設置し、幅100μm長さ8cmのグリッド電極
108を間隔1cmで印刷した。このとき導電性ペース
トは、Agフィラー70部、ポリエステルバインダー3
0部(体積比)、溶剤として酢酸エチルを20部含む組
成のものを用いた。印刷後、基板101をオーブンに入
れて150℃で30分間保持し、導電性ペ一ストをキュ
アした。
Next, the substrate 101 was placed on a screen printer (not shown), and grid electrodes 108 having a width of 100 μm and a length of 8 cm were printed at intervals of 1 cm. At this time, the conductive paste is 70 parts of Ag filler and 3 parts of polyester binder.
A composition containing 0 part (volume ratio) and 20 parts of ethyl acetate as a solvent was used. After printing, the substrate 101 was placed in an oven and kept at 150 ° C. for 30 minutes to cure the conductive paste.

【0072】さらに、幅5mmの接着剤付き銅箔のバス
バー109を接着し、図8に示す30cm角のシングル
セルを作製した。さらに、同様の方法で試料を10枚作
製した。
Further, a bus bar 109 of copper foil with an adhesive having a width of 5 mm was adhered to produce a 30 cm square single cell shown in FIG. Further, ten samples were prepared by the same method.

【0073】次に、これら試料のエンカプシュレーショ
ンを以下のように行った。基板101の上下にEVAを
積層しさらにその上下にフッ素樹脂フィルムETFE
(エチレンテトラフルオロエチレン)(デュポン製 製
品名テフゼル)を積層した後、真空ラミネーターに投入
して150℃で60分間保持し、真空ラミネーションを
行った。
Next, encapsulation of these samples was carried out as follows. EVA is laminated on the upper and lower sides of the substrate 101, and the fluororesin film ETFE is formed on the upper and lower sides of the EVA.
After stacking (ethylene tetrafluoroethylene) (product name Tefzel manufactured by DuPont), the mixture was put into a vacuum laminator and held at 150 ° C. for 60 minutes to carry out vacuum lamination.

【0074】得られた試料の初期特性を以下のようにし
て測定した。
The initial characteristics of the obtained sample were measured as follows.

【0075】まず、試料の暗状態での電圧電流特性を測
定し、原点付近の傾きからシャント抵抗を求めたとこ
ろ、6.5KΩcm2〜13.0KΩcm2と良好な特性
であり、ばらつきが少なかった。
First, the voltage-current characteristics of the sample were measured, and the shunt resistance was obtained from the slope near the origin. The shunt resistance was 6.5 KΩcm 2 to 13.0 KΩcm 2 , and the variation was small. .

【0076】次に、AM1.5グローバルの太陽光スペ
クトルで100mW/cm2の光量の疑似太陽光源(以
下シミュレータと呼ぶ)を用いて 太陽電池特性を測定
し、変換効率を求めたところ、6.1%±0.5%であ
り良好な特性でありばらつきも少なかった。
Next, the solar cell characteristics were measured using a pseudo solar light source (hereinafter referred to as a simulator) having a light amount of 100 mW / cm 2 in the AM1.5 global sunlight spectrum, and the conversion efficiency was obtained. It was 1% ± 0.5%, which was a good characteristic with little variation.

【0077】これらの試料の信頼性試験を、日本工業規
格C8917の結晶系太陽電池モジュールの環境試験方
法及び耐久試験方法に定められた温湿度サイクル試験A
−2に基づいて行った。
The reliability test of these samples was conducted according to the temperature and humidity cycle test A defined in the environmental test method and the durability test method of the crystalline solar cell module of Japanese Industrial Standard C8917.
-2.

【0078】まず、試料を温湿度が制御できる恒温恒湿
器に投入し、−40℃から+85℃(相対湿度85%)
に変化させるサイクル試験を10回繰り返し行った。次
に、試験終了後の試料を初期と同様にシミュレータを用
い太陽電池特性を測定したところ、初期変換効率に対し
て平均で2%の低下であり有意な劣化は生じなかった。
また、シャント抵抗を測定したところ平均で約10%の
減少で有意な劣化はなかった。
First, the sample is placed in a thermo-hygrostat whose temperature and humidity can be controlled, and from -40 ° C to + 85 ° C (85% relative humidity).
The cycle test of changing to 10 was repeated 10 times. Next, when the solar cell characteristics of the sample after the test were measured using a simulator as in the initial stage, the average conversion efficiency was 2% lower than the initial conversion efficiency, and no significant deterioration occurred.
When the shunt resistance was measured, there was no significant deterioration with an average decrease of about 10%.

【0079】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、信頼性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and high reliability.

【0080】(比較例1)次に、比較のため実施例1と
同様の構成で電着を行わない太陽電池を以下のようにし
て作製した。
(Comparative Example 1) Next, for comparison, a solar cell having the same structure as in Example 1 but not subjected to electrodeposition was prepared as follows.

【0081】実施例1と同様に基板101上に上部電極
106までを形成した。次に、実施例1と同様にしてグ
リッド電極107を印刷した。さらに接着剤付きの銅箔
をバスバー108として積層し、図8に示す30cm角
のシングルセルを10枚作製した。次にこの試料のエン
カプシュレーションを実施例1と同様に行った。
Similar to Example 1, the upper electrode 106 was formed on the substrate 101. Next, the grid electrode 107 was printed in the same manner as in Example 1. Further, copper foil with an adhesive was laminated as the bus bar 108, and 10 single cells of 30 cm square shown in FIG. 8 were produced. Next, encapsulation of this sample was performed in the same manner as in Example 1.

【0082】得られた試料の初期特性を実施例1と同様
の手順で測定したところ、変換効率は3.8〜5.2
%、シャント抵抗は0.5KΩcm2〜5KΩcm2であ
り、実施例1に比較してシャント抵抗が低く、このため
変換効率が低かった。
When the initial characteristics of the obtained sample were measured by the same procedure as in Example 1, the conversion efficiency was 3.8 to 5.2.
%, The shunt resistance was 0.5 KΩcm 2 to 5 KΩcm 2 , and the shunt resistance was low as compared with Example 1, and therefore the conversion efficiency was low.

【0083】次にこの試料の信頼性試験を実施例1と同
様に評価した。温湿度サイクル試験終了後の試料の太陽
電池特性を測定したところ初期値に対し平均で30%の
低下を示し有意な劣化が起きていた。また、シャント抵
抗を測定したところ平均で85%低下し信頼性試験後に
おいてシャントが発生していることがわかった。
Next, the reliability test of this sample was evaluated in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature / humidity cycle test were measured, the average value was decreased by 30% from the initial value, and significant deterioration occurred. Further, the shunt resistance was measured, and it was found that the average shunt resistance decreased by 85%, and shunt was generated after the reliability test.

【0084】この試料のシャント部分を以下のようにし
て確認した。まず、試料に1.5Vの逆バイアスを印加
した。この時シャント部分には電流が流れて発熱するが
正常な部分は逆バイアスなので電流が流れず発熱しな
い。この状態で試料表面を赤外線のカメラで観察したと
ころ発熱部分が観察されグリッド電極107の下でシャ
ントしている事がわかった。
The shunt portion of this sample was confirmed as follows. First, a reverse bias of 1.5 V was applied to the sample. At this time, current flows through the shunt portion to generate heat, but the normal portion does not generate heat due to the reverse bias because no current flows. When the surface of the sample was observed with an infrared camera in this state, a heat generating part was observed and it was found that the sample electrode was shunted under the grid electrode 107.

【0085】(実施例2)図3の構成の太陽電池をパッ
シベーションした後、電着する工程で作製した。まず、
実施例1と同様にSUS430BA製基板(30cm×
30cm、厚み0.2mm)101上に下部電極102
を形成し、その後、不図示のRFプラズマCVD成膜装
置に入れn層103、i層104、p層105の順で堆
積を行った。実施例1と同様に、反射防止効果を兼ねた
機能を有する透明な上部電極106を700Å堆積し
た。
Example 2 A solar cell having the structure shown in FIG. 3 was produced by a process of passivating and then electrodeposition. First,
A substrate made of SUS430BA (30 cm ×
(30 cm, thickness 0.2 mm) 101 on the lower electrode 102
After that, it was placed in an RF plasma CVD film forming apparatus (not shown), and the n layer 103, the i layer 104, and the p layer 105 were deposited in this order. As in the case of Example 1, 700 Å of transparent upper electrode 106 having a function also serving as an antireflection effect was deposited.

【0086】次に、図9の電解槽301にl0%のAl
Cl3溶液を満たし前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い、電解槽301に浸漬し
た。基板101側にマイナス4Vの電圧を印加して3秒
間保持した。この工程でシャント部分のITOが除去さ
れた。洗浄後に乾燥を行い、その後フッ素系アニオン電
着塗料302を用いて電着を施した。純水で十分に洗浄
し、オーブンで電着樹脂の硬化を行った。その後、基板
101をオーブンから取り出し冷却後、グリッド電極1
07をスクリーン印刷で形成し、さらに接着剤付きの銅
箔のバスバー108を積層し、図8に示す30cm角の
シングルセルを作製した。同様にして10枚の試料を作
製した。さらに、この試料のエンカプシュレーションを
実施例1と同様に行った。
Next, 10% Al was placed in the electrolytic cell 301 of FIG.
The substrate 101 was filled with a Cl 3 solution, the back side of the substrate 101 was covered with an insulating film made of plastic, and the substrate 101 was immersed in an electrolytic bath 301. A voltage of -4 V was applied to the substrate 101 side and held for 3 seconds. In this step, the ITO on the shunt portion was removed. After washing, it was dried, and then electrodeposition was performed using the fluorine-based anion electrodeposition coating material 302. It was thoroughly washed with pure water, and the electrodeposition resin was cured in an oven. Then, the substrate 101 is taken out from the oven and cooled, and then the grid electrode 1
07 was formed by screen printing, and a bus bar 108 of copper foil with an adhesive was further laminated to produce a 30 cm square single cell shown in FIG. 8. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0087】得られた試料の初期特性は、6.4%±
0.8%であり、シャント抵抗が55KΩcm2〜12
0KΩcm2であり良好な特性でばらつきも少なかっ
た。
The initial characteristics of the obtained sample are 6.4% ±
0.8%, the shunt resistance is 55 KΩcm 2 to 12
It was 0 KΩcm 2 and had good characteristics with little variation.

【0088】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し3%の低下であり
有為な劣化は生じなかった。シャント抵抗を測定したと
ころほとんど変化していなかった。
Next, a reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, it was 3% lower than the initial value, and significant deterioration did not occur. When the shunt resistance was measured, there was almost no change.

【0089】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く、良
好な特性で有り耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0090】(実施例3)太陽電池の構成を図4のトル
プル型太陽電池とした以外はほぼ実施例2と同様の方法
で以下のようにして太陽電池を作製した。まず、基板1
01上にテクスチャー構造のAlSi層とシャント防止
用の高抵抗透明導電性部材としてのZnO層とからなる
下部電極102を形成し、その後、不図示のマイクロ波
プラズマCVD成膜装置に入れn層103、i層10
4、p層105の順で堆積を行いボトム層を形成した。
この時i層104はa−SiGeとした。次にn層11
3、i層114、p層115の順で堆積を行いミドル層
を形成した。i層114はボトム層と同様にa−SiG
eとした。次にn層123、i層124、p層125の
順で堆積を行いトップ層を形成した。i層124はa−
Siとした。次に実施例1と同様に、反射防止効果を兼
ねた機能を有する透明な上部電極106を700Å堆積
した。上部電極106としてIn23(IO)を用い
た。
Example 3 A solar cell was manufactured in the following manner by a method substantially similar to that of Example 2 except that the solar cell of FIG. 4 was used as the solar cell. First, substrate 1
01, a lower electrode 102 composed of an AlSi layer having a texture structure and a ZnO layer as a high resistance transparent conductive member for shunt prevention is formed, and then placed in a microwave plasma CVD film forming apparatus (not shown) to form an n layer 103 , I-layer 10
4 and p layer 105 were deposited in this order to form a bottom layer.
At this time, the i layer 104 was a-SiGe. Next, n layer 11
3, the i layer 114 and the p layer 115 were deposited in this order to form a middle layer. The i layer 114 is made of a-SiG as in the bottom layer.
e. Next, the n layer 123, the i layer 124, and the p layer 125 were deposited in this order to form a top layer. The i layer 124 is a-
It was set to Si. Next, as in Example 1, a transparent upper electrode 106 having a function also serving as an antireflection effect was deposited at 700 Å. In 2 O 3 (IO) was used as the upper electrode 106.

【0091】次に、図9の電解槽301でパッシベーシ
ヨンを行い、洗浄および乾燥を行い、その後フッ素系ア
ニオン電着塗料302を用いて電着処理を施した。その
後洗浄し、硬化を行った。グリッド電極107を印刷
し、さらにバスバー108を積層し、図8に示す30c
m角のトリプルセルを作製した。同様にして10枚の試
料を作製した。さらに、この試料のエンカプシュレーシ
ョンを実施例1と同様に行った。
Next, passivation was carried out in the electrolytic cell 301 of FIG. 9, washing and drying were carried out, and then an electrodeposition treatment was carried out using the fluorinated anion electrodeposition coating material 302. Then, it was washed and cured. The grid electrode 107 is printed, and the bus bar 108 is further laminated, and 30c shown in FIG.
An m-square triple cell was prepared. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0092】得られた試料の初期特性は、7.5%±
0.5%でありシャント抵抗が35KΩcm2〜90K
Ωcm2であり良好な特性でばらつきも少なかった。
The initial characteristics of the obtained sample are 7.5% ±
0.5% and shunt resistance is 35KΩcm 2 to 90K
It was Ωcm 2 and had good characteristics and little variation.

【0093】次にこの試料の信頼性試験を実施例1と同
様にした。
Next, the reliability test of this sample was performed in the same manner as in Example 1.

【0094】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し平均で約1.5%
の低下であり有為な劣化はなかった。シャント抵抗を測
定したところほとんど変化していなかった。
The solar cell characteristics of the sample after the temperature / humidity cycle test were measured and found to be about 1.5% on average with respect to the initial value.
There was no significant deterioration. When the shunt resistance was measured, there was almost no change.

【0095】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く、良
好な特性で有り耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0096】(実施例4)フォーミングを行い、パッシ
ベーションした後、電着する工程により図3の構成の太
陽電池を作製した。
Example 4 A solar cell having the structure shown in FIG. 3 was produced by the steps of forming, passivating, and electrodeposition.

【0097】まず、実施例1と同様に基板101上に下
部電極102、n層103、i層104、p層105の
順で形成した後、反射防止効果を兼ねた機能を有する透
明な上部電極(ITO)106を700Å堆積した。次
に、図10に示すフォーミング装置を用いて前記太陽電
池100のフォーミングを行った。まず、基板101を
ステージ401に設置し、電源405により導電性ブラ
シ403に―10Vを印加し、導電性ブラシ403をレ
ール404に沿って5mm/秒の速度で掃引した。
First, the lower electrode 102, the n layer 103, the i layer 104, and the p layer 105 are formed in this order on the substrate 101 in the same manner as in Example 1, and then the transparent upper electrode having a function also as an antireflection effect. (ITO) 106 was deposited at 700 liters. Next, the solar cell 100 was formed using the forming apparatus shown in FIG. First, the substrate 101 was set on the stage 401, and −10 V was applied to the conductive brush 403 by the power supply 405, and the conductive brush 403 was swept along the rail 404 at a speed of 5 mm / sec.

【0098】次に、実施例1と同様に図9の電解槽30
1に10%のAlCl3溶液を満たし前記基板101の
裏面側をプラスチック製の絶縁性フィルムで覆い、電解
槽301に浸漬した。基板101側にマイナス4Vの電
圧を印加して3秒間保持した。この工程でシャント部分
のITOが除去された。
Next, as in Example 1, the electrolytic cell 30 shown in FIG.
1 was filled with a 10% AlCl 3 solution and the back side of the substrate 101 was covered with an insulating film made of plastic and immersed in an electrolytic bath 301. A voltage of -4 V was applied to the substrate 101 side and held for 3 seconds. In this step, the ITO on the shunt portion was removed.

【0099】洗浄後に乾燥を行い、その後フッ素系アニ
オン電着塗料302を用いて電着処理を施した。純水で
十分に洗浄し、オーブンで電着樹脂の硬化を行った。そ
の後、基板101をオーブンから取り出し冷却後、グリ
ッド電極107を形成してさらにバスバー108を積層
し、図8に示す30cm角のシングルセルを作製した。
同様にして10枚の試料を作製した。さらに、この試料
のエンカプシュレーションを実施例1と同様に行った。
After washing, drying was carried out, and then an electrodeposition treatment was carried out using the fluorinated anion electrodeposition coating material 302. It was thoroughly washed with pure water, and the electrodeposition resin was cured in an oven. After that, the substrate 101 was taken out from the oven and cooled, and then the grid electrode 107 was formed and the bus bar 108 was further laminated thereon to fabricate a single cell of 30 cm square shown in FIG.
Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0100】得られた試料の初期特性は、6.4%±
1.2%であり、シャント抵抗が105KΩcm2〜2
50KΩcm2であり良好な特性でばらつきも少なかっ
た。
The initial characteristics of the obtained sample are 6.4% ±
1.2%, the shunt resistance is 105 KΩcm 2 to 2
It was 50 KΩcm 2 and had good characteristics and little variation.

【0101】次にこの試料の信頼性試験を実施例1と同
様にした。温湿度サイクル試験終了後の試料の太陽電池
特性を測定したところ初期値に対し3%の低下であり、
有為な劣化は生じなかった。シャント抵抗を測定したと
ころほとんど変化していなかった。
Next, the reliability test of this sample was performed in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature-humidity cycle test were measured, it was 3% lower than the initial value.
No significant deterioration occurred. When the shunt resistance was measured, there was almost no change.

【0102】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く、良
好な特性で有り、耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0103】(実施例5)図5の構成の太陽電池を実施
例1とほぼ同様に作製した。
Example 5 A solar cell having the structure shown in FIG. 5 was manufactured in substantially the same manner as in Example 1.

【0104】まず、30cm角のガラス基板(コーニン
グ製7059)101上に不図示の蒸着装置を用いてS
nO2の透明な上部電極106を堆積した。その後、上
部電極106が幅 2cmのサブセルが5mm幅のギャ
ップを開けて並ぶようにエッチングしてパターニングを
施した。次に、メタルマスクを用いて前記上部電極10
6とほぼ重なり合うようにp層105、i層104、n
層102を堆積した。次に基板101を電解槽301に
浸漬し、カチオン系電着塗料を用いて電着処理を施し
た。さらに基板101を、メタルマスクを用いて不図示
のスパッタ装置に投入してアルミニウムの下部電極を形
成し、10段直列の30cm角のシングルセルを作製し
た。以上の作製法で試料を10枚作製した。
First, on a 30 cm square glass substrate (7059 made by Corning) 101, an S vapor deposition apparatus (not shown) was used.
A transparent top electrode 106 of nO 2 was deposited. Then, the upper electrode 106 was patterned by etching so that subcells having a width of 2 cm were arranged side by side with a gap having a width of 5 mm. Next, the upper electrode 10 is formed using a metal mask.
P layer 105, i layer 104, n so as to substantially overlap 6
Layer 102 was deposited. Next, the substrate 101 was immersed in the electrolytic bath 301 and subjected to electrodeposition treatment using a cationic electrodeposition coating material. Further, the substrate 101 was put into a sputtering apparatus (not shown) using a metal mask to form an aluminum lower electrode, and a 10-cell series 30 cm square single cell was produced. Ten samples were manufactured by the above manufacturing method.

【0105】得られた試料の初期特性は、変換効率が
6.0%±1.0%でシャント抵抗が35KΩcm2
90KΩcm2であり良好な特性でばらつきも少なかっ
た。
The initial characteristics of the obtained sample were that the conversion efficiency was 6.0% ± 1.0% and the shunt resistance was 35 KΩcm 2 〜.
It was 90 KΩcm 2 and had good characteristics with little variation.

【0106】次にこの試料の信頼性試験を実施例1と同
様に評価した。温湿度サイクル試験終了後の試料の太陽
電池特性を測定したところ初期値に対し3%の低下であ
り有為な劣化は生じなかつた。また、シャント抵抗を測
定したところ約4%の低下であった。
Next, the reliability test of this sample was evaluated in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, it was 3% lower than the initial value, and no significant deterioration occurred. The shunt resistance was measured and found to be about 4% lower.

【0107】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く、良
好な特性で有り耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0108】(実施例6)電着をp層105の形成後に
行う以外は実施例1とほぼ同様にして図3の構成の太陽
電池100を以下のようにして作製した。
Example 6 A solar cell 100 having the structure shown in FIG. 3 was produced in the same manner as in Example 1 except that the electrodeposition was performed after forming the p layer 105.

【0109】実施例1と同様にSUS430BA製基板
101上に下部電極102を形成し、不図示のRFプラ
ズマCVD成膜装置でn層103、i層104、p層1
05の順で堆積を行った。
As in Example 1, the lower electrode 102 was formed on the substrate 101 made of SUS430BA, and the n layer 103, the i layer 104, and the p layer 1 were formed by an RF plasma CVD film forming apparatus (not shown).
Deposition was performed in the order of 05.

【0110】次に、実施例1と同様に前記記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、図
9の電解漕301に浸漬した。スチレン系アニオン電着
塗料302を用いて電着処理を施した。純水で十分に洗
浄し、オーブンで電着樹脂の硬化を行った。その後、基
板101をオーブンから取り出し冷却後、実施例1と同
様に、反射防止効果を兼ねた機能を有する透明な上部電
極106を700Å堆積した。その後、グリッド電極1
07とバスバー108を積層し、図8に示す30cm角
のシングルセルを作製した。同様にして10枚の試料を
作製した。さらに、この試料のエンカプシュレーション
を実施例1と同様に行った。
Next, as in the first embodiment, the substrate 101 described above is used.
The back side of was covered with an insulating film made of plastic and immersed in the electrolytic bath 301 of FIG. Electrodeposition treatment was performed using the styrene-based anion electrodeposition coating material 302. It was thoroughly washed with pure water, and the electrodeposition resin was cured in an oven. After that, the substrate 101 was taken out from the oven and cooled, and then 700 Å of transparent upper electrode 106 having a function also serving as an antireflection effect was deposited in the same manner as in Example 1. Then the grid electrode 1
07 and the bus bar 108 were laminated to produce a 30 cm square single cell shown in FIG. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0111】得られた試料の初期特性は、6.4%±
l.5%であり、シャント抵抗が10KΩcm2〜50
KΩcm2であり良好な特性であった。
The initial characteristics of the obtained sample are 6.4% ±
l. 5% and the shunt resistance is 10 KΩcm 2 to 50
It was KΩcm 2 and had good characteristics.

【0112】次にこの試料の耐久特性を実施例1と同様
に評価した。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し2%の低下であ
り、有為な劣化は生じなかった。シャント抵抗を測定し
たところほとんど変化していなかった。
Next, the durability characteristics of this sample were evaluated in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, it was 2% lower than the initial value, and significant deterioration did not occur. When the shunt resistance was measured, there was almost no change.

【0113】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0114】(実施例7)図3に示す層構成の太陽電池
を以下のようにして作製した。まず実施例1と同様にし
てSUS430BA製基板101上にCr下部電極、n
層103、i層104、p層105及びITOの上部電
極106を堆積した。
Example 7 A solar cell having the layer structure shown in FIG. 3 was produced as follows. First, in the same manner as in Example 1, a Cr lower electrode, n was formed on the SUS430BA substrate 101.
Layer 103, i layer 104, p layer 105 and ITO top electrode 106 were deposited.

【0115】次に、図9において前記基板304の裏面
側をプラスチック製の絶縁性フィルムで覆い電着槽30
1に浸漬した。対向電極303として、極比が1:1と
なるように30cm×30cmの大きさで、裏側をプラ
スチック製の絶縁性フィルムを用いてシールしたSUS
304ステンレス板を用いた。電着塗料302は固形分
10%のアクリルのカオチン系電着塗料(上村工業
(株)製アクリルクリアーA−7X)を用いた。基板3
04にマイナス10Vの電圧を印加して10秒間保持
し、電着を行った。太陽電池100を電着槽から引き上
げ、純水で十分に洗浄を行い、未析出の電着塗料を洗い
流し、50℃のオーブンに投入し、30分放置して水分
を乾燥させた。その後、オーブンの温度を10℃/分の
速度で上昇し、180℃に達してから30分保持し電着
樹脂の硬化を行った。その後、太陽電池100をオーブ
ンから取り出し冷却後太陽電池の一部を切り出して走査
型電子顕微鏡で観察したことろ上部電極106の表面に
は、約5μm〜50μmの径の半球状の堆積物が点在し
て観察された。この部分の赤外吸収を、顕微機能付きF
TIRを用いて分析したところアクリルエステルのカル
ボニル基の吸収があり電着塗料が堆積していることが確
認された。さらにこの試料のOBIC像を観察したこと
ろ、前記電着塗料の堆積部分のみが発電せず、堆積膜は
シャント部分にのみ堆積していることが確認された。さ
らに平均でシャント部分の約7倍の面積にわたって堆積
していることも確認された。次に、実施例1と同様にし
て、グリッド電極107、バスバー108を形成し、3
0cm角のシングルセルを作製した。同様の方法で試料
を10枚作製した。更に、これら試料のエンカプシュレ
ーションを実施例1と同様に行った。
Next, referring to FIG. 9, the back side of the substrate 304 is covered with an insulating film made of plastic to form an electrodeposition tank 30.
It was immersed in 1. As the counter electrode 303, SUS with a size of 30 cm × 30 cm so that the polar ratio is 1: 1 and the back side is sealed with an insulating film made of plastic.
A 304 stainless plate was used. As the electrodeposition coating material 302, an acrylic kaolin-based electrodeposition coating material (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) having a solid content of 10% was used. Board 3
A voltage of -10 V was applied to 04 and held for 10 seconds for electrodeposition. The solar cell 100 was pulled up from the electrodeposition tank, thoroughly washed with pure water, the undeposited electrodeposition coating was washed off, placed in an oven at 50 ° C., and left for 30 minutes to dry the water. After that, the temperature of the oven was increased at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 30 minutes to cure the electrodeposition resin. After that, the solar cell 100 was taken out of the oven, after cooling, a part of the solar cell was cut out and observed with a scanning electron microscope. On the surface of the upper electrode 106, hemispherical deposits with a diameter of about 5 μm to 50 μm were spotted. Was observed there. Infrared absorption of this part is
It was confirmed by TIR analysis that the carbonyl group of the acrylic ester was absorbed and the electrodeposition paint was deposited. Further, by observing the OBIC image of this sample, it was confirmed that only the deposited portion of the electrodeposition paint did not generate power, and the deposited film was deposited only on the shunt portion. Furthermore, it was also confirmed that, on average, the area was deposited about 7 times the area of the shunt portion. Next, in the same manner as in Example 1, the grid electrode 107 and the bus bar 108 are formed, and 3
A 0 cm square single cell was prepared. Ten samples were prepared by the same method. Further, encapsulation of these samples was performed in the same manner as in Example 1.

【0116】得られた試料の初期特性は、6.3±0.
7%シャント抵抗15KΩcm2 ±2KΩcm2 と良好
な特性であり、ばらつきが少なかった。
The initial characteristics of the obtained sample are 6.3 ± 0.
The 7% shunt resistance was 15 KΩcm 2 ± 2 KΩcm 2, which was a good characteristic with little variation.

【0117】温湿度サイクル試験終了後の太陽電池特性
を測定したことろ、初期変換効率に対して平均で2%の
低下率であり有意な劣化は生じなかった。また、シャン
ト抵抗を測定したところ初期の約10%の低下率で有意
な劣化はなっかった。電着が良好な効果を有することが
わかった。
The solar cell characteristics after the temperature / humidity cycle test were measured. As a result, the average conversion rate was 2% with respect to the initial conversion efficiency, and no significant deterioration occurred. Moreover, when the shunt resistance was measured, no significant deterioration was observed at a reduction rate of about 10% at the initial stage. It has been found that electrodeposition has a good effect.

【0118】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性であり、信頼性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and high reliability.

【0119】(実施例8)電着時の印加電圧10Vを2
5Vに、通電時間10秒を3秒に変更した他は実施例7
と同様に作製した。以上の作製方法で試料を10枚作製
した。
(Embodiment 8) The applied voltage of 10 V during electrodeposition is set to 2
Example 7 except that the energization time was changed from 5 seconds to 10 seconds to 3 seconds
Was prepared in the same manner as in. Ten samples were manufactured by the above manufacturing method.

【0120】得られた試料の初期特性は、変換効率6.
1%±0.8%、シャント抵抗は20KΩcm2 ±3K
Ωcm2 であった。
The initial characteristic of the obtained sample was that the conversion efficiency was 6.
1% ± 0.8%, shunt resistance is 20KΩcm 2 ± 3K
Was Ωcm 2 .

【0121】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, a reliability test of this sample was conducted in the same manner as in Example 1.

【0122】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の1%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ9%の低下であった。本実施例の結果から本発
明の太陽電池製造方法で作製した本発明の太陽電池は歩
留まりが良く、良好な特性で有り耐久性も良いことがわ
かる。電着時の太陽電池の順方向電流とシャント電流の
比は3.2であった。なお実施例7では0.6であっ
た。
When the solar cell characteristics of the sample after completion of the temperature and humidity cycle test were measured, the rate of decrease was 1% of the initial value, and no significant deterioration occurred. The shunt resistance was measured and found to be 9%. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability. The ratio of forward current to shunt current of the solar cell during electrodeposition was 3.2. In Example 7, it was 0.6.

【0123】(実施例9)アクリルのカチオン系電着樹
脂(上村工業(株)製アクリルクリアーA−7Xガラス
転移温度 約120℃)を低架橋密度のアクリルカチオ
ン系電着樹脂(ガラス転移温度 約70℃)に変更した
他は実施例7と同様にして10枚作製した。得られた試
料の評価は実施例1に従った。
Example 9 Acrylic cationic electrodeposition resin (Acrylic Clear A-7X glass transition temperature about 120 ° C. manufactured by Uemura Kogyo Co., Ltd.) was used as an acrylic cationic electrodeposition resin (glass transition temperature about 120 ° C.) with a low crosslinking density. Ten sheets were prepared in the same manner as in Example 7 except that the temperature was changed to 70 ° C. The evaluation of the obtained sample was in accordance with Example 1.

【0124】得られた試料の初期特性は、6.3%±
0.8%、シャント抵抗は14KΩcm2 ±2KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 6.3% ±
0.8%, shunt resistance is 14KΩcm 2 ± 2KΩcm
2 , which was a good characteristic.

【0125】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, a reliability test of this sample was conducted in the same manner as in Example 1.

【0126】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の4%の低下率であり有
意な劣化はほとんど生じなかった。シャント抵抗を測定
したところ初期値に対し12%の低下であり、有意な劣
化はなかった。本実施例の結果から本発明の太陽電池製
造方法で作製した本発明の太陽電池は歩留まりが良く良
好な特性で有り耐久性も良いことがわかる。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 4% of the initial value, and significant deterioration hardly occurred. When the shunt resistance was measured, it was 12% lower than the initial value, and there was no significant deterioration. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0127】(実施例10)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X最低
成膜温度(約60℃)をアクリルのカチオン系電着樹脂
(最低成膜温度約25℃)に変更した他は実施例7と同
様にして、試料10枚作製した。得られた試料の評価も
実施例1に従った。
Example 10 Acrylic cationic electrodeposition resin (Acrylic Clear A-7X manufactured by Uemura Kogyo Co., Ltd. minimum film forming temperature (about 60 ° C.) was used as an acrylic cationic electrodeposition resin (minimum film forming temperature about 60 ° C.). 10 samples were prepared in the same manner as in Example 7 except that the temperature was changed to 25 ° C.) The evaluation of the obtained sample was in accordance with Example 1.

【0128】得られた試料の初期特性は、6.4%±
1.5%、シャント抵抗は16KΩcm2 ±4KΩcm
2 であり良好な特性であった。但し、この塗料では、電
着終了後速やかに水洗しないと初期特性が5.0%に大
きく低下した。
The initial characteristics of the obtained sample are 6.4% ±
1.5%, shunt resistance is 16 KΩcm 2 ± 4 KΩcm
2 , which was a good characteristic. However, with this paint, initial characteristics were significantly reduced to 5.0% unless it was washed with water immediately after the completion of electrodeposition.

【0129】次にこの充分水洗して得られた試料の信頼
性試験を実施例1と同様に行った。温湿度サイクル試験
終了後の試料の太陽電池特性を測定したことろ初期値の
2%の低下率であり有意な劣化は生じなかった。シャン
ト抵抗を測定したところ初期値に対し9%の低下であっ
た。本実施例の結果から本発明の太陽電池製造方法で作
製した本発明の太陽電池は歩留まりが良く良好な特性で
有り耐久性も良いことがわかる。
Then, the reliability test of the sample obtained by sufficiently washing with water was conducted in the same manner as in Example 1. The solar cell characteristics of the sample after the temperature / humidity cycle test were measured, and the rate of decrease was 2% of the initial value, and no significant deterioration occurred. When the shunt resistance was measured, it was 9% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0130】(実施例11)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
エポキシのカチオン系電着樹脂(上村工業(株)製 固
形分10%)に変更した他は実施例7と同様にして試料
を10枚作製した。得られた試料の評価も実施例7に従
った。
Example 11 Acrylic cationic electrodeposition resin (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was changed to an epoxy cationic electrodeposition resin (solid content 10% manufactured by Uemura Kogyo Co., Ltd.). Ten samples were prepared in the same manner as in Example 7 except for the above. The evaluation of the obtained sample also followed Example 7.

【0131】得られた試料の初期特性は、5.9%±
0.9%、シャント抵抗は29KΩcm2 ±5KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 5.9% ±
0.9%, shunt resistance is 29 KΩcm 2 ± 5 KΩcm
2 , which was a good characteristic.

【0132】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0133】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%であり低下率で有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期値に対し11%の低下であった。本実施例の結果
から本発明の太陽電池製造方法で作製した本発明の太陽
電池は歩留まりが良く良好な特性で有り耐久性も良いこ
とがわかる。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, it was 2% of the initial value, and the deterioration rate did not cause significant deterioration. When the shunt resistance was measured, it was 11% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0134】(実施例12)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
フッ素のカチオン系電着樹脂(上村工業(株)製)に変
更した他は実施例7と同様にして試料10枚作製した。
得られた試料の評価も実施例1に従った。
(Example 12) A procedure was carried out except that the cation type electrodeposition resin of acrylic (Acrylic Clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was changed to the cation type electrodeposition resin of fluorine (Uemura Kogyo Co., Ltd.). Ten samples were prepared in the same manner as in Example 7.
The evaluation of the obtained sample was also in accordance with Example 1.

【0135】得られた試料の初期特性は、6.5%±
0.7%、シャント抵抗は24KΩcm2 ±3KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 6.5% ±
0.7%, shunt resistance is 24 KΩcm 2 ± 3 KΩcm
2 , which was a good characteristic.

【0136】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, a reliability test of this sample was conducted in the same manner as in Example 1.

【0137】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期に対し10%の低下であった。本実施例の結果か
ら本発明の太陽電池製造方法で作製した本発明の太陽電
池は歩留まりが良く良好な特性で有り耐久性も良いこと
がわかる。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 10% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0138】(実施例13)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
カチオン化オリゴマー(分子量2200のポリエチレン
グリコール両末端カルボン酸変性(川研ファイン(株)
製)とカチオン化エポキシ(ナガセ化成(株)製ワイス
テックス)との反応生成物)に変更した他は実施例7と
同様にして試料10枚作製した。得られた試料の評価も
実施例1に従った。
(Example 13) A cationic cationic electrodeposition resin (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was treated with a cationized oligomer (polyethylene glycol having a molecular weight of 2200 and modified at both terminals with carboxylic acid (Kawaken Fine Co., Ltd.).
10 samples were prepared in the same manner as in Example 7 except that the reaction product was changed to a cationized epoxy (Wastex manufactured by Nagase Kasei Co., Ltd.). The evaluation of the obtained sample was also in accordance with Example 1.

【0139】得られた試料の初期特性は、6.1%±
0.6%、シャント抵抗は8KΩcm 2 ±1KΩcm2
であり良好な特性であった。次にこの試料の信頼性試験
を実施例1と同様に行った。温湿度サイクル試験終了後
の試料の太陽電池特性を測定したところ初期値の7%の
低下率であり大きい劣化は生じなかった。シャント抵抗
を測定したところ初期値に対し34%の低下であった。
本実施例の結果から本発明の太陽電池製造方法で作製し
た本発明の太陽電池は歩留まりが良く良好な特性で有り
耐久性も良いことがわかる。
The initial characteristics of the obtained sample are 6.1% ±
0.6%, shunt resistance is 8 KΩcm 2± 1 KΩcm2
It was a good characteristic. Next, the reliability test of this sample
Was carried out in the same manner as in Example 1. After completion of temperature / humidity cycle test
The solar cell characteristics of the sample of
This is the rate of decrease and no major deterioration occurred. Shunt resistance
When measured, the value was 34% lower than the initial value.
From the results of this example, the solar cell manufacturing method of the present invention
The solar cell of the present invention has a good yield and good characteristics.
It can be seen that the durability is also good.

【0140】(実施例14)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
エポキシ/ポリブタジエンのカチオン系電着樹脂(日本
ペイント(株)製ラディコートN800黒色顔料入り)
に変更した他は実施例7と同様にして試料10枚作製し
た。得られた試料の評価も実施例1に従った。
Example 14 Acrylic cationic electrodeposition resin (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was used as an epoxy / polybutadiene cationic electrodeposition resin (RADICOAT N800 black pigment manufactured by Nippon Paint Co., Ltd.). enter)
Ten samples were prepared in the same manner as in Example 7 except that the above was changed to. The evaluation of the obtained sample was also in accordance with Example 1.

【0141】得られた試料の初期特性は、5.8%±
0.6%、シャント抵抗は15KΩcm2 ±2KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 5.8% ±
0.6%, shunt resistance is 15 KΩcm 2 ± 2 KΩcm
2 , which was a good characteristic.

【0142】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期値に対し10%の低下であった。本実施例の結果
から本発明の太陽電池製造方法で作製した本発明の太陽
電池は歩留まりが良く良好な特性で有り耐久性も良いこ
とがわかる。
Next, a reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 10% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0143】(実施例15)電着時の通電時間10秒を
3秒に変更した他は実施例7と同様に作製した。
(Example 15) The same procedure as in Example 7 was carried out except that the energization time during electrodeposition was changed from 10 seconds to 3 seconds.

【0144】以上の作製法で試料を10枚作製した。走
査型電子顕微鏡でシャント部分の約0.5倍の面積にわ
たって堆積していることが確認された。得られた試料の
初期特性は、変換効率5.5±1.1%、シャント抵抗
は8KΩcm2 ±2KΩcm 2 であった。
Ten samples were manufactured by the above manufacturing method. Running
With a scanning electron microscope, the area is about 0.5 times as large as the shunt area.
It was confirmed that it had been accumulated. Of the obtained sample
Initial characteristics: conversion efficiency 5.5 ± 1.1%, shunt resistance
Is 8 KΩcm2± 2 KΩcm 2Met.

【0145】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の4%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ17%低下していた。本実施例の結果から本発
明の太陽電池製造方法で作製した本発明の太陽電池は歩
留まりが良く良好な特性で有り耐久性も良いことがわか
る。
Next, the reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature / humidity cycle test were measured, the rate of decrease was 4% of the initial value, and no significant deterioration occurred. Further, the shunt resistance was measured and found to be 17% lower. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0146】(実施例16)次に図5の構成の太陽電池
を実施例7とほぼ同様に作製した。
Example 16 Next, a solar cell having the structure shown in FIG. 5 was produced in substantially the same manner as in Example 7.

【0147】まず、30cm角のコーニング7059基
板101上に不図示の蒸着装置を用いてSnO2 透明な
上部電極106を堆積した。その後、上部電極106が
幅2cmのサブセルが5mm幅のギャップを開けて並ぶ
ようにエッチングしてパターニングを施した。次に、メ
タルマスクを用いて前記上部電極106とほぼ重なり合
うようにp層105、i層104、n層103を堆積し
た。次に基板101を、メタルマスクを用いて不図示の
スパッタリング装置に投入してアルミニウムの下部電極
102を形成し、10段直列の30cm角のシングルセ
ルを作製した。電着方法は実施例7に従った。以上の作
製法で試料を10枚作製した。
First, a SnO 2 transparent upper electrode 106 was deposited on a 30 cm square Corning 7059 substrate 101 by using a vapor deposition device (not shown). Then, the upper electrode 106 was patterned by etching so that subcells having a width of 2 cm were arranged side by side with a gap having a width of 5 mm. Next, a p-layer 105, an i-layer 104, and an n-layer 103 were deposited using a metal mask so as to substantially overlap with the upper electrode 106. Next, the substrate 101 was put into a sputtering device (not shown) using a metal mask to form an aluminum lower electrode 102, and a 10-cell series 30 cm square single cell was produced. The electrodeposition method was in accordance with Example 7. Ten samples were manufactured by the above manufacturing method.

【0148】得られた試料の初期特性は、変換効率6.
0%±1.0%、シャント抵抗は27KΩcm2 ±4K
Ωcm2 であった。
The initial characteristic of the obtained sample was that the conversion efficiency was 6.
0% ± 1.0%, shunt resistance is 27KΩcm 2 ± 4K
Was Ωcm 2 .

【0149】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0150】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ1%低下していた。本実施例の結果から本発明
の発明の太陽電池製造方法で作製した本発明の太陽電池
は歩留まりが良く、良好な特性で有り耐久性も良いこと
がわかる。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. Also, the shunt resistance was measured and found to be 1% lower. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0151】(実施例17)図7の構成の多結晶太陽電
池を実施例7とほぼ同様に作製した。
Example 17 A polycrystalline solar cell having the structure shown in FIG. 7 was manufactured in substantially the same manner as in Example 7.

【0152】実施例7と同様にSUS430BA製基板
(30cm×30cm、厚み0.2mm)101上に下
部電極102を形成した。基板101を取り出し、不図
示のRFプラズマCVD成膜装置に入れn層103、i
層104、p層105の順で堆積を行った。その後、基
板101をオーブンから取り出し冷却し、実施例7と同
様に、反射防止効果を兼ねた機能を有する透明な上部電
極106を700Å堆積した。実施例7と同様にして電
着を行い、続いてグリッド電極107、接着剤付きの銅
箔のバスバー108を形成し、30cm角のシングルセ
ルを作製した。同様にして10枚の試料を作製した。さ
らに、この試料のエンカプチュレーションを実施例1と
同様に行った。
As in Example 7, the lower electrode 102 was formed on the SUS430BA substrate (30 cm × 30 cm, thickness 0.2 mm) 101. The substrate 101 is taken out and placed in an RF plasma CVD film forming apparatus (not shown) to form the n layer 103, i
The layer 104 and the p layer 105 were deposited in this order. After that, the substrate 101 was taken out from the oven and cooled, and 700 Å of a transparent upper electrode 106 having a function also serving as an antireflection effect was deposited as in Example 7. Electrodeposition was performed in the same manner as in Example 7, then the grid electrode 107 and the bus bar 108 of copper foil with an adhesive were formed to produce a 30 cm square single cell. Similarly, ten samples were prepared. Further, the encapsulation of this sample was performed in the same manner as in Example 1.

【0153】得られた試料の初期特性は、6.4%±
0.8%、シャント抵抗は6KΩcm 2 ±1KΩcm2
であり良好な特性であった。次にこの試料の信頼性試験
を実施例1と同様に行った。
The initial characteristics of the obtained sample are 6.4% ±
0.8%, shunt resistance is 6 KΩcm 2± 1 KΩcm2
It was a good characteristic. Next, the reliability test of this sample
Was carried out in the same manner as in Example 1.

【0154】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の10%の低下率であり
有意な劣化は生じなかった。シャント抵抗を測定したと
ころ低下は19%であった。本実施例の結果から本発明
の太陽電池製造方法で作製した本発明の太陽電池は歩留
まりが良く良好な特性で有り耐久性も良いことがわか
る。
When the solar cell characteristics of the sample after the end of the temperature / humidity cycle test were measured, the rate of decrease was 10% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, the decrease was 19%. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0155】(比較例17)電着の操作をしないこと以
外は実施例17と全く同様の操作を行った。
Comparative Example 17 The same operation as in Example 17 was carried out except that the electrodeposition operation was not performed.

【0156】試料の初期特性は、4.3%±1.2%、
シャント抵抗は0.6KΩcm2 ±0.2KΩcm2
あった。実施例17に比較してシャント抵抗が低く、こ
のため変換効率が低かった。
The initial characteristics of the sample are 4.3% ± 1.2%,
The shunt resistance was 0.6 KΩcm 2 ± 0.2 KΩcm 2 . Compared to Example 17, the shunt resistance was low, and therefore the conversion efficiency was low.

【0157】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の32%の低下率であっ
た。シャント抵抗を測定したところ76%低下してい
た。
Next, the reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the reduction rate was 32% of the initial value. When the shunt resistance was measured, it decreased by 76%.

【0158】(実施例18)太陽電池の構成を図4のト
リプル型太陽電池とした以外はほぼ実施例7と同様の方
法で以下の太陽電池を作製した。まず、基板101上に
テクスチャー構造のAlSi層とシャント防止用の高抵
抗透明導電性部材としてのZnO層とからなる下部電極
102を形成し、その後、不図示のマイクロ波プラズマ
CVD成膜装置に入れn層103、i層104、p層1
05の順で堆積を行いボトム層を形成した。このときi
層104はa−SiGeとした。次にn層113、i層
114、p層115の順で堆積を行いミドル層を形成し
た。i層114はボトム層と同様にa−SiGeとし
た。次にn層123、i層124、p層125の順で堆
積を行いトップ層を形成した。i層124はa−SiG
eとした。つぎに実施例1と同様に反射防止効果を兼ね
た機能を有する透明な上部電極106を700Å堆積し
た。上部電極としてIn23(IO)を用いた。
Example 18 The following solar cell was produced in substantially the same manner as in Example 7 except that the triple solar cell shown in FIG. 4 was used as the solar cell. First, a lower electrode 102 consisting of a textured AlSi layer and a ZnO layer as a high resistance transparent conductive member for shunt prevention is formed on a substrate 101, and then placed in a microwave plasma CVD film forming apparatus (not shown). n layer 103, i layer 104, p layer 1
Deposition was performed in the order of 05 to form a bottom layer. Then i
The layer 104 was a-SiGe. Next, the n layer 113, the i layer 114, and the p layer 115 were deposited in this order to form a middle layer. The i layer 114 was made of a-SiGe similarly to the bottom layer. Next, the n layer 123, the i layer 124, and the p layer 125 were deposited in this order to form a top layer. The i layer 124 is a-SiG
e. Next, as in Example 1, a transparent upper electrode 106 having a function of also having an antireflection effect was deposited at 700 Å. In 2 O 3 (IO) was used as the upper electrode.

【0159】次に実施例7で用いたアクリルのカチオン
系電着塗料を用いて電着処理を施した。その後洗浄し、
硬化を行った。グリッド電極107を印刷し、さらにバ
スバー108を積層し30cm角のトリプルセルを作製
した。同様にして10枚の試料を作製した。さらに、こ
れら試料のエンカプシュレーションを実施例1と同様に
行った。
Next, the acrylic cationic electrodeposition coating composition used in Example 7 was used for electrodeposition treatment. Then wash,
Cured. The grid electrode 107 was printed, and the bus bar 108 was further laminated to produce a 30 cm square triple cell. Similarly, ten samples were prepared. Further, encapsulation of these samples was performed in the same manner as in Example 1.

【0160】得られた試料の初期特性は、7.4%±
0.8%、シャント抵抗は16KΩcm2 ±2KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 7.4% ±
0.8%, shunt resistance is 16KΩcm 2 ± 2KΩcm
2 , which was a good characteristic.

【0161】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の3%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ11%の低下であった。本実施例の結果から本発明の
太陽電池製造方法で作製した本発明の太陽電池は歩留ま
りが良く良好な特性で有り耐久性も良いことがわかる。
Next, the reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 3% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 11% reduction. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0162】(比較例18)電着の操作をしないこと以
外は実施例18と全く同様の操作を行った。
Comparative Example 18 The same operation as in Example 18 was carried out except that the electrodeposition operation was not performed.

【0163】得られた試料の初期特性は、4.5%±
1.8%、シャント抵抗は0.3KΩcm2 ±0.1K
Ωcm2 であった。実施例12に比較してシャント抵抗
が低く、このため変換効率が低かった。
The initial characteristics of the obtained sample are 4.5% ±
1.8%, shunt resistance is 0.3KΩcm 2 ± 0.1K
Was Ωcm 2 . The shunt resistance was lower than that in Example 12, and thus the conversion efficiency was low.

【0164】次にこの試料の信頼性試験を実施例1と同
様に行った。温湿度度サイクル試験終了後の試料の太陽
電池特性を測定したところ初期値の40%の低下率であ
った。シャント抵抗を測定したところ85%低下してい
た。
Next, a reliability test of this sample was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature / humidity cycle test were completed, the reduction rate was 40% of the initial value. When the shunt resistance was measured, it was reduced by 85%.

【0165】(実施例19)図3に示す層構成の太陽電
池を以下のようにして作製した。まず、実施例1と同様
にして、SUS430BA基板上にCr(下部電極)、
n層,i層,p層,ITO(上部電極)を形成した。
Example 19 A solar cell having the layer structure shown in FIG. 3 was produced as follows. First, in the same manner as in Example 1, Cr (lower electrode) on the SUS430BA substrate,
An n layer, an i layer, a p layer and ITO (upper electrode) were formed.

【0166】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い電着時に基板101裏面
に電着が施されないようにして図9の電解槽に浸漬し
た。
Next, the back surface side of the substrate 101 was covered with an insulating film made of plastic and immersed in the electrolytic bath of FIG. 9 so that the back surface of the substrate 101 was not electrodeposited during electrodeposition.

【0167】対向電極303として、極比が1:1とな
るように30cm×30cmの大きさで、前記基板30
4に対して裏側をプラスチック製の絶縁性フィルムを用
いてシールしたSUS304ステンレス板を用いた。電
着液302は固形分10%のアクリル−メラミン系アニ
オン電着塗料を用い、電導度を東亜電波工業株式会社製
CM20Sを用いて測定したことろ620μS/cmで
あり、同社製ガラス電極pHメータHM−30Sを用い
てpH測定したところ8.47であった。浴温25.4
℃のもとで、極間距離50mmとし基板304にプラス
3Vの電圧を印加して30秒間保持し、電着を行った。
このとき流れる電流と時間の関係は図13に示すとおり
であった。また流れた電流の総クーロン量は60mCで
あった。尚、クーロン量は北斗電工株式会社製クーロン
メータHF201で計測した。電着後、太陽電池100
を電着槽から速やかに引き上げ、純水で十分に洗浄を行
い、未反応の電着塗料を洗い流し、50℃のオーブンに
投入し、10分放置して水分を乾燥させた。その後、オ
ーブンの温度を10℃/分の速度で昇温し、180℃に
達してから20分保持し電着樹脂の硬化を行った。
The counter electrode 303 has a size of 30 cm × 30 cm so that the pole ratio is 1: 1 and the substrate 30 is
4 was used a SUS304 stainless steel plate whose back side was sealed with a plastic insulating film. The electrodeposition liquid 302 was an acrylic-melamine-based anion electrodeposition paint having a solid content of 10%, and the electric conductivity was measured using a CM20S manufactured by Toa Denpa Kogyo Co., Ltd., which was 620 μS / cm. When pH was measured using HM-30S, it was 8.47. Bath temperature 25.4
Under the condition that the distance between the electrodes was 50 mm, a voltage of plus 3 V was applied to the substrate 304 and kept for 30 seconds for electrodeposition.
The relationship between the current flowing at this time and the time was as shown in FIG. Further, the total amount of Coulomb of the flowing current was 60 mC. The amount of coulomb was measured by a coulomb meter HF201 manufactured by Hokuto Denko KK. After electrodeposition, solar cell 100
Was quickly removed from the electrodeposition tank, thoroughly washed with pure water, the unreacted electrodeposition paint was washed off, placed in an oven at 50 ° C., and left to stand for 10 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 20 minutes to cure the electrodeposition resin.

【0168】このようにして得られた試料の一部を切り
出して走査型電子顕微鏡で観察したところ上部電極10
6の表面には、約5μm〜50μmの径の半球状の堆積
物が点在して観察された。この部分の赤外吸収を、顕微
鏡付きFTIRを用いて分析したところいずれの試料に
もアクリルエステルのカルボニル基の吸収があり電着塗
料が堆積していることが確認された。さらにこの試料の
OBIC像を観察したところ、前記電着塗料の堆積部分
のみが発電せず、従って、前記堆積膜はシャント部分に
のみ堆積していることが確認された。
A part of the sample thus obtained was cut out and observed with a scanning electron microscope.
On the surface of No. 6, hemispherical deposits having a diameter of about 5 μm to 50 μm were scattered and observed. The infrared absorption of this portion was analyzed by using FTIR with a microscope, and it was confirmed that all samples had absorption of the carbonyl group of the acrylic ester and the electrodeposition coating was deposited. Further, when the OBIC image of this sample was observed, it was confirmed that only the deposited portion of the electrodeposition coating did not generate power, and therefore the deposited film was deposited only on the shunt portion.

【0169】さらに、上述した方法と同様に電着時の電
圧のみを5V,7V,10V,15V,20V,30V
として試料を作製した。次に実施例1と同様にして、グ
リッド電極及びバスバーを形成した。このようにして作
製した試料の初期特性を測定した結果を図14に示す。
Further, similarly to the above-mentioned method, only the voltage during electrodeposition is 5V, 7V, 10V, 15V, 20V, 30V.
A sample was prepared as. Next, in the same manner as in Example 1, grid electrodes and bus bars were formed. FIG. 14 shows the result of measuring the initial characteristics of the sample thus manufactured.

【0170】図14が示すように、電着時の電圧は5V
から20Vが適当であることが分かった。またシャント
抵抗は、50〜70KΩcm2と良好な値となり、ばら
つきも少なかった。
As shown in FIG. 14, the voltage during electrodeposition is 5V.
It turned out that 20V is suitable. Further, the shunt resistance was a favorable value of 50 to 70 KΩcm 2, and the variation was small.

【0171】次に上述した方法と同様にして、10V、
30秒、極間距離50mmの条件で電着を行った。その
後、前述した方法で幅100μm、長さ8cmのグリッ
ド電極107を間隔1cmで印刷し、幅5mmの接着剤
付き銅泊のバスバーを接着し30cm角のシングルセル
を10枚作製した。次に、これら試料のエンカプシュレ
ーションを実施例1と同様に行った。
Then, in the same manner as described above, 10 V,
Electrodeposition was performed for 30 seconds under the condition that the distance between the electrodes was 50 mm. After that, grid electrodes 107 having a width of 100 μm and a length of 8 cm were printed at intervals of 1 cm by the method described above, and copper bus bars with an adhesive having a width of 5 mm were adhered to produce 10 single cells of 30 cm square. Next, encapsulation of these samples was performed in the same manner as in Example 1.

【0172】得られた試料の初期特性を上述した方法で
測定し、変換効率を求めたところ、平均して6.5%±
0.5%であり良好な特性でばらつきも少なかった。
The initial characteristics of the obtained sample were measured by the method described above, and the conversion efficiency was calculated. The average was 6.5% ±
It was 0.5%, and the characteristics were good, and there was little variation.

【0173】これらの試料の信頼性試験を、実施例1と
同様にして行った。
The reliability test of these samples was conducted in the same manner as in Example 1.

【0174】試験終了後の太陽電池特性は、初期変換効
率に対して平均で5%の低下であり有意な劣化は生じな
かった。また、シャント抵抗を測定したところ約10%
の減少で有意な劣化はなかった。電着が良好な効果を有
することがわかった。
The solar cell characteristics after the test were 5% on average with respect to the initial conversion efficiency, and no significant deterioration occurred. Also, when the shunt resistance is measured, it is about 10%.
There was no significant deterioration in It has been found that electrodeposition has a good effect.

【0175】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、信頼性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and high reliability.

【0176】(実施例20)図3の構成の太陽電池を電
着塗料の種類及び電着時間を変え、実施例19とほぼ同
様に作製した。
Example 20 A solar cell having the structure shown in FIG. 3 was manufactured in substantially the same manner as in Example 19 except that the kind of electrodeposition paint and the electrodeposition time were changed.

【0177】実施例19と同様にSUS430BA製基
板上に下部電極、n層、i層、p層、透明な上部電極を
堆積した。
As in Example 19, a lower electrode, an n-layer, an i-layer, a p-layer and a transparent upper electrode were deposited on a SUS430BA substrate.

【0178】次に、実施例19と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、図
9の電着槽に浸漬した。電着液は固形分10.5%のア
クリル−メラミン系アニオン電着塗料にスチレンを多く
含有したもので、この電導度は518μS/cmであ
り、pHは8.05であった。浴温25.0℃のもと
で、極間距離30mmとし基板304にプラス10Vの
電圧を印加して電着を行った。電着終了時間を10秒と
して電着を行った。電着後、太陽電池100を電着槽か
ら速やかに引き上げ、純水で十分に洗浄を行い、未反応
の電着塗料を洗い流し、50℃のオーブンに投入し、1
0分放置して水分を乾燥させた。その後、オーブンの温
度を10℃/分の速度で昇温し、180℃に達してから
20分保持し電着樹脂の硬化を行った。次に、グリッド
電極、バスバーを形成し30cm角のシングルセルを作
製した。得られた試料は、比較例1のシングルセルに比
べ優れた初期特性を示した。上述した方法と同様にして
電着時間のみを20秒、30秒、40秒、50秒、60
秒、70秒、80秒、90秒、100秒と変化して、試
料を作製した。
Next, as in Example 19, the substrate 101 was used.
The back side of was covered with an insulating film made of plastic and immersed in the electrodeposition tank of FIG. The electrodeposition liquid was an acrylic-melamine-based anionic electrodeposition paint having a solid content of 10.5% and containing a large amount of styrene, and had an electric conductivity of 518 μS / cm and a pH of 8.05. Under the bath temperature of 25.0 ° C., the distance between the electrodes was set to 30 mm, and a voltage of plus 10 V was applied to the substrate 304 for electrodeposition. Electrodeposition was carried out with the completion time of electrodeposition being 10 seconds. After electrodeposition, the solar cell 100 is quickly pulled up from the electrodeposition tank, thoroughly washed with pure water, unreacted electrodeposition paint is washed off, and placed in an oven at 50 ° C.
It was left for 0 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 20 minutes to cure the electrodeposition resin. Next, a grid electrode and a bus bar were formed to prepare a 30 cm square single cell. The obtained sample showed excellent initial characteristics as compared with the single cell of Comparative Example 1. Similar to the method described above, only the electrodeposition time is 20 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds.
Samples were prepared by changing the time to 70 seconds, 70 seconds, 80 seconds, 90 seconds, and 100 seconds.

【0179】これらの初期特性を実施例1と同様の方法
で測定したところ表1に示したような結果となった。表
1により電着は時間で管理することが可能で印加電圧1
0Vに対しては電着時間は30秒から90秒が適当であ
ることが分かった。
When these initial characteristics were measured by the same method as in Example 1, the results shown in Table 1 were obtained. According to Table 1, electrodeposition can be controlled by time and applied voltage 1
It has been found that an electrodeposition time of 30 to 90 seconds is suitable for 0V.

【0180】その後、上述した方法と同様に、10V6
0秒の条件で電着した後、前述の方法でエンカプシュレ
ーションまでを行った試料を10枚作製した。得られた
試料の初期特性は、変換効率平均6.6%±0.4%、
シャント抵抗は30kΩcm 2 から75kΩcm2 であ
り良好な特性であった。
Then, in the same manner as the above-mentioned method, 10V6
After electrodeposition under the condition of 0 seconds, the encapsulation
Solution, 10 samples were prepared. Got
The initial characteristics of the sample are the average conversion efficiency of 6.6% ± 0.4%,
Shunt resistance is 30 kΩcm 2To 75 kΩcm2And
It had good characteristics.

【0181】次にこの試料の耐久特性を実施例1と同様
に評価した。
Next, the durability characteristics of this sample were evaluated in the same manner as in Example 1.

【0182】温湿度サイクル試験終了後の試料の変換効
率を測定したところ初期値に対し3.2%の低下であり
劣化は生じなかった。シャント抵抗を測定したところ平
均で約8%の減少で有意な劣化はほとんど起こらず、良
好な特性が得られ、耐久性も良好であった。また、用い
る電着樹脂にスチレンなどの非官能性のモノマーを多く
含有させることにより強固な電着樹脂の積層がなされ耐
久性を増すことができた。
When the conversion efficiency of the sample after the completion of the temperature / humidity cycle test was measured, it was found to be 3.2% lower than the initial value and no deterioration occurred. When the shunt resistance was measured, an average reduction of about 8% showed almost no significant deterioration, good characteristics were obtained, and durability was also good. Further, by containing a large amount of a non-functional monomer such as styrene in the electrodeposition resin to be used, a strong electrodeposition resin was laminated and the durability could be increased.

【0183】(実施例21)図7の構成の薄膜多結晶太
陽電池を電着塗料の種類を変え、電着の終点を流れた電
流の総クーロン量で定め実施例19とほぼ同様に作製し
た。
(Example 21) A thin film polycrystalline solar cell having the structure shown in FIG. 7 was prepared in substantially the same manner as in Example 19 by changing the kind of electrodeposition coating material and determining the total Coulomb amount of the current flowing at the end point of electrodeposition. .

【0184】まず、実施例19と同様にSUS430B
A製基板(30cm×30cm、厚み0.2mm)10
1上に下部電極102を形成し、その後、不図示のRF
プラズマCVD成膜装置に入れn層103,i層10
4,p層105の順で堆積を行った。その後、実施例1
と同様に、反射防止効果を兼ねた機能を有する透明な上
部電極106を700Å堆積した。
First, in the same manner as in Example 19, SUS430B
A substrate (30 cm x 30 cm, thickness 0.2 mm) 10
1. A lower electrode 102 is formed on the first electrode 1 and then an RF (not shown) is formed.
It is put in a plasma CVD film forming apparatus and n layer 103 and i layer 10
Then, the p-layer 105 was deposited in this order. Then, Example 1
In the same manner as above, 700 Å of transparent upper electrode 106 having a function of also having an antireflection effect was deposited.

【0185】次に、実施例19と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、図
9の電着槽に浸漬した。電着液は固形分10.2%のア
クリル−メラミン系アニオン電着塗料にフッ素樹脂を分
散したもので、この電導度は560μS/cmであり、
pHは7.93であった。浴温25.6℃のもとで、極
間距離50mmとし基板304にプラス10Vの電圧を
印加した電着を行った。電着は通電後のクーロン量で管
理し、総クーロン量が50mCとなったところで電着を
終了した。純水で十分に洗浄し、オーブンで電着樹脂の
硬化を行った。次にグリッド電極107を印刷し、さら
に接着剤付きの銅箔のバスバー108を積層し、30c
m角のシングルセルを作製した。
Next, as in Example 19, the substrate 101 was used.
The back side of was covered with an insulating film made of plastic and immersed in the electrodeposition tank of FIG. The electrodeposition liquid is a dispersion of a fluororesin in an acrylic-melamine-based anion electrodeposition paint having a solid content of 10.2%, and the electric conductivity is 560 μS / cm.
The pH was 7.93. Electrodeposition was performed under a bath temperature of 25.6 ° C. with a distance between electrodes of 50 mm and a voltage of 10 V applied to the substrate 304. The electrodeposition was controlled by the amount of coulomb after energization, and the electrodeposition was terminated when the total amount of coulomb reached 50 mC. It was thoroughly washed with pure water, and the electrodeposition resin was cured in an oven. Next, a grid electrode 107 is printed, and a copper foil bus bar 108 with an adhesive is further laminated, and 30c
An m-square single cell was produced.

【0186】得られた試料の初期特性を実施例と同様の
方法で測定したところ変換効率が5.60%で、シャン
ト抵抗が9.34kΩcm2 であった。
When the initial characteristics of the obtained sample were measured by the same method as in the example, the conversion efficiency was 5.60% and the shunt resistance was 9.34 kΩcm 2 .

【0187】次に、上記の同様の手順で総クーロン量を
100mC,150mC,200mC,250mC,3
00mCとして電着を終了させて試料を作製した。さら
に、上記と同様の方法で初期特性を測定したところ表2
のようになった。表2により総クーロン量を100mC
から200mC電着電着を終了するのが適当であること
が分かった。
Next, the total coulomb amount is 100 mC, 150 mC, 200 mC, 250 mC, 3 by the same procedure as above.
Electrodeposition was terminated at 00 mC to prepare a sample. Furthermore, when the initial characteristics were measured by the same method as described above, Table 2
It became like. According to Table 2, the total coulomb amount is 100 mC
It was found that it is appropriate to finish the electrodeposition of 200 mC.

【0188】その後、上述した方法と同様に10Vの印
加電圧で総クーロン量100mCで電着を終了した後、
この試料のエンカプシュレーションを実施例1と同様に
行った。
Then, after completing the electrodeposition with an applied voltage of 10 V and a total Coulomb amount of 100 mC in the same manner as described above,
Encapsulation of this sample was performed as in Example 1.

【0189】得られた試料の信頼性試験を実施例1と同
様にしたところ、温湿度サイクル試験終了後の試料の太
陽電池特性を測定したところ初期値に対し平均で2%の
低下であり劣化は生じなかった。シャント抵抗を測定し
たところほとんど変化していなかった。
When the reliability test of the obtained sample was performed in the same manner as in Example 1, the solar cell characteristics of the sample after the temperature-humidity cycle test were measured, and the average value was decreased by 2% from the initial value and deteriorated. Did not occur. When the shunt resistance was measured, there was almost no change.

【0190】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く、良好
な特性で有り耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0191】(実施例22)図3の構成の太陽電池を紫
外線硬化型の塗料を用い定電流法で実施例19とほぼ同
様に作製した。
(Example 22) A solar cell having the structure shown in Fig. 3 was produced in the same manner as in Example 19 by a constant current method using an ultraviolet curable coating material.

【0192】まず、実施例19と同様にSUS430B
A製基板(30cm×30cm、厚み0.2mm)10
1上に下部電極102を形成し、その後、不図示のRF
プラズマCVD成膜装置に入れn層103、i層10
4、p層105の順で堆積を行った。その後、実施例1
9と同様に、反射防止効果を兼ねた機能を有する透明な
上部電極106を700Å堆積した。
First, in the same manner as in Example 19, SUS430B
A substrate (30 cm x 30 cm, thickness 0.2 mm) 10
1. A lower electrode 102 is formed on the first electrode 1 and then an RF not shown
The n layer 103 and the i layer 10 were placed in a plasma CVD film forming apparatus.
4, the p layer 105 was deposited in this order. Then, Example 1
In the same manner as in No. 9, 700 Å of transparent upper electrode 106 having a function of also having an antireflection effect was deposited.

【0193】次に、実施例19と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、図
9の電着槽に浸漬した。電着液は固形分15.1%の紫
外線硬化型アクリル系アニオン電着塗料で、この電導度
は1240μS/cmであり、pHは7.03であっ
た。浴温25.2℃のもとで、極間距離50mmとし、
電着は定電流法を用い、電流を0.2A/dm2 ,0.
5A/dm2 ,1.0A/dm2 ,1.5A/dm2
2.0A/dm2 に設定し、それぞれ10秒間通電し
た。このとき定電流法では電着樹脂の積層にともない電
圧が増加する傾向があった。電着にともない次第に電圧
が上昇するので電圧を太陽電池のブレークダウン電圧以
下になるように管理する必要がある。純水で十分に洗浄
し、未反応の電着塗料を洗い流した後、水分を取り除
き、堆積した塗料を平滑にするために80℃のオーブン
に投入し5分間乾燥した。その後、オーブンから取り出
し冷却後、紫外線照射装置・超高圧水銀灯を用い150
mJ/cm2 の露光条件で硬化した。次にグリッド電極
107を印刷し、さらに接着剤付きの銅箔のバスバー1
08を積層し、30cm角のシングルセルを作製した。
Next, as in Example 19, the substrate 101 was used.
The back side of was covered with an insulating film made of plastic and immersed in the electrodeposition tank of FIG. The electrodeposition liquid was an ultraviolet curable acrylic anion electrodeposition coating composition having a solid content of 15.1%, and had an electric conductivity of 1240 μS / cm and a pH of 7.03. At a bath temperature of 25.2 ° C, the distance between the electrodes is 50 mm,
A constant current method was used for electrodeposition, and the current was 0.2 A / dm 2 , 0.
5 A / dm 2 , 1.0 A / dm 2 , 1.5 A / dm 2 ,
It was set to 2.0 A / dm 2 and each was energized for 10 seconds. At this time, in the constant current method, the voltage tended to increase as the electrodeposition resin was laminated. Since the voltage gradually rises with electrodeposition, it is necessary to manage the voltage so that it is below the breakdown voltage of the solar cell. After sufficiently washing with pure water to wash away the unreacted electrodeposition coating material, the water content was removed, and the deposited coating material was placed in an oven at 80 ° C. and smoothed for 5 minutes in order to smooth the coating material. After that, it is taken out of the oven, cooled, and then irradiated with an ultraviolet irradiation device and an ultra-high pressure mercury lamp for 150
It was cured under the exposure condition of mJ / cm 2 . Next, the grid electrode 107 is printed, and the copper foil bus bar 1 with an adhesive is further printed.
08 was laminated to prepare a single cell of 30 cm square.

【0194】得られた試料の初期特性を前述の方法で同
様に測定した。結果を図15に示した。図15より電着
時の電流は0.5A/dm2 から1.5A/dm2 が適
当であることが分かった。その後、電着電流1.0A/
dm2 の条件で上記の方法と同様にして10枚の試料を
作製した。さらに、この試料のエンカプシュレーション
を実施例1と同様に行った。
The initial characteristics of the obtained sample were measured in the same manner as described above. The results are shown in Fig. 15. From FIG. 15, it was found that a suitable current during electrodeposition is 0.5 A / dm 2 to 1.5 A / dm 2 . After that, electrodeposition current 1.0A /
Ten samples were prepared under the condition of dm 2 in the same manner as the above method. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0195】得られた試料の初期特性は変換効率6.2
%±0.8%であり、良好な特性であった。
The initial characteristic of the obtained sample is that the conversion efficiency is 6.2.
% ± 0.8%, which was a good characteristic.

【0196】次にこの試料の信頼性試験を実施例1と同
様にした。温湿度サイクル試験終了後の試料の太陽電池
特性を測定したところ初期値に対し平均して5.3%の
低下であり劣化は生じなかった。シャント抵抗を測定し
たところ約10%の減少で優位な劣化はほとんど起こら
なかった。
Next, the reliability test of this sample was performed in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature / humidity cycle test were measured, the average value was 5.3% lower than the initial value, and no deterioration occurred. When the shunt resistance was measured, there was almost no significant deterioration with a decrease of about 10%.

【0197】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く、良好
な特性で有り耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0198】(実施例23)太陽電池の構成を図4のト
リプル型太陽電池とした以外はほぼ実施例19と同様の
方法で以下のようにして太陽電池を作製した。まず、基
板101上にテクスチャー構造のAlSiの光反射層
と、シャント防止用の高抵抗透明導電性部材ZnOの光
反射増加層が積層された下部電極102を形成した。そ
の後、不図示のマイクロ波プラズマCVD成膜装置に入
れn層103、i層104、p層105の順で積層を行
いボトム層を形成した。このとき、i層104はa−S
iGeとした。次に、n層113、i層114、p層1
15の順で積層を行いミドル層を形成した。i層114
はボトム層と同様にa−SiGeとした。次に、n層1
23、i層124、p層125の順で積層を行いトップ
層を形成した。i層124はa−Siとした。その後、
実施例1と同様に、反射防止効果を兼ねた機能を有する
透明な上部電極106を700Å積層した。上部電極1
06としてIn2 3 (IO)を用いた。
(Embodiment 23) The structure of the solar cell shown in FIG.
Similar to Example 19 except that the ripple type solar cell was used.
A solar cell was manufactured by the following method. First, the base
Light reflecting layer of AlSi having a texture structure on the plate 101
And the light of high resistance transparent conductive member ZnO for shunt prevention.
A lower electrode 102 having a reflection increasing layer laminated thereon was formed. So
After that, enter a microwave plasma CVD film forming device (not shown).
The n layer 103, the i layer 104, and the p layer 105 are stacked in this order.
A bottom layer was formed. At this time, the i layer 104 is aS
iGe. Next, the n layer 113, the i layer 114, and the p layer 1
The layers were laminated in the order of 15 to form a middle layer. i layer 114
Was a-SiGe as in the bottom layer. Next, n layer 1
23, i layer 124, p layer 125 are stacked in this order
Layers were formed. The i layer 124 was a-Si. afterwards,
Similar to the first embodiment, it has a function that also has an antireflection effect.
A transparent upper electrode 106 was laminated in 700 liters. Upper electrode 1
In as 062O 3(IO) was used.

【0199】次に、アクリル−メラミン系アニオン電着
塗料を用いて極間距離を50mm、印加電圧10V、電
着時間30秒の条件で電着処理を施した。その後、洗浄
し、熱硬化を行った。その後、グリッド電極107を印
刷し、さらにバスバー108を積層し、30cm角のト
リプルセルを作製した。同様にして10枚の試料を作製
した。さらに、この試料のエンカプシュレーションを実
施例1と同様に行った。
Next, an electrodeposition treatment was performed using an acrylic-melamine type anion electrodeposition coating material under the conditions of a distance between electrodes of 50 mm, an applied voltage of 10 V and an electrodeposition time of 30 seconds. Then, it wash | cleaned and heat-hardened. After that, the grid electrode 107 was printed, and the bus bar 108 was further laminated to produce a 30 cm square triple cell. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0200】得られた試料の初期特性は、7.6%±
0.7%でありシャント抵抗が50KΩcm2 〜98K
Ωcm2 であり良好な特性でばらつきも少なかった。
The initial characteristics of the obtained sample are 7.6% ±
0.7% and shunt resistance is 50KΩcm 2 to 98K
It was Ωcm 2 and had good characteristics and little variation.

【0201】次に、この試料の信頼性試験を実施例1と
同様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0202】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ、変換効率は初期値に対して平
均で4.5%の減少であり優位な劣化は認められなかっ
た。また、シャント抵抗に関しても5%の減少であり劣
化はほとんど認められなかった。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the conversion efficiency was decreased by 4.5% on average from the initial value, and no significant deterioration was observed. Also, the shunt resistance was reduced by 5%, and almost no deterioration was observed.

【0203】本実施例から、本発明の太陽電池製造方法
で作製した太陽電池は歩留りが良く、良好な特性であり
耐久性も良いことがわかる。
From this example, it is understood that the solar cell manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0204】(実施例24)図3に示す層構成の太陽電
池100を以下のようにして作製した。まず、十分に脱
脂、洗浄を行ったSUS430BA製基板(30cm×
30cm、厚み0.2mm)101を不図示のDCスパ
ッタ装置に入れCrを200Å堆積し、下部電極102
を形成した。基板101を取り出し、不図示のRFプラ
ズマCVD成膜装置に入れn層103、i層104、p
層105の順で堆積を行った。
Example 24 A solar cell 100 having the layer structure shown in FIG. 3 was produced as follows. First, a substrate made of SUS430BA that has been thoroughly degreased and washed (30 cm x
(30 cm, thickness 0.2 mm) 101 is put in a DC sputter device (not shown) to deposit Cr 200 Å, and lower electrode 102
Was formed. The substrate 101 is taken out and placed in an RF plasma CVD film forming apparatus (not shown) to form the n layer 103, the i layer 104, and the p layer.
Deposition was performed in order of layer 105.

【0205】次に、図9において前記基板301の裏面
側をプラスチック製の絶縁性フィルムで覆い電着槽30
1に浸漬した。対向電極303として、極比が1:1と
なるように30cm×30cmの大きさで、前記基板3
04に対して裏側をプラスチック製の絶縁性フィルムを
用いてシールしたSUS304ステンレス板を用いた。
電着塗料302は固形分10%のアクリルのカチオン系
電着塗料(上村工業(株)製アクリルクリアーA−7
X)を用いた。基板304にマイナス20Vの電圧を印
加して7秒間保持し、電着を行った。太陽電池100を
電着槽から引き上げ、純水で十分に洗浄を行い、未析出
の電着塗料を洗い流し、50℃のオーブンに投入し、3
0分放置して水分を乾燥させた。その後、オーブンの温
度を10℃/分の速度で昇温し、180℃に達してから
30分保持し電着樹脂の硬化を行った。その後、太陽電
池100をオーブンから取り出し冷却後太陽電池100
の一部を切り出して走査型電子顕微鏡で観察したところ
半導体層105の表面には、約5μm〜50μmの径の
半径状の堆積物が点在して観察された。この部分の赤外
吸収を、顕微機能付きFTIRを用いて分析したところ
アクリルエステルのカルボニル基の吸収があり電着塗料
が堆積していることが確認された。さらにこの試料のO
BIC像を観察したところ、前記電着塗料の堆積部分の
みが発電せず、従って、前記堆積膜はシャント部分にの
み堆積していることが確認された。さらに平均でシャン
ト部分の約8倍の面積にわたって堆積していることも確
認された。
Next, referring to FIG. 9, the back side of the substrate 301 is covered with a plastic insulating film to form an electrodeposition tank 30.
It was immersed in 1. The counter electrode 303 has a size of 30 cm × 30 cm so that the polar ratio is 1: 1, and the substrate 3
For 04, a SUS304 stainless plate whose back side was sealed with a plastic insulating film was used.
The electrodeposition coating 302 is an acrylic cationic electrodeposition coating having a solid content of 10% (Acrylic Clear A-7 manufactured by Uemura Industry Co., Ltd.).
X) was used. A voltage of -20 V was applied to the substrate 304 and held for 7 seconds for electrodeposition. The solar cell 100 is pulled up from the electrodeposition tank, thoroughly washed with pure water, the undeposited electrodeposition paint is washed off, and placed in an oven at 50 ° C.
It was left for 0 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 30 minutes to cure the electrodeposition resin. After that, the solar cell 100 is taken out of the oven, and after cooling, the solar cell 100 is cooled.
When a part of the above was cut out and observed with a scanning electron microscope, radial deposits having a diameter of about 5 μm to 50 μm were scattered on the surface of the semiconductor layer 105. When the infrared absorption of this portion was analyzed by using FTIR with a microscopic function, it was confirmed that there was absorption of the carbonyl group of the acrylic ester and that the electrodeposition coating was deposited. Furthermore, O of this sample
When the BIC image was observed, it was confirmed that only the deposited portion of the electrodeposition coating did not generate power, and therefore the deposited film was deposited only on the shunt portion. Furthermore, it was also confirmed that the deposit was made over an area about 8 times as large as the shunt portion.

【0206】その後、不図示の抵抗加熱の蒸着装置に入
れて、酸素を導入しながら、内圧を1×10-4Torr
に保ちInとSnの合金を抵抗加熱により蒸着し、反射
防止効果を兼ねた機能を有する透明なITOの上部電極
106を700Å堆積した。次に、ITO上に実施例1
と同様にして、グリッド電極107、バスバー108を
形成し30cm角のシングルセルを作製した。同様の方
法で試料を10枚作製した。次に、これら試料のエンカ
プシュレーションを実施例1と同様にして行った。
Then, the device was placed in a resistance heating vapor deposition device (not shown), and while introducing oxygen, the internal pressure was adjusted to 1 × 10 −4 Torr.
While maintaining the above condition, an alloy of In and Sn was vapor-deposited by resistance heating, and 700 Å of transparent ITO upper electrode 106 having a function also serving as an antireflection effect was deposited. Next, Example 1 was formed on ITO.
Similarly to the above, the grid electrode 107 and the bus bar 108 were formed to produce a single cell of 30 cm square. Ten samples were prepared by the same method. Next, encapsulation of these samples was performed in the same manner as in Example 1.

【0207】得られた試料の初期特性は、6.5±0.
6%と良好な特性で、ばらつきも小さかった。また、シ
ャント抵抗は、17KΩcm2 ±2KΩcm2 であり良
好な特性であり、ばらつきが少なかった。
The initial characteristics of the obtained sample are 6.5 ± 0.
The characteristic was 6% and the variation was small. Further, the shunt resistance was 17 KΩcm 2 ± 2 KΩcm 2 , which was a good characteristic, and there were few variations.

【0208】次に温湿度サイクル試験を行ない、試験終
了後の試料を太陽電池特性を測定したところ、初期変換
効率に対して平均で2%の低下率であり有意な劣化は生
じなかった。また、シャント抵抗を測定したところ初期
の約9%の低下率で有意な劣化はなかった。電着が良好
な効果を有することがわかった。
Next, a temperature / humidity cycle test was performed, and the solar cell characteristics of the sample after the test were measured. The average conversion rate was 2% with respect to the initial conversion efficiency, and no significant deterioration occurred. Further, when the shunt resistance was measured, there was no significant deterioration at the initial reduction rate of about 9%. It has been found that electrodeposition has a good effect.

【0209】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り、耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0210】(実施例25)電着時の印加電圧20Vを
30Vに、通電時間7秒を5秒に変更した他は実施例2
4と同様に作製した。以上の作製法で試料を10枚作製
した。
(Example 25) Example 2 was repeated except that the applied voltage of 20 V during electrodeposition was changed to 30 V and the energization time was changed from 7 seconds to 5 seconds.
It produced like 4th. Ten samples were manufactured by the above manufacturing method.

【0211】得られた試料の初期特性は、変換効率6.
0%±0.8%、シャント抵抗は21KΩcm2 ±2K
Ωcm2 であった。
The initial characteristic of the obtained sample was that the conversion efficiency was 6.
0% ± 0.8%, shunt resistance is 21KΩcm 2 ± 2K
Was Ωcm 2 .

【0212】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0213】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ10%低下していた。本実施例の結果から本発
明の太陽電池製造方法で作製した本発明の太陽電池歩留
りが良く、良好な特性で有り耐久性も良いことがわか
る。電着時の太陽電池の順方向電流とシャント電流の比
は2.4であった。なお実施例24では、0.4であっ
た。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. Also, the shunt resistance was measured and found to be 10% lower. From the results of this example, it can be seen that the yield of the solar cell of the present invention manufactured by the method of manufacturing a solar cell of the present invention is good, the characteristics are good and the durability is also good. The ratio of the forward current to the shunt current of the solar cell at the time of electrodeposition was 2.4. In Example 24, it was 0.4.

【0214】(実施例26)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7Xガラ
ス転移温度 約120℃)を低架橋密度のアクリルのカ
チオン系電着樹脂(ガラス転移温度 約70℃)に変更
した他は実施例24と同様に作製した。得られた試料の
評価も実施例1に従った。
Example 26 Acrylic cationic electrodeposition resin (Acrylic Clear A-7X glass transition temperature about 120 ° C. manufactured by Uemura Kogyo Co., Ltd.) was used as an acrylic cationic electrodeposition resin (glass transition temperature) having a low cross-linking density. It was produced in the same manner as in Example 24 except that the temperature was changed to about 70 ° C. The evaluation of the obtained sample was also in accordance with Example 1.

【0215】得られた試料の初期特性は、6.2%±
0.7%、シャント抵抗は12KΩcm2 ±1KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 6.2% ±
0.7%, shunt resistance is 12 KΩcm 2 ± 1 KΩcm
2 , which was a good characteristic.

【0216】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0217】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の3%の低下率であり有
意な劣化はほとんど生じなかった。シャント抵抗を測定
したところ初期の11%低下していた。本実施例の結果
から本発明の太陽電池製造方法で作製した本発明の太陽
電池は歩留りが良く良好な特性で有り耐久性も良いこと
がわかる。
The solar cell characteristics of the sample after the temperature / humidity cycle test were measured, and the rate of decrease was 3% of the initial value, and significant deterioration was hardly caused. When the shunt resistance was measured, it was 11% lower than the initial value. From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0218】(実施例27)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X最低
成膜温度 約60℃)をアクリルのカチオン系電着樹脂
(最低成膜温度約25℃)に変更した他は実施例24と
同様に作製した。得られた試料の評価は実施例1に従っ
た。
Example 27 Acrylic cationic electrodeposition resin (Acrylic Clear A-7X manufactured by Uemura Kogyo Co., Ltd. minimum film forming temperature of about 60 ° C.) was used as an acrylic cationic electrodeposition resin (minimum film forming temperature of about 25 ° C.). The same procedure as in Example 24 was performed except that the temperature was changed to ° C). The evaluation of the obtained sample was in accordance with Example 1.

【0219】得られた試料の初期特性は、6.0%±
1.4%、シャント抵抗は20KΩcm2 ±5KΩcm
2 であり良好な特性であった。但し、この塗料では、電
着終了後速やかに水洗いしないと初期特性が4.0%に
大きく低下した。
The initial characteristics of the obtained sample are 6.0% ±
1.4%, shunt resistance is 20 KΩcm 2 ± 5 KΩcm
2 , which was a good characteristic. However, with this paint, initial characteristics were significantly reduced to 4.0% unless it was washed with water immediately after the completion of electrodeposition.

【0220】次にこの充分水洗して得られた試料の信頼
性試験を実施例1と同様に行った。温湿度サイクル試験
終了後の試料の太陽電池特性を測定したところ初期値の
2%の低下率であり有意な劣化は生じなかった。シャン
ト抵抗を測定したところ初期の9%低下していた。本実
施例の結果から本発明の太陽電池製造方法で作製した本
発明の太陽電池は歩留りが良く良好な特性で有り耐久性
も良いことがわかる。
Next, the reliability test of the sample obtained by sufficiently washing with water was conducted in the same manner as in Example 1. When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 9% lower than the initial value. From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0221】(実施例28)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
エポキシのカチオン系電着樹脂(上村工業(株)製 固
形分10%)に変更した他は実施例24と同様に作製し
た。得られた試料の評価は実施例1に従った。
Example 28 Acrylic cationic electrodeposition resin (Acrylic Clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was changed to an epoxy cationic electrodeposition resin (solid content 10% manufactured by Uemura Kogyo Co., Ltd.). Other than that was produced similarly to Example 24. The evaluation of the obtained sample was in accordance with Example 1.

【0222】得られた試料の初期特性は、6.0%±
0.7%、シャント抵抗は25KΩcm2 ±3KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 6.0% ±
0.7%, shunt resistance is 25 KΩcm 2 ± 3 KΩcm
2 , which was a good characteristic.

【0223】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0224】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期値に対し9%の低下であった。本実施例の結果か
ら本発明の太陽電池製造方法で作製した本発明の太陽電
池は歩留りが良く良好な特性で有り耐久性も良いことが
わかる。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 9% lower than the initial value. From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0225】(実施例29)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
フッ素のカチオン系電着樹脂(上村工業(株)製)に変
更した他は実施例24と同様に作製した。得られた試料
の評価は実施例1に従った。
(Example 29) Implementation was carried out except that the cationic cation electrodeposition resin of acrylic resin (Acrylic Clear A-7X manufactured by Uemura Industry Co., Ltd.) was changed to the cationic electrodeposition resin resin of fluorine (Uemura Industry Co., Ltd.). Prepared as in Example 24. The evaluation of the obtained sample was in accordance with Example 1.

【0226】得られた試料の初期特性は、6.7%±
0.7%、シャント抵抗は20KΩcm2 ±2KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 6.7% ±
0.7%, shunt resistance is 20KΩcm 2 ± 2KΩcm
2 , which was a good characteristic.

【0227】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0228】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期値に対し7%の低下であった。本実施例の結果か
ら本発明の太陽電池製造方法で作製した本発明の太陽電
池は歩留りが良く良好な特性で有り耐久性も良いことが
わかる。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 7% lower than the initial value. From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0229】(実施例30)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
カチオン化オリゴマー(分子量2200のポリエチレン
グリコール両末端カルボン酸変性(川研ファイン
(株))とカチオンエポキシ(ナガセ化成(株)ワイス
テッス)との反応生成物)に変更した他は実施例24と
同様に作製した。得られた試料の評価は実施例1に従っ
た。
(Example 30) A cationic cationic electrodeposition resin (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was modified with a cationized oligomer (polyethylene glycol having a molecular weight of 2200 and modified at both terminals with carboxylic acid (Kawaken Fine Co., Ltd.). ) And a cationic epoxy (a reaction product of Nagase Kasei Co., Ltd. Weisste)) was used, and the same procedure as in Example 24 was performed. The evaluation of the obtained sample was in accordance with Example 1.

【0230】得られた試料の初期特性は、5.5%±
1.1%、シャント抵抗は7KΩcm 2 ±1KΩcm2
であり良好な特性であった。
The initial characteristics of the obtained sample are 5.5% ±
1.1%, shunt resistance is 7 KΩcm 2± 1 KΩcm2
It was a good characteristic.

【0231】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, a reliability test of this sample was conducted in the same manner as in Example 1.

【0232】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の7%の低下率であり大
きい劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期に対し26%の低下であった。本実施例の結果か
ら本発明の太陽電池製造方法で作製した本発明の太陽電
池は歩留りが良く良好な特性で有り耐久性も良いことが
わかる。
[0232] When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the rate of decrease was 7% of the initial value, and no significant deterioration occurred. When the shunt resistance was measured, it was 26% lower than the initial value. From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0233】(実施例31)アクリルのカチオン系電着
樹脂(上村工業(株)製アクリルクリアーA−7X)を
エポキシ/ポリブタジエンのカチオン系電着樹脂(日本
ペイン(株)製ラディコートN800黒色顔料入り)に
変更した他は実施例24と同様に製作した。得られた試
料の評価は実施例1に従った。
Example 31 An acrylic cationic electrodeposition resin (acrylic clear A-7X manufactured by Uemura Kogyo Co., Ltd.) was used as an epoxy / polybutadiene cationic electrodeposition resin (RADICOAT N800 black pigment manufactured by Nippon Pain Co., Ltd.). Production was carried out in the same manner as in Example 24, except that the inside was changed to the above. The evaluation of the obtained sample was in accordance with Example 1.

【0234】得られた試料の初期特性は、5.7%±
0.8%、シャント抵抗は20KΩcm2 ±3KΩcm
2 であり良好な特性であった。
The initial characteristics of the obtained sample are 5.7% ±
0.8%, shunt resistance is 20KΩcm 2 ± 3KΩcm
2 , which was a good characteristic.

【0235】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0236】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の1%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ初期に対し7%の低下であった。本実施例の結果から
本発明の太陽電池製造方法で作製した本発明の太陽電池
は歩留まりが良く良好な特性で有り耐久性も良いことが
わかる。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 1% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, it was 7% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0237】(実施例32)電着時の通電時間7秒を3
秒に変更した他は実施例24と同様に作製した。
(Embodiment 32) The energization time during electrodeposition of 7 seconds is set to 3
It was produced in the same manner as in Example 24 except that the time was changed to seconds.

【0238】以上の作製法で試料を10枚作製した。走
査型電子顕微鏡でシャント部分の約0.7倍の面積にわ
たって堆積していることが確認された。得られた試料の
初期特性は、変換効率5.4%±0.9%、シャント抵
抗は10KΩcm2 ±1KΩcm2 であった。
Ten samples were manufactured by the above manufacturing method. It was confirmed by a scanning electron microscope that the area was about 0.7 times larger than that of the shunt area. The initial characteristics of the obtained sample were a conversion efficiency of 5.4% ± 0.9% and a shunt resistance of 10 KΩcm 2 ± 1 KΩcm 2 .

【0239】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0240】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の3%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ17%低下していた。本実施例の結果から本発
明の太陽電池製造方法で作製した本発明の太陽電池は歩
留まりが良く良好な特性で有り耐久性も良いことがわか
る。
The solar cell characteristics of the sample after the temperature / humidity cycle test were measured. As a result, the rate of decrease was 3% of the initial value, and significant deterioration did not occur. Further, the shunt resistance was measured and found to be 17% lower. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0241】(実施例33)図5の構成の太陽電池を実
施例24とほぼ同様に作製した。
(Example 33) A solar cell having the structure shown in Fig. 5 was produced in substantially the same manner as in Example 24.

【0242】まず、30cm角のコーニング7059基
板101上に不図示の蒸着装置を用いてSnO2 の透明
な上部電極106を堆積した。その後、上部電極106
が幅2cmのサブセルが5mm幅のギャップを開けて並
ぶようにエッチングしてパターニングを施した。次に、
メタルマスクを用いて前記上部電極106とほぼ重なり
合うようにp層105、i層104、n層103を堆積
した。電着方法は実施例24に従った。次に基板101
を、メタルマスクを用いて不図示のスパッタ装置に投入
してアルミニウムの下部電極102を形成し、10段直
列の30cm角のシングルセルを作製した。以上の作製
法で試料を10枚作製した。
First, a transparent upper electrode 106 of SnO 2 was deposited on a Corning 7059 substrate 101 of 30 cm square by using a vapor deposition device (not shown). Then, the upper electrode 106
Was etched and patterned so that subcells each having a width of 2 cm were arranged side by side with a gap having a width of 5 mm. next,
A p-layer 105, an i-layer 104, and an n-layer 103 were deposited so as to substantially overlap with the upper electrode 106 using a metal mask. The electrodeposition method was in accordance with Example 24. Next, the substrate 101
Was charged into a sputtering device (not shown) using a metal mask to form an aluminum lower electrode 102, and a single cell of 10 cm in series and 30 cm square was produced. Ten samples were manufactured by the above manufacturing method.

【0243】得られた試料の初期特性は、変換効率6.
2%±0.8%、シャント抵抗は22KΩcm2 ±3K
Ωcm2 であった。
The initial characteristic of the obtained sample was that the conversion efficiency was 6.
2% ± 0.8%, shunt resistance is 22KΩcm 2 ± 3K
Was Ωcm 2 .

【0244】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0245】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。また、シャント抵抗を測定し
たところ初期値に対し1%の低下であった。本実施例の
結果から本発明の太陽電池製造方法で作製した本発明の
太陽電池は歩留まりが良く、良好な特性で有り耐久性も
良いことがわかる。
When the solar cell characteristics of the sample after the completion of the temperature and humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. In addition, the shunt resistance was measured and found to be 1% lower than the initial value. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0246】(実施例34)図7の構成の多結晶太陽電
池を実施例24とほぼ同様に作製した。
(Example 34) A polycrystalline solar cell having the structure shown in Fig. 7 was manufactured in substantially the same manner as in Example 24.

【0247】実施例24と同様にSUS430BA製基
板(30cm×30cm、厚み0.2mm)101上に
下部電極102を形成した。基板101を取り出し、不
図示のRFプラズマCVD成膜装置に入れn層103、
i層104、p層105の順で堆積を行った。その後、
基板101をオーブンから取り出し冷却後、電着を実施
例24と同様に行った。その後、実施例24と同様に、
反射防止効果を兼ねた機能を有する透明な上部電極10
6を700Å堆積した。さらに接着剤付きの銅箔のバス
バー108を積層し、30cm角のシングルセルを作製
した。同様にして10枚の試料を作製した。さらに、こ
の試料のエンカプシュレーションを実施例1と同様に行
った。
As in Example 24, the lower electrode 102 was formed on the SUS430BA substrate (30 cm × 30 cm, thickness 0.2 mm) 101. The substrate 101 is taken out and put in an RF plasma CVD film forming apparatus (not shown),
The i layer 104 and the p layer 105 were deposited in this order. afterwards,
After the substrate 101 was taken out of the oven and cooled, electrodeposition was performed in the same manner as in Example 24. Then, as in Example 24,
Transparent upper electrode 10 having a function also as an antireflection effect
6 was deposited at 700 Å. Further, a bus bar 108 of copper foil with an adhesive was laminated to form a single cell of 30 cm square. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0248】得られた試料の初期特性は、6.4%±
0.8%、シャント抵抗は8KΩcm 2 ±1KΩcm2
であり良好な特性であった。次にこの試料の信頼性試験
を実施例1と同様に行った。
The initial characteristics of the obtained sample are 6.4% ±
0.8%, shunt resistance is 8 KΩcm 2± 1 KΩcm2
It was a good characteristic. Next, the reliability test of this sample
Was carried out in the same manner as in Example 1.

【0249】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の4%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ低下は15%であった。本実施例の結果から本発明の
太陽電池製造方法で作製した本発明の太陽電池は歩留ま
りが良く良好な特性で有り耐久性も良いことがわかる。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 4% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, the decrease was 15%. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0250】(実施例35)太陽電池の構成を図4のト
リプル型太陽電池とした以外はほぼ実施例24と同様の
方法で以下の太陽電池を作製した。まず、基板101上
にテクスチャー構造のAlSi層とシャント防止用の高
抵抗透明導電部材としてのZnO層とからなる下部電極
102を形成し、その後、不図示のマイクロ波プラズマ
CVD成膜装置に入れ、n層103、i層104、p層
105の順で堆積を行ないボトム層を形成した。このと
きi層104はa−SiGeとした。次にn層113、
i層114、p層115の順で堆積を行いミドル層を形
成した。i層114はボトム層と同様にa−SiGeと
した。次に、n層123、i層124、p層125の順
で堆積を行ないトップ層を形成した。i層124はa−
SiGeとした。次に実施例1で用いたアクリルのカチ
オン系電着塗料を用いて電着処理を施した。その後洗浄
し、硬化を行った。次に実施例1と同様に反射防止効果
を兼ねた機能を有する透明な上部電極106を700Å
堆積した。上部電極としてIn2 3 (IO)を用い
た。グリッド電極107を印刷し、さらにバスバー10
8を積層し30cm角のトリプルセルを作製した。同様
にして10枚の試料を作製した。さらに、これら試料の
エンカプシュレーションを実施例1と同様に行った。
(Example 35) The following solar cell was prepared in substantially the same manner as in Example 24 except that the triple solar cell shown in Fig. 4 was used as the solar cell. First, a lower electrode 102 composed of a textured AlSi layer and a ZnO layer as a high resistance transparent conductive member for shunt prevention is formed on a substrate 101, and then placed in a microwave plasma CVD film forming apparatus (not shown), An n layer 103, an i layer 104, and a p layer 105 were deposited in this order to form a bottom layer. At this time, the i layer 104 was a-SiGe. Next, the n-layer 113,
The i layer 114 and the p layer 115 were deposited in this order to form a middle layer. The i layer 114 was made of a-SiGe similarly to the bottom layer. Next, the n layer 123, the i layer 124, and the p layer 125 were deposited in this order to form a top layer. The i layer 124 is a-
SiGe. Next, the acrylic cationic electrodeposition coating used in Example 1 was used for electrodeposition treatment. Then, it was washed and cured. Next, the transparent upper electrode 106 having a function of also having an antireflection effect as in Example 1 is set to 700 Å
Deposited. In 2 O 3 (IO) was used as the upper electrode. The grid electrode 107 is printed, and the bus bar 10 is further printed.
8 was laminated to produce a 30 cm square triple cell. Similarly, ten samples were prepared. Further, encapsulation of these samples was performed in the same manner as in Example 1.

【0251】得られた試料の初期特性は、7.7%±
0.7%、シャント抵抗は29KΩcm2 ±3KΩcm
2 であり良好な特性であった。次にこの試料の信頼性試
験を実施例1と同様に行った。
The initial characteristics of the obtained sample are 7.7% ±
0.7%, shunt resistance is 29 KΩcm 2 ± 3 KΩcm
2 , which was a good characteristic. Next, the reliability test of this sample was performed in the same manner as in Example 1.

【0252】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値の2%の低下率であり有
意な劣化は生じなかった。シャント抵抗を測定したとこ
ろ、低下は8%であった。本実施例の結果から本発明の
太陽電池製造方法で作製した本発明の太陽電池は歩留ま
りが良く良好な特性で有り耐久性も良いことがわかる。
(実施例36)図3に示す層構成の太陽電池を以下の
ようにして作製した。まず、実施例24と同様にして、
SUS基板上に、p型層105まで作製した。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, the rate of decrease was 2% of the initial value, and significant deterioration did not occur. When the shunt resistance was measured, the decrease was 8%. From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.
(Example 36) A solar cell having the layer structure shown in Fig. 3 was produced as follows. First, in the same manner as in Example 24,
The p-type layer 105 was formed on the SUS substrate.

【0253】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い電着時に基板101裏面
に電着が施されないようにして図9の電解槽301に浸
漬した。対向電極303として、極比が1:1となるよ
うに30cm×30cmの大きさで、前記基板101に
対して裏側をプラスチック製の絶縁性フィルムを用いて
シールしたSUS304ステンレス板を用いた。電着塗
料302は固形分10%のアクリル−メラミン系アニオ
ン電着塗料を用い、電導度は620μS/cmであり、
pHは8.47であった。電着時の浴温は25.4℃
で、基板101にプラス10Vの電圧を印加して電着終
了時間を10秒として極間距離を50mmに固定し電着
を行った。このとき流れる電流と時間の関係は図16に
示すとおりであった。電着後、太陽電池100を電着槽
から速やかに引き上げ、純水で十分に洗浄を行い、未反
応の電着塗料を洗い流し、50℃のオーブンに投入し、
10分放置して水分を乾燥させた。その後、オーブンの
温度を10℃/分の速度で昇温し、180℃に達してか
ら20分保持し電着樹脂の硬化を行った。その後、基板
101をオーブンから取り出し冷却後基板101の一部
を切り出して走査型電子顕微鏡で観察したところ半導体
層105の表面には、約5μm〜50μmの径の半球状
の堆積物が点在して観察された。この部分の赤外吸収
を、顕微機能付きFTIRを用いて分析したところ、ア
クリルエステルのカルボニル基の吸収があり電着塗料が
堆積していることが確認された。さらにこの試料のOB
IC像を観察したところ、前記電着塗料の堆積部分のみ
が発電せず、従って、前記堆積膜はシャント部分にのみ
堆積していることが確認された。
Next, the back surface of the substrate 101 was covered with an insulating film made of plastic, and the back surface of the substrate 101 was immersed in the electrolytic bath 301 of FIG. 9 so that the back surface of the substrate 101 was not electrodeposited. As the counter electrode 303, a SUS304 stainless plate having a size of 30 cm × 30 cm so that the polar ratio was 1: 1 and the back side of which was sealed with an insulating film made of plastic was used. The electrodeposition coating material 302 is an acrylic-melamine-based anion electrodeposition coating material having a solid content of 10%, and has an electric conductivity of 620 μS / cm.
The pH was 8.47. Bath temperature during electrodeposition is 25.4 ° C
Then, a voltage of plus 10 V was applied to the substrate 101, the electrodeposition end time was set to 10 seconds, the distance between the electrodes was fixed to 50 mm, and electrodeposition was performed. The relationship between the current flowing at this time and the time was as shown in FIG. After electrodeposition, the solar cell 100 is quickly pulled up from the electrodeposition tank, thoroughly washed with pure water, unreacted electrodeposition paint is washed off, and placed in an oven at 50 ° C.
It was left for 10 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 20 minutes to cure the electrodeposition resin. After that, the substrate 101 was taken out of the oven, and after cooling, a part of the substrate 101 was cut out and observed with a scanning electron microscope. As a result, hemispherical deposits having a diameter of about 5 μm to 50 μm were scattered on the surface of the semiconductor layer 105. Was observed. When the infrared absorption of this portion was analyzed by using FTIR with a microscopic function, it was confirmed that the carbonyl group of the acrylic ester was absorbed and the electrodeposition paint was deposited. OB of this sample
When the IC image was observed, it was confirmed that only the deposited portion of the electrodeposition paint did not generate power, and thus the deposited film was deposited only on the shunt portion.

【0254】次に、上述した方法と同様にして電着時間
のみを20秒、30秒、40秒、50秒、60秒、70
秒、80秒、90秒、100秒と変化して、試料を作製
した。熱硬化処理後、不図示の抵抗加熱の蒸着装置に入
れて、酸素を導入しながら1×10-4Torrの内圧に
保ちInとSnの合金を抵抗加熱により蒸着し、反射防
止効果を兼ねた機能を有する透明なITOの上部電極1
06を700Å堆積した。
Then, similarly to the above-mentioned method, only the electrodeposition time is 20 seconds, 30 seconds, 40 seconds, 50 seconds, 60 seconds, 70 seconds.
Samples were prepared by changing the time in seconds, 80 seconds, 90 seconds, and 100 seconds. After the thermosetting treatment, the film was placed in a resistance heating vapor deposition device (not shown), and while maintaining the internal pressure of 1 × 10 −4 Torr while introducing oxygen, an alloy of In and Sn was vapor-deposited by resistance heating to also serve as an antireflection effect. Transparent ITO upper electrode 1 with function
06 was deposited to 700 liters.

【0255】次に、実施例1と同様にして、グリッド電
極、バスバーを形成して30cm角のシングルセルを作
製した。続いて、これら試料のエンカプシュレーション
を行った。
Then, in the same manner as in Example 1, grid electrodes and bus bars were formed to produce a 30 cm square single cell. Subsequently, encapsulation of these samples was performed.

【0256】これらの初期特性を測定したところ、表1
と同様な結果となった。即ち、電着は時間で管理するこ
とが可能で印加電圧10Vに対しては電着時間は30秒
から90秒が好ましいことが分かった。
When these initial characteristics were measured, Table 1
The result is similar to. That is, it was found that the electrodeposition can be controlled by time, and that the electrodeposition time is preferably 30 to 90 seconds for an applied voltage of 10V.

【0257】その後、上述した方法と同様に、10V6
0秒の条件で電着した後、前述の方法でエンカプシュレ
ーションまでを行った試料を10枚作製した。
After that, as in the method described above, 10V6
After electrodeposition under the condition of 0 seconds, 10 samples were prepared by performing encapsulation by the above method.

【0258】得られた試料の信頼性試験を実施例1と同
様にして行った。
A reliability test of the obtained sample was conducted in the same manner as in Example 1.

【0259】試験終了後の試料を初期と同様にシミュレ
ータを用い太陽電池特性を測定したところ、初期変換効
率に対して平均で5%の低下であり有意な劣化は生じな
かった。また、シャント抵抗を測定したところ約10%
の減少で有意な劣化はなかった。電着が良好な結果を有
することがわかった。
When the solar cell characteristics of the sample after the end of the test were measured using a simulator in the same manner as in the initial stage, the average conversion efficiency was 5% lower than the initial conversion efficiency, and no significant deterioration occurred. Also, when the shunt resistance is measured, it is about 10%.
There was no significant deterioration in It has been found that electrodeposition has good results.

【0260】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、信頼性も良いことがわかった。
From the results of this example, it was found that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention had good yield, good characteristics, and high reliability.

【0261】(実施例37)次に図5の構成の太陽電池
を実施例36とほぼ同様に作製した。
Example 37 Next, a solar cell having the structure shown in FIG. 5 was produced in substantially the same manner as in Example 36.

【0262】まず、30cm角のコーニング7059基
板101上に不図示の蒸着装置を用いてSnO2 の透明
な上部電極106を堆積した。その後、上部電極106
が幅2cmのサブセルが5mm幅のギャップを開けて並
ぶようにエッチングしてパターニングを施した。次に、
メタルマスクを用いて前記上部電極106とほぼ重なり
合うようにp層105、i層104、n層103を堆積
した。次に基板101を電着槽201に浸漬し、アクリ
ル−メラミン系アニオン系電着塗料を用いて電着した。
対向電極203として、極比が1:1となるように30
cm×30cmの大きさで、前記基板101に対して裏
側をプラスチック製の絶縁性フィルムを用いてシールし
たSUS304ステンレス板を用いた。電着塗料302
は固形分8.0%のアクリル−メラミン系アニオン電着
塗料を用い、電導度とpHを実施例36と同様の方法で
測定したところ、それぞれ、720μS/cm、8.2
7であった。浴温25.3℃のもとで、基板101にプ
ラス10Vの電圧を印加して30秒間保持し、極間距離
を50mmとして電着を行った。このとき、電圧の印加
方法は図17に示すようにソフトスタート方式で印加開
始から1V/秒の速度で上昇させ、10秒間で10Vに
なるようにした。このときの電流と時間との関係は図1
8となった。この結果、電極間に電圧を印加した際に、
初期に急激な電流が流れることが防げ、樹脂の均一な堆
積が得られる。電着後、太陽電池100を電着槽から速
やかに引き上げ、純水で十分に洗浄を行い、未反応の電
着塗料を洗い流した。これを50℃のオーブンに投入
し、20分放置して水分を乾燥させた。その後、オーブ
ンの温度を10℃/分の速度で昇温し、180℃に達し
てから30分保持し電着樹脂の硬化を行った。さらに基
板101を、メタルマスクを用いて不図示のスパッタ装
置に投入してアルミニウムの下部電極102を形成し、
10段直列の30cm角のシングルセルを作製した。以
上の作製法で試料を10枚作製した。
First, a transparent upper electrode 106 of SnO 2 was deposited on a Corning 7059 substrate 101 of 30 cm square by using a vapor deposition device (not shown). Then, the upper electrode 106
Was etched and patterned so that subcells each having a width of 2 cm were arranged side by side with a gap having a width of 5 mm. next,
A p-layer 105, an i-layer 104, and an n-layer 103 were deposited so as to substantially overlap with the upper electrode 106 using a metal mask. Next, the substrate 101 was dipped in the electrodeposition bath 201 and electrodeposited using an acrylic-melamine-based anion-based electrodeposition coating material.
As the counter electrode 203, a pole ratio of 30 is set to 30.
A SUS304 stainless steel plate having a size of cm × 30 cm, the back side of which was sealed with a plastic insulating film with respect to the substrate 101, was used. Electrodeposition paint 302
Is an acrylic-melamine-based anionic electrodeposition coating composition having a solid content of 8.0%, and its electrical conductivity and pH were measured by the same method as in Example 36. The results were 720 μS / cm and 8.2, respectively.
It was 7. A voltage of plus 10 V was applied to the substrate 101 for 30 seconds under a bath temperature of 25.3 ° C., and electrodeposition was performed with the distance between the electrodes being 50 mm. At this time, as the voltage application method, as shown in FIG. 17, the voltage was increased at a rate of 1 V / second from the start of application by a soft start method so that the voltage was 10 V in 10 seconds. The relationship between current and time at this time is shown in FIG.
It became 8. As a result, when a voltage is applied between the electrodes,
It is possible to prevent a rapid electric current from flowing in the initial stage, and to obtain a uniform resin deposition. After electrodeposition, the solar cell 100 was quickly pulled out from the electrodeposition tank, thoroughly washed with pure water, and the unreacted electrodeposition paint was washed off. This was placed in an oven at 50 ° C. and left for 20 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 30 minutes to cure the electrodeposition resin. Further, the substrate 101 is put into a sputtering device (not shown) using a metal mask to form an aluminum lower electrode 102,
A single cell of 10 cm in series and 30 cm square was produced. Ten samples were manufactured by the above manufacturing method.

【0263】得られた試料の初期特性は、変換効率6.
9±1%、シャント抵抗は40〜65KΩcm2 であっ
た。
The initial characteristic of the obtained sample was that the conversion efficiency was 6.
The shunt resistance was 9 ± 1% and 40 to 65 KΩcm 2 .

【0264】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was performed in the same manner as in Example 1.

【0265】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し4%の低下率であ
り劣化は生じなかった。また、シャント抵抗を測定した
ところほとんど変化していなかった。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the deterioration rate was 4% with respect to the initial value and no deterioration occurred. In addition, when the shunt resistance was measured, there was almost no change.

【0266】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は、良好な特性で有り
耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the method of manufacturing a solar cell of the present invention has good characteristics and good durability.

【0267】(実施例38)図3の構成の太陽電池を電
着塗料の種類及び印加電圧を変え、実施例36とほぼ同
様に作製した。
(Example 38) A solar cell having the structure shown in Fig. 3 was manufactured in substantially the same manner as in Example 36 except that the kind of electrodeposition coating material and the applied voltage were changed.

【0268】実施例36と同様にSUS430BA製基
板(30cm×30cm、厚み0.2mm)101上に
下部電極102を形成した。基板101を取り出し、不
図示RFプラズマCVD成膜装置に入れn層103、i
層104、p層105の順で堆積を行った。
As in Example 36, the lower electrode 102 was formed on the SUS430BA substrate (30 cm × 30 cm, thickness 0.2 mm) 101. The substrate 101 is taken out and placed in an RF plasma CVD film forming apparatus (not shown) to form the n layer 103, i.
The layer 104 and the p layer 105 were deposited in this order.

【0269】次に、実施例36と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、図
9の電着槽301に浸漬した。電着塗料302は固形分
10.5%のアクリル−メラミン系アニオン電着塗料に
架橋を強固にするためにスチレンを多く含んだものを用
い、電導度を測定したところ518μS/cmであり、
pHは8.05であった。浴温24.8℃のもとで、基
板101に印加電圧を2Vで30秒間保持し、極間距離
を50mmとして電着を行った。電着後、太陽電池10
0を電着槽から速やかに引き上げ、純水で十分に洗浄を
行い、未反応の電着塗料を洗い流し、50℃をオーブン
に投入し、20分放置して水分を乾燥させた。その後、
オーブンの温度を10℃/分の速度で昇温し、150℃
に達してから30分保持し電着樹脂の硬化を行った。ス
チレンの含有量を増やすことにより実施例36及び37
に比べ硬化温度を約30℃低くする事ができた。その
後、基板101をオーブンから取り出し冷却後、実施例
36と同様に、反射防止効果を兼ねた機能を有する透明
な上部電極106を700Å堆積した。次に、実施例1
と同様にしてグリッド107を印刷した。さらに接着剤
付きの銅箔のバスバー108を積層し、30cm角のシ
ングルセルを作製した。
Next, as in Example 36, the substrate 101 was used.
The back side of was covered with an insulating film made of plastic, and immersed in the electrodeposition tank 301 of FIG. The electrodeposition coating material 302 was an acrylic-melamine-based anion electrodeposition coating material having a solid content of 10.5% and containing a large amount of styrene in order to strengthen the cross-linking, and the electric conductivity was measured to be 518 μS / cm.
The pH was 8.05. Under the bath temperature of 24.8 ° C., the voltage applied to the substrate 101 was kept at 2 V for 30 seconds, and the electrode distance was set to 50 mm for electrodeposition. After electrodeposition, solar cell 10
0 was quickly pulled up from the electrodeposition tank, thoroughly washed with pure water, the unreacted electrodeposition paint was washed away, 50 ° C. was placed in an oven, and the water was dried by leaving it for 20 minutes. afterwards,
Raise the oven temperature at a rate of 10 ° C / min to 150 ° C
The temperature was maintained for 30 minutes to cure the electrodeposition resin. Examples 36 and 37 by increasing the content of styrene
It was possible to lower the curing temperature by about 30 ° C. After that, the substrate 101 was taken out from the oven, cooled, and then, similarly to Example 36, 700Å of a transparent upper electrode 106 having a function also as an antireflection effect was deposited. Next, Example 1
The grid 107 was printed in the same manner as above. Further, a bus bar 108 of copper foil with an adhesive was laminated to form a single cell of 30 cm square.

【0270】さらに、電着時の電圧を上記の同様の手順
で5V,7V,10V,15V,20V,30Vと変化
させて試料を作製した。
Further, the voltage at the time of electrodeposition was changed to 5V, 7V, 10V, 15V, 20V, 30V by the same procedure as above to prepare samples.

【0271】得られた試料の初期特性を前述の方法と同
様にして測定したところ図14と同様な傾向を示す結果
となり、電着時の電圧は5Vから20Vが適当であるこ
とがわかった。
When the initial characteristics of the obtained sample were measured by the same method as described above, the result showed the same tendency as shown in FIG. 14, and it was found that the voltage during electrodeposition is preferably 5V to 20V.

【0272】そこで、印加電圧を15Vで電着し、上述
同様の方法でグリッド電極107を印刷し、バスバー1
08を接着した試料を10枚作製した。さらに、この試
料のエンカプシュレーションを実施例1と同様に行っ
た。
Therefore, the applied voltage was electrodeposited at 15 V, the grid electrode 107 was printed by the same method as described above, and the bus bar 1
Ten samples were prepared by adhering 08. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0273】次にこの10枚の試料を試料の耐久特性を
実施例1と同様に評価した。温湿度サイクル試験終了後
の試料の太陽電池特性を測定したところ初期値に対し平
均して3.2%の低下であり劣化は生じなかった。シャ
ント抵抗を測定したところ約8%の減少で有意な劣化は
ほとんど起こらず、良好な特性が得られ、耐久性も良好
であった。また、用いる電着樹脂にスチレンなどの非官
能性のモノマーを多く含有することにより強固な電着樹
脂の積層がなされ耐久性を増すことができた。
Next, the ten samples were evaluated for durability characteristics in the same manner as in Example 1. When the solar cell characteristics of the sample after the temperature / humidity cycle test were measured, the average value was 3.2% lower than the initial value, and no deterioration occurred. When the shunt resistance was measured, there was almost no significant deterioration with a decrease of about 8%, good characteristics were obtained, and durability was also good. Further, by containing a large amount of a non-functional monomer such as styrene in the electrodeposition resin used, a strong electrodeposition resin was laminated and the durability could be increased.

【0274】(実施例39)図3の構成の太陽電池を電
着塗料を変え、定電流法で実施例36とほぼ同様に作製
した。
(Example 39) A solar cell having the structure shown in Fig. 3 was manufactured in substantially the same manner as in Example 36 by changing the electrodeposition paint and using the constant current method.

【0275】まず、実施例39と同様にSUS430B
A製基板(30cm×30cm、厚み0.2mm)10
1上に下部電極102を形成し、その後、不図示のRF
プラズマCVD成膜装置に入れn層103、i層10
4、p層105の順で堆積を行った。
First, in the same manner as in Example 39, SUS430B
A substrate (30 cm x 30 cm, thickness 0.2 mm) 10
1. A lower electrode 102 is formed on the first electrode 1 and then an RF not shown
The n layer 103 and the i layer 10 were placed in a plasma CVD film forming apparatus.
4, the p layer 105 was deposited in this order.

【0276】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い、図9の電着槽301に
浸漬した。アクリル系アニオン電着塗料にポリフッ素エ
チレン微粒子を分散させた固形分10.5%の電着塗料
202を用い、ここで、電導度は560μS/cmであ
り、pH7.93であった。浴温24.4℃のもとで、
電着処理を施した。電着は定電流法を用い、電流を0.
2A/dm2 ,0.5A/dm2 ,1.0A/dm2
1.5A/dm2 ,2.0A/dm2 に設定し、それぞ
れ10秒間通電した。定電流法では電着樹脂の積層にと
もない電圧が増加する傾向があった。電着にともない次
第に電圧が上昇するので電圧を太陽電池のブレークダウ
ン電圧以下になるように管理する必要がある。純水で十
分に洗浄し、未反応の電着塗料を洗い流した後、50℃
のオーブンに投入し、10分放置して水分を乾燥させ
た。その後、オーブンの温度を10℃/分の速度で昇温
し、180℃に達してから20分保持し電着樹脂の硬化
を行った。その後、基板101をオーブンから取り出し
冷却後、実施例36と同様に、反射防止効果を兼ねた機
能を有する透明な上部電極106を700Å堆積した。
その後、実施例36と同様にしてグリッド107を印刷
した。次に接着剤付きの銅箔バスバー108を積層し、
30cm角のシングルセルを作製した。
Next, the back side of the substrate 101 was covered with an insulating film made of plastic and immersed in the electrodeposition bath 301 shown in FIG. An electrodeposition coating material 202 having a solid content of 10.5%, in which polyfluorinated ethylene fine particles were dispersed in an acrylic anion electrodeposition coating material, was used, where the electrical conductivity was 560 μS / cm and the pH was 7.93. At a bath temperature of 24.4 ° C,
It was subjected to electrodeposition treatment. A constant current method is used for electrodeposition, and the current is set to 0.
2 A / dm 2 , 0.5 A / dm 2 , 1.0 A / dm 2 ,
The current was set to 1.5 A / dm 2 and 2.0 A / dm 2 , and each was energized for 10 seconds. In the constant current method, the voltage tended to increase as the electrodeposition resin was laminated. Since the voltage gradually rises with electrodeposition, it is necessary to manage the voltage so that it is below the breakdown voltage of the solar cell. After washing thoroughly with pure water to wash off the unreacted electrodeposition paint, 50 ° C
It was placed in the oven and dried for moisture for 10 minutes. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 20 minutes to cure the electrodeposition resin. After that, the substrate 101 was taken out from the oven, cooled, and then, similarly to Example 36, 700Å of a transparent upper electrode 106 having a function also as an antireflection effect was deposited.
Then, the grid 107 was printed in the same manner as in Example 36. Next, the copper foil bus bar 108 with an adhesive is laminated,
A 30 cm square single cell was prepared.

【0277】初期特性を前述の方法で測定した結果を表
3に示した。表3より電着時の電流は0.5A/dm2
から1.5A/dm2 が好ましいことが分かった。
Table 3 shows the results of the measurement of the initial characteristics by the method described above. From Table 3, the current during electrodeposition is 0.5 A / dm 2
Therefore, it was found that 1.5 A / dm 2 is preferable.

【0278】その後、電着電流1.0A/dm2 の条件
で上記の方法と同様にして10枚の試料を作製した。さ
らに、この試料のエンカプシュレーションを実施例1と
同様に行った。
Thereafter, 10 samples were prepared under the conditions of electrodeposition current of 1.0 A / dm 2 in the same manner as above. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0279】得られた試料の初期特性は変換効率6.4
%±0.6%であり、良好な特性であった。
The initial characteristic of the obtained sample is that the conversion efficiency is 6.4.
% ± 0.6%, which was a good characteristic.

【0280】次にこの試料の信頼性試験を実施例1と同
様にした。
Next, the reliability test of this sample was performed in the same manner as in Example 1.

【0281】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し2%の低下であり
劣化は生じなかった。シャント抵抗を測定したところほ
とんど変化していなかった。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, it was found to be 2% lower than the initial value, and no deterioration occurred. When the shunt resistance was measured, there was almost no change.

【0282】また、更に試料をサンシャインウェザーメ
ーターを用いて耐候試験を1000時間行い、試験終了
後、これらの太陽電池特性を測定したところ、初期値に
対して1%の低下であり、屋外条件での使用にも十分耐
え得ることがわかった。また、吸水量が小さく、撥水性
の高いフッ素系,シリコン系のフィラーを塗料に分散さ
せることにより耐水性、耐候性を向上させることができ
た。
[0282] Further, the samples were further subjected to a weather resistance test for 1000 hours using a sunshine weather meter, and the solar cell characteristics of these samples were measured after the test was completed. It turns out that it can withstand the use of. Further, it was possible to improve water resistance and weather resistance by dispersing a fluorine-based or silicon-based filler having a small water absorption amount and high water repellency in the paint.

【0283】(実施例40)太陽電池の構成を図4のト
リプル型太陽電池とした以外はほぼ実施例36と同様の
方法で以下のようにして太陽電池を作製した。まず、基
板101上にテクスチャー構造のAlSiの光反射層
と、シャント防止用の高抵抗透明導電性部材ZnOの光
反射増加層が積層された下部電極102を形成した。そ
の後、不図示のマイクロ波プラズマCVD成膜装置に入
れn層103、i層104、p層105の順で積層を行
いボトム層を形成した。このとき、i層104はa−S
iGeとした。次に、n層113、i層114、p層1
15の順で積層を行いミドル層を形成した。i層114
はボトム層と同様にa−SiGeとした。次に、n層1
23、i層124、p層125の順で積層を行いトップ
層を形成した。i層124はa−Siとした。
(Example 40) A solar cell was prepared as follows by substantially the same method as in Example 36 except that the structure of the solar cell was the triple type solar cell shown in Fig. 4. First, a lower electrode 102 in which a light reflection layer of AlSi having a texture structure and a light reflection enhancement layer of a high resistance transparent conductive member ZnO for shunt prevention were laminated was formed on a substrate 101. Then, the substrate was placed in a microwave plasma CVD film forming apparatus (not shown), and the n layer 103, the i layer 104, and the p layer 105 were laminated in this order to form a bottom layer. At this time, the i layer 104 is aS
iGe. Next, the n layer 113, the i layer 114, and the p layer 1
The layers were laminated in the order of 15 to form a middle layer. i layer 114
Was a-SiGe as in the bottom layer. Next, n layer 1
The top layer was formed by stacking 23, the i layer 124, and the p layer 125 in this order. The i layer 124 was a-Si.

【0284】次に、アクリル−メラミン系アニオン電着
塗料202を用いて極間距離を50mm、印加電圧10
V、電着時間30秒の条件で電着処理を施した。その
後、洗浄し、熱硬化を行った。その後、実施例36と同
様に、反射防止効果を兼ねた機能を有する透明な上部電
極106を700Å積層した。上部電極106としてI
2 2 (IO)を用いた。グリッド電極107を印刷
し、さらにバスバー108を積層し、図8に示す30c
m角のトリプルセルを作製した。同様にして10枚の試
料を作製した。さらに、この試料のエンカプシュレーシ
ョンを実施例1と同様に行った。
Next, an acrylic-melamine-based anion electrodeposition coating material 202 was used, the distance between the electrodes was 50 mm, and the applied voltage was 10 mm.
The electrodeposition treatment was performed under the conditions of V and electrodeposition time of 30 seconds. Then, it wash | cleaned and heat-hardened. Then, as in Example 36, 700 Å of transparent upper electrode 106 having a function of also having an antireflection effect was laminated. I as the upper electrode 106
n 2 O 2 (IO) was used. The grid electrode 107 is printed, and the bus bar 108 is further laminated, and 30c shown in FIG.
An m-square triple cell was prepared. Similarly, ten samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0285】得られた試料の初期特性は、7.5%±
0.6%でありシャント抵抗が60KΩcm2 〜95K
Ωcm2 であり良好な特性でばらつきも少なかった。
The initial characteristics of the obtained sample are 7.5% ±
0.6% and the shunt resistance is 60 KΩcm 2 to 95 K
It was Ωcm 2 and had good characteristics and little variation.

【0286】次に、この試料の信頼性試験を実施例と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in the example.

【0287】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ、変換効率は初期値に対して
4.5%の減少であり優位な劣化は認められなかった。
また、シャント抵抗に関しても約5%の減少で優位な劣
化はほとんど起こらずほとんど変化していなかった。
When the solar cell characteristics of the sample after the completion of the temperature / humidity cycle test were measured, the conversion efficiency was 4.5% lower than the initial value, and no significant deterioration was observed.
Regarding the shunt resistance, there was almost no significant deterioration with a decrease of about 5%, and there was almost no change.

【0288】本実施例から、本発明の太陽電池製造方法
で作製した太陽電池は歩留まりが良く、良好な特性であ
り耐久性も良いことがわかる。
From this example, it is understood that the solar cell manufactured by the solar cell manufacturing method of the present invention has a good yield, good characteristics, and good durability.

【0289】(実施例41)図3に示す層構成の太陽電
池を以下のようにして作製した。まず、実施例1と同様
にして、SUS基板上に、Cr、半導体層、ITOを堆
積した。
Example 41 A solar cell having the layer structure shown in FIG. 3 was produced as follows. First, in the same manner as in Example 1, Cr, a semiconductor layer, and ITO were deposited on the SUS substrate.

【0290】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い、パッシベーション時に
基板101裏面側に電流が流れないようにして図9の電
解槽201に浸漬した。対向電極303として、極比が
1:1となるように30cm×30cmの大きさで、前
記基板101に対して裏側をプラスチック製の絶縁性フ
ィルムをシールしたSUS304ステンレス板を用い
た。パッシベーション液としては、AlCl3 の10%
溶液を用いた。この溶液の電導度は、600mS/cm
であった。次に、基板101側をマイナスとして1.5
Vで3秒間電圧を印加、パッシベーションを行った。そ
の後、太陽電池100を電解層301から引き上げ、純
水で十分に洗浄を行い、パッシベーション液を洗い流
し、80℃のオーブンに投入し、30分放置して水分を
乾燥させた。次に、基板101を不図示のスクリーン印
刷機に設置し、幅100μm長さ8cmのグリッド電極
107を間隔1cmで印刷した。このとき導電性ペース
トは、Agフィラー70部、ポリエステルバインダー3
0部(体積比)、溶剤として酢酸エチルを20部含む組
成のものを用いた。印刷後、基板101をオーブンに入
れて150℃で30分間保持し、導電性ペーストをキュ
アした。
Next, the back side of the substrate 101 was covered with an insulating film made of plastic, and immersed in the electrolytic cell 201 of FIG. 9 so that no current would flow to the back side of the substrate 101 during passivation. As the counter electrode 303, a SUS304 stainless steel plate having a size of 30 cm × 30 cm with a polar ratio of 1: 1 and a back side of the substrate 101 sealed with a plastic insulating film was used. 10% of AlCl 3 as passivation liquid
The solution was used. The conductivity of this solution is 600 mS / cm
Met. Next, with the substrate 101 side as a minus, 1.5
A voltage was applied at V for 3 seconds to perform passivation. Then, the solar cell 100 was pulled up from the electrolytic layer 301, thoroughly washed with pure water, rinsed away with the passivation liquid, placed in an oven at 80 ° C., and allowed to stand for 30 minutes to dry the water. Next, the substrate 101 was placed in a screen printer (not shown), and grid electrodes 107 having a width of 100 μm and a length of 8 cm were printed at intervals of 1 cm. At this time, the conductive paste is 70 parts of Ag filler and 3 parts of polyester binder.
A composition containing 0 part (volume ratio) and 20 parts of ethyl acetate as a solvent was used. After printing, the substrate 101 was put in an oven and kept at 150 ° C. for 30 minutes to cure the conductive paste.

【0291】さらに、幅5mmの接着剤付き銅箔のバス
バー108を図8に示すように接着し、30cm角のシ
ングルセルを作製した。
Further, a bus bar 108 of copper foil with an adhesive having a width of 5 mm was adhered as shown in FIG. 8 to prepare a 30 cm square single cell.

【0292】次に、上記の手順でパッシベーション時の
電圧2.0V,2.5V,3.0V,3.5V,4.0
V,4.5V,5,0V,5.5V,6.0Vと変化さ
せて試料を作製した。また、比較のため、パッシベーシ
ョンを行わない試料を比較例1と同様な条件で作製し
た。以上の試料の初期特性を測定した結果を図19に示
す。
Next, the voltages at the time of passivation were 2.0V, 2.5V, 3.0V, 3.5V, 4.0 in the above procedure.
Samples were prepared by changing the voltages to V, 4.5V, 5,0V, 5.5V and 6.0V. For comparison, a sample without passivation was prepared under the same conditions as in Comparative Example 1. The results of measuring the initial characteristics of the above samples are shown in FIG.

【0293】図19の変換効率は、比較例1の試料の変
換効率で規格化して示した。図19から電圧が4V程度
の時シャント抵抗が大きくなって太陽電池特性が良好で
あることが分かる。電圧が4.5V以上の時変換効率が
減少するのは、パッシベーションが過剰であるため正常
部分の上部電極106も高抵抗化してこのためシリーズ
抵抗が上がってしまったためである。
The conversion efficiency of FIG. 19 is shown by standardizing the conversion efficiency of the sample of Comparative Example 1. It can be seen from FIG. 19 that when the voltage is about 4 V, the shunt resistance increases and the solar cell characteristics are good. The reason why the conversion efficiency decreases when the voltage is 4.5 V or higher is that the upper electrode 106 in the normal portion also has a high resistance due to excessive passivation, which increases the series resistance.

【0294】次に、前記した方法で4V3秒の条件でパ
ッシベーションした基板101を10枚作製し、図9の
電解槽301を用いて以下のようにして電着を行った。
まず、基板304の裏面を前述した方法と同様にマスク
し、さらに対向電極203として前述した方法と同様
に、シールしたSUS304ステンレス板を用いた。ま
た、極比1:1となるように30cm×30cmの大き
さとした。電着塗料302は、固形分10%のエポキシ
系カチオン電着塗料を用い、架橋のためメラミンを用い
た。この液の電導度は600μS/cmであり、重量平
均分子量は8000であった。電着時は液温を25℃に
保った。基板304と対向電極203を電着槽301に
浸漬して前記基板304と対向電極303とを液になじ
ませるため30秒間保持した。その後、基板304にマ
イナス2Vの電圧を印加して10秒間保持し、電着を行
った。また、流れた電流のクーロン量は50mCであっ
た。太陽電池100を電着槽301から引き上げ、純水
で十分に洗浄を行い、未反応の電着塗料を洗い流し、5
0℃のオーブンに投入し、30分放置して水分を乾燥さ
せた。その後、オーブンの温度を10℃/分の速度で昇
温し、180℃に達してから30分保持し電着樹脂の硬
化を行った。
Next, ten passivated substrates 101 were prepared by the above method under the condition of 4V for 3 seconds, and electrodeposition was performed as follows using the electrolytic cell 301 in FIG.
First, the back surface of the substrate 304 was masked in the same manner as described above, and a sealed SUS304 stainless steel plate was used as the counter electrode 203 in the same manner as described above. The size was 30 cm × 30 cm so that the polar ratio was 1: 1. As the electrodeposition coating 302, an epoxy-based cationic electrodeposition coating having a solid content of 10% was used, and melamine was used for crosslinking. The conductivity of this liquid was 600 μS / cm, and the weight average molecular weight was 8,000. The liquid temperature was kept at 25 ° C. during electrodeposition. The substrate 304 and the counter electrode 203 were immersed in the electrodeposition bath 301, and the substrate 304 and the counter electrode 303 were held for 30 seconds in order to adapt to the liquid. After that, a voltage of minus 2 V was applied to the substrate 304 and held for 10 seconds for electrodeposition. In addition, the amount of Coulomb of the flowing current was 50 mC. The solar cell 100 is pulled up from the electrodeposition tank 301, thoroughly washed with pure water, and the unreacted electrodeposition paint is washed off.
It was put in an oven at 0 ° C. and left for 30 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 30 minutes to cure the electrodeposition resin.

【0295】さらに、上述した方法と同様にして電着時
の電圧のみを0V〜60Vと変化させて試料を作製し
た。次に、前述した方法で基板101上にグリッド電
極、バスバーを形成し、30cm角のシングルセルを作
製した。得られた試料の変換効率を前述の方法と同様に
して測定した。電着電圧と変換効率の関係を図20を示
す。図において、電着電圧0Vを1とし規格化して表し
た。図より電着時の電圧は10Vから30Vが適当であ
ることが分かった。また30V以上の電圧の変換効率が
低くなるのは電着時に太陽電池に対して順バイアスとな
るように電圧が印加されるため欠陥部分以外の正常な部
分にも電着膜が堆積してしまい、該電着膜によりグリッ
ド電極の接触抵抗が上がってしまうためである。
Further, in the same manner as the above-mentioned method, a sample was prepared by changing only the voltage during electrodeposition from 0V to 60V. Next, a grid electrode and a bus bar were formed on the substrate 101 by the method described above, and a 30 cm square single cell was produced. The conversion efficiency of the obtained sample was measured by the same method as described above. FIG. 20 shows the relationship between the electrodeposition voltage and the conversion efficiency. In the figure, the electrodeposition voltage of 0 V is set to 1 and standardized. From the figure, it was found that a suitable voltage during electrodeposition is 10V to 30V. In addition, the conversion efficiency of the voltage of 30 V or more is low, because the voltage is applied so as to be forward biased to the solar cell during electrodeposition, and the electrodeposition film is deposited on the normal portion other than the defective portion. This is because the electrodeposited film increases the contact resistance of the grid electrode.

【0296】次に、変換効率の良好な電着電圧10Vの
試料の一部を切り出して走査型電子顕微鏡で観察したと
ころ上部電極106の表面には、約5μm〜50μmの
径の半球状の堆積物が点在して観察された。この部分の
赤外吸収を、顕微鏡機能付きFTIRを用いて分析した
ところカルボニル基の吸収があり電着塗料が堆積してい
ることが確認された。さらにこの試料のOBIC像を観
察したところ、前記電着塗料の堆積部分のみが発電せ
ず、従って、前記堆積はシャント部分にのみ堆積してい
ることが確認された。また、電着塗料の堆積している面
積はシャント部分の面積の10倍以下であった。
Next, a part of the sample having an electrodeposition voltage of 10 V with good conversion efficiency was cut out and observed with a scanning electron microscope. As a result, hemispherical deposition with a diameter of about 5 μm to 50 μm was formed on the surface of the upper electrode 106. Objects were scattered and observed. When the infrared absorption of this portion was analyzed by using FTIR with a microscope function, it was confirmed that there was absorption of a carbonyl group and the electrodeposition coating was deposited. Further, when the OBIC image of this sample was observed, it was confirmed that only the deposited portion of the electrodeposition coating did not generate power, and thus the deposited portion was deposited only on the shunt portion. The area where the electrodeposition paint was deposited was 10 times or less the area of the shunt portion.

【0297】次に、上述した方法と同様にして4V3秒
の条件でパッシベーションを行い、10Vの電圧で電着
した。その後、前述した方法でグリッド電極107、バ
スバー108を接着し30cm角のシングルセル10枚
を作製した。
Next, passivation was performed under the condition of 4V for 3 seconds in the same manner as the above-mentioned method, and electrodeposition was performed at a voltage of 10V. After that, the grid electrode 107 and the bus bar 108 were adhered by the method described above to prepare 10 single cells of 30 cm square.

【0298】得られた試料の初期特性及び信頼性試験後
の特性を上述した方法で測定し、また、シャント抵抗も
併せて測定した。結果を図21,図22に示す。図の結
果は同様の構成で、パッシベーションと電着を行わない
で作製した試料(比較例1)で規格化した。
The initial characteristics and the characteristics after the reliability test of the obtained sample were measured by the above-mentioned methods, and the shunt resistance was also measured. The results are shown in FIGS. 21 and 22. The results in the figure have the same structure and are standardized by a sample (Comparative Example 1) produced without passivation and electrodeposition.

【0299】以上の結果から比較例では初期特性のばら
つきが大きく、信頼性試験後の低下が大きいのに対し本
実施例の太陽電池は優れた特性を示した。
From the above results, in the comparative example, the variation in the initial characteristics was large and the deterioration after the reliability test was large, whereas the solar cell of this example showed excellent characteristics.

【0300】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り、耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the method of manufacturing a solar cell of the present invention has good yield, good characteristics, and good durability.

【0301】(実施例42)pn接合の薄膜多結晶の太
陽電池を作製した。
Example 42 A thin film polycrystalline solar cell having a pn junction was prepared.

【0302】コーニング7059基板(30cm×30
cm、厚み3.0mm)101上に下部電極102を形
成した。基板101を取り出し、不図示のRFプラズマ
CVD成膜装置に入れn層103、p層105の順で堆
積を行った。
Corning 7059 substrate (30 cm × 30
The lower electrode 102 was formed on the (cm, thickness 3.0 mm) 101. The substrate 101 was taken out and placed in an RF plasma CVD film forming apparatus (not shown) to deposit the n layer 103 and the p layer 105 in this order.

【0303】次に、上部電極106を形成して、前記基
板101を、図9の電着槽301に浸漬した。本実施例
ではパッシベーションと電着を以下の条件で行った。 ──────────────────────────────────── 工 程 電 解 液 条 件 ──────────────────────────────────── パッシベーション AlCl3 (10%水溶液) 4V×3秒 60mS/cm 電 着 エポキシ系カチオン電着塗料 10V×20秒 (フッ素ポリマーフィラー含有) 電導度:600μS/cm (1V/秒) 重量平均分子量:8000 液温:25℃ クーロン量:50mC 固形分:18% ──────────────────────────────────── 電着時の電圧の印加の仕方は、0Vから10Vまで1V
/秒で掃引して、その後20秒間保持した。電着終了
後、純水で十分に洗浄し、オーブンで電着樹脂の硬化を
行った。その後、基板101をオーブンから取り出し冷
却後、実施例41と同様に、グリッド電極107を形成
し、接着剤付きの銅箔のバスバー108を積層し、30
cm角のシングルセルを作製した。同様にして10枚試
料を作製した。さらに、この試料のエンカプシュレーシ
ョンを実施例1と同様に行った。
Next, the upper electrode 106 was formed, and the substrate 101 was immersed in the electrodeposition bath 301 shown in FIG. In this example, passivation and electrodeposition were performed under the following conditions. ──────────────────────────────────── Process process Electrolysis solution condition ──────── ───────────────────────────── Passivation AlCl 3 (10% aqueous solution) 4V × 3 seconds 60mS / cm Electrodeposition Epoxy-based cation electrode Coating material 10V × 20 seconds (including fluoropolymer filler) Conductivity: 600 μS / cm (1V / second) Weight average molecular weight: 8000 Liquid temperature: 25 ° C. Coulomb amount: 50 mC Solid content: 18% ───────── ──────────────────────────── The voltage is applied during electrodeposition from 0V to 10V at 1V.
Swept at / sec and held for 20 seconds thereafter. After the electrodeposition was completed, the electrodeposition resin was thoroughly washed with pure water and the electrodeposition resin was cured in an oven. After that, the substrate 101 was taken out from the oven and cooled, and then the grid electrode 107 was formed and the bus bar 108 of copper foil with adhesive was laminated in the same manner as in Example 41.
A cm square single cell was produced. Similarly, 10 sheets of samples were prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0304】比較のため電着を行わない以外は上述と同
様にして試料(比較例42)を作製した。
For comparison, a sample (Comparative Example 42) was prepared in the same manner as above except that electrodeposition was not performed.

【0305】得られた試料の初期特性とシャント抵抗の
平均値とばらつきを図23,図24に示した。次に信頼
性試験を実施例1と同様に行い、温湿度サイクル試験終
了後の試料の太陽電池特性とシャント抵抗とを結果も図
23,図24に示した。
The initial characteristics and the average value and variation of the shunt resistance of the obtained sample are shown in FIGS. 23 and 24. Next, a reliability test was performed in the same manner as in Example 1, and the results of the solar cell characteristics and shunt resistance of the sample after the temperature and humidity cycle test are also shown in FIGS. 23 and 24.

【0306】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0307】(実施例43)図12に示す装置を用い、
パッシベーションと電着の工程とをロールツーロール法
で行い、図11に示す層構成の太陽電池を以下のように
して作製した。
(Example 43) Using the apparatus shown in FIG.
The steps of passivation and electrodeposition were performed by a roll-to-roll method, and a solar cell having the layer structure shown in FIG. 11 was produced as follows.

【0308】ロール状に巻かれた厚み0.2mm、幅3
0cmで長さ100mのSUS430BA製基板501
を繰り出しながら不図示のロールツーロール成膜装置を
用いて下部電極102、n層103、i層104、p層
105、上部電極の順で成膜を行い再びロール状に巻き
取った。次にロール状基板501を図12のパッシベー
ションと電着を連続して行う装置に設置した。前記基板
501を基板送り出しローラー502から送り出し、パ
ッシベーションを行う電解槽504、洗浄槽505、乾
燥炉506、電着を行う電解槽514、洗浄層515、
乾燥炉516を通過して最後に巻き取りローラー503
に巻き取った。同時に、マスフィルム送り出しローラー
508,518からマスクフィルム510,520を繰
り出しながら前記基板501の裏面をマスク、マスク巻
き取りローラー509,519に巻き取った。対向電極
511,521として、極比が1:1となるようにし
て、基板501に対して裏側をプラスチック製の絶縁性
フィルムを用いてシールしたSUS304ステンレス板
を用いた。基板を2m/分の速度で送った。この送り速
度に於いて基板501がパッシベーション用電解槽50
4に3秒間浸漬され、電着用電解槽514には15秒間
浸漬されるように前記電解槽504,514の長さを設
計した。パッシベーションと電着は以下の条件で行っ
た。 ──────────────────────────────────── 工 程 電 解 液 条 件 ──────────────────────────────────── パッシベーション AlCl3 (5%水溶液) 4V(連続) 30mS/cm 電 着 エポキシ系カチオン電着塗料 15V(連続) 電導度:600μS/cm 重量平均分子量:8000 液温:25℃ 固形分:13% ──────────────────────────────────── パッシベーションおよび電着の工程が終了して巻き取ら
れた太陽電池を切断機を用いて30cmの長さに切断し
た。次に、実施例1に示した方法と同様にして、幅10
0μm、長さ8cmのグリッド電極107を間隔1cm
で印刷してキュアした。さらに、幅5mmの接着剤付き
銅箔のバスバーを接着し30cm角のシングルセルを1
0枚作製した。これら試料のエンカプシュレーションを
実施例1と同様に行った。得られた試料の初期特性とシ
ャント抵抗を実施例41と同様の方法で測定し、結果を
図25,図26に示した。また、これらの試料の信頼性
試験を実施例1と同様に行い、変換効率とシャント抵抗
とを測定し、これも図25,図26に示した。比較のた
め比較例1の結果を図に示した。
Rolled in a thickness of 0.2 mm and a width of 3
SUS430BA substrate 501 with a length of 0 cm and a length of 100 m
While unrolling, a lower electrode 102, an n layer 103, an i layer 104, a p layer 105, and an upper electrode were formed in this order using a roll-to-roll film forming apparatus (not shown), and the film was wound again into a roll shape. Next, the roll-shaped substrate 501 was installed in the apparatus shown in FIG. 12 for continuously performing passivation and electrodeposition. The substrate 501 is delivered from the substrate delivery roller 502, and an electrolytic bath 504 for passivation, a cleaning bath 505, a drying furnace 506, an electrolytic bath 514 for electrodeposition, a cleaning layer 515,
After passing through the drying furnace 516, the take-up roller 503 is finally used.
Rolled up. At the same time, while the mask films 510 and 520 were being fed from the mass film feeding rollers 508 and 518, the back surface of the substrate 501 was wound around the mask and mask winding rollers 509 and 519. As the counter electrodes 511 and 521, a SUS304 stainless steel plate was used, the back side of which was sealed with a plastic insulating film with respect to the substrate 501 so that the polar ratio was 1: 1. The substrate was sent at a speed of 2 m / min. At this feed rate, the substrate 501 is the electrolytic cell 50 for passivation.
The lengths of the electrolytic baths 504 and 514 were designed so that the electrolytic baths 504 and 514 were soaked in No. 4 for 3 seconds and in the electrodeposition electrolytic bath 514 for 15 seconds. Passivation and electrodeposition were performed under the following conditions. ──────────────────────────────────── Process process Electrolysis solution condition ──────── ───────────────────────────── Passivation AlCl 3 (5% aqueous solution) 4 V (continuous) 30 mS / cm Electrodeposition Epoxy cation electrode Coating material 15 V (continuous) Conductivity: 600 μS / cm Weight average molecular weight: 8000 Liquid temperature: 25 ° C. Solid content: 13% ──────────────────────── ───────────── After the passivation and electrodeposition steps were completed, the wound solar cell was cut into a length of 30 cm using a cutting machine. Next, in the same manner as in the method described in Example 1, the width 10
The grid electrodes 107 having a length of 0 μm and a length of 8 cm are spaced by 1 cm.
I printed it and cured it. Furthermore, a bus bar of copper foil with an adhesive having a width of 5 mm is adhered to form a single cell of 30 cm square.
0 sheets were produced. Encapsulation of these samples was performed as in Example 1. The initial characteristics and shunt resistance of the obtained sample were measured by the same method as in Example 41, and the results are shown in FIGS. 25 and 26. Further, the reliability test of these samples was performed in the same manner as in Example 1 to measure the conversion efficiency and the shunt resistance, which are also shown in FIGS. 25 and 26. The results of Comparative Example 1 are shown in the figure for comparison.

【0309】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、信頼性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and high reliability.

【0310】(実施例44)定電流法の電着を行い、図
3に示す層構成の太陽電池を実施例41とほぼ同様にし
て作製した。実施例41と同様に基板101上に下部電
極102、n層103、i層104、p層105、上部
電極106を堆積した。
(Example 44) Electrodeposition according to the constant current method was carried out to manufacture a solar cell having the layer structure shown in FIG. 3 in substantially the same manner as in Example 41. Similar to Example 41, the lower electrode 102, the n layer 103, the i layer 104, the p layer 105, and the upper electrode 106 were deposited on the substrate 101.

【0311】次に、実施例41と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、対
向電極301とともに図9のパッシベーション槽に浸漬
した。パッシベーションと電着は以下の条件で行った。 ──────────────────────────────────── 工 程 電 解 液 条 件 ──────────────────────────────────── パッシベーション AlCl3 (20%水溶液) 5V×2秒 100mS/cm 電 着 エポキシ系カチオン電着塗料 2mA/cm2 電導度:600μS/cm 重量平均分子量:8000 液温:25℃ クーロン量:100mC 固形分:13% ──────────────────────────────────── さらに、上述した方法と全く同様にして電着時の電流の
みを5mA/cm2 ,10mA/cm2 ,15mA/c
2 ,20mA/cm2 ,25mA/cm2 ,30mA
/cm2 と変化させてそれぞれクーロン量は100mC
として試料を作製した。これらの試料を実施例1と同様
にして、幅100μm、長さ8cmのグリッド電極10
7を間隔1cmで印刷してキュアした。さらに、幅5m
mの接着剤付きの銅箔のバスバー108を接着し、30
cm角のシングルセルを作製した。得られた試料のシャ
ント抵抗と変換効率を前述の方法と同様にして測定し
た。結果を図27に示した。図27により電着時の電流
は5mA/cm2 から20mA/cm2 が適当であるこ
とが分かった。
Next, as in the case of Example 41, the substrate 101 was used.
Was covered with a plastic insulating film, and was immersed in the passivation tank of FIG. 9 together with the counter electrode 301. Passivation and electrodeposition were performed under the following conditions. ──────────────────────────────────── Process process Electrolysis solution condition ──────── ───────────────────────────── Passivation AlCl 3 (20% aqueous solution) 5V × 2 seconds 100mS / cm Electrodeposition Epoxy-based cation electrode Coating material 2 mA / cm 2 Conductivity: 600 μS / cm Weight average molecular weight: 8000 Liquid temperature: 25 ° C. Coulomb amount: 100 mC Solid content: 13% ─────────────────── ───────────────── Furthermore, in the same manner as described above, only the current during electrodeposition was 5 mA / cm 2 , 10 mA / cm 2 , 15 mA / c.
m 2, 20mA / cm 2, 25mA / cm 2, 30mA
The amount of coulomb is 100 mC by changing to / cm 2.
A sample was prepared as. These samples were processed in the same manner as in Example 1 to form a grid electrode 10 having a width of 100 μm and a length of 8 cm.
7 was printed at a distance of 1 cm and cured. Furthermore, width 5m
Adhere the copper foil bus bar 108 with an adhesive of m.
A cm square single cell was produced. The shunt resistance and the conversion efficiency of the obtained sample were measured by the same method as described above. The results are shown in Fig. 27. From FIG. 27, it was found that a suitable electric current during electrodeposition was 5 mA / cm 2 to 20 mA / cm 2 .

【0312】次に、上述した方法と同様に15mA/c
2 の条件で電着を行い、太陽電池100に、幅100
μm長さ8cmのグリッド電極107を間隔1cmで印
刷し、幅5mmの接着剤付きの銅箔のバスバー108を
接着し、30cm角のシングルセル10枚を作製した。
次に、これらの試料のエンカプシュレーションを実施例
1と同様に行った。比較のため電着を行わない以外は上
述と同様にして試料(比較例44)を作製した。
Next, in the same manner as the above-mentioned method, 15 mA / c
Electrodeposition was carried out under the condition of m 2 to obtain a solar cell 100 with
A grid electrode 107 having a length of 8 μm and a length of 8 cm was printed at an interval of 1 cm, and a bus bar 108 of copper foil with an adhesive having a width of 5 mm was adhered to produce 10 single cells of 30 cm square.
Next, encapsulation of these samples was performed in the same manner as in Example 1. For comparison, a sample (Comparative Example 44) was prepared in the same manner as above except that electrodeposition was not performed.

【0313】得られた試料の初期特性とシャント抵抗の
平均値とばらつきを図28,図29に示した。次に信頼
性試験を実施例1と同様に行い、温湿度サイクル試験終
了後の試料の太陽電池特性とシャント抵抗とを測定して
結果も図28,図29に示した。
The initial characteristics and the average value and variation of the shunt resistance of the obtained sample are shown in FIGS. 28 and 29. Next, a reliability test was performed in the same manner as in Example 1, and the solar cell characteristics and shunt resistance of the sample after the temperature and humidity cycle test were measured, and the results are also shown in FIGS. 28 and 29.

【0314】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り、耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0315】(実施例45)次に、図4に示す層構成の
トリプル型太陽電池100を実施例41とほぼ同様にし
て作製した。まず、基板101上にテクスチャー構造の
AlSi層とシャント防止用の高抵抗透明導電性部剤と
してのZnO層とからなる下部電極102を形成し、そ
の後、不図示のマイクロ波プラズマCVD成膜装置に入
れn層103、i層104、p層105の順で堆積を行
いボトム層を形成した。この時i層104はa−SiG
eとした。次にn層113、i層114、p層115の
順で堆積を行いミドル層を形成した。i層114はボト
ム層と同様にa−SiGeとした。次にn層123、i
層124、p層125の順で堆積を行いトップ層を形成
した。i層124はa−Siとした。次に実施例4と同
様に、反射防止効果を兼ねた機能を有する透明な上部電
極106を700Å堆積した。上部電極106としてI
2 3 (IO)を用いた。
(Example 45) Next, a triple solar cell 100 having the layer structure shown in Fig. 4 was produced in substantially the same manner as in Example 41. First, a lower electrode 102 composed of a textured AlSi layer and a ZnO layer as a high resistance transparent conductive material for shunt prevention is formed on a substrate 101, and then a microwave plasma CVD film forming apparatus (not shown) is formed. The bottom layer was formed by depositing the n-layer 103, the i-layer 104, and the p-layer 105 in this order. At this time, the i layer 104 is a-SiG
e. Next, the n layer 113, the i layer 114, and the p layer 115 were deposited in this order to form a middle layer. The i layer 114 was made of a-SiGe similarly to the bottom layer. Next, the n-layer 123, i
A layer 124 and a p layer 125 were deposited in this order to form a top layer. The i layer 124 was a-Si. Next, as in Example 4, 700 Å of transparent upper electrode 106 having a function of also serving as an antireflection effect was deposited. I as the upper electrode 106
n 2 O 3 (IO) was used.

【0316】次に、実施例1と同様に前記基板204の
裏面側をプラスチック製の絶縁性フィルムで覆い、対向
電極303とともに図9の電着槽に浸漬した。パッシベ
ーションと電着は以下のように行った。 ──────────────────────────────────── 工 程 電 解 液 条 件 ──────────────────────────────────── パッシベーション AlCl3 (10%水溶液) 4V×3秒 60mS/cm 電 着 エポキシ系カチオン電着塗料 15V×30秒 電導度:600μS/cm 重量平均分子量:8000 液温:25℃ クーロン量:50mC 固形分:18% ──────────────────────────────────── これらの試料を実施例1と同様にして、幅100μm、
長さ8cmのグリッド電極107を間隔1cmで印刷し
てキュアした。さらに、幅5mmの接着剤付き銅箔のバ
スバー108を接着し30cm角のトリプルセルを作製
した。次に、これら試料のエンカプシュレーションを実
施例1と同様に行った。また比較のため、電着を行なわ
ない以外は実施例45と同様にして試料(比較例45)
を作製した。
Next, as in Example 1, the back side of the substrate 204 was covered with an insulating film made of plastic, and was immersed together with the counter electrode 303 in the electrodeposition bath of FIG. Passivation and electrodeposition were performed as follows. ──────────────────────────────────── Process process Electrolysis solution condition ──────── ───────────────────────────── Passivation AlCl 3 (10% aqueous solution) 4V × 3 seconds 60mS / cm Electrodeposition Epoxy-based cation electrode Coating material 15V × 30 seconds Conductivity: 600μS / cm Weight average molecular weight: 8000 Liquid temperature: 25 ° C Coulomb amount: 50mC Solid content: 18% ──────────────────── ───────────────── These samples were processed in the same manner as in Example 1 to obtain a width of 100 μm,
A grid electrode 107 having a length of 8 cm was printed and cured at an interval of 1 cm. Further, a bus bar 108 of copper foil with adhesive having a width of 5 mm was adhered to produce a 30 cm square triple cell. Next, encapsulation of these samples was performed in the same manner as in Example 1. For comparison, a sample (Comparative Example 45) was prepared in the same manner as in Example 45 except that electrodeposition was not performed.
Was produced.

【0317】得られた試料の初期特性と実施例1と同様
に測定し、変換効率とシャント抵抗を求めた結果を図3
0,図31に示した。これらの試料の信頼性試験を行っ
て、試験後の太陽電池特性とシャント抵抗の測定をして
結果も図30,図31に示した。
The initial characteristics of the obtained sample were measured in the same manner as in Example 1 to obtain the conversion efficiency and the shunt resistance.
0, shown in FIG. The reliability test of these samples was performed, and the solar cell characteristics and shunt resistance after the test were measured, and the results are also shown in FIGS. 30 and 31.

【0318】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、信頼性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and high reliability.

【0319】(実施例46)図3に示す層構成の太陽電
池を以下のようにして作製した。まず、実施例1と同様
にしてSUS基板上に、下部電極、半導体層、上部電極
を形成した。
Example 46 A solar cell having the layer structure shown in FIG. 3 was prepared as follows. First, the lower electrode, the semiconductor layer, and the upper electrode were formed on the SUS substrate in the same manner as in Example 1.

【0320】次に、前記基板101の裏面側をプラスチ
ック製の絶縁性フィルムで覆い、パッシベーション時に
基板101裏面側に電流が流れないようにして図9の電
解槽301に浸漬した。対向電極303として、極比が
1:1となるように30cm×30cmの大きさで、前
記基板101に対して裏側をプラスチック製の絶縁性フ
ィルムを用いてシールしたSUS304ステンレス板を
用いた。パッシベーション液としては、AlCl3 の1
0%溶液を用いた。この溶液の電導度は、60mS/c
mであった。次に、基板101側をマイナスとして4V
で3秒間電圧を印加し、パッシベーションを行った。そ
の後、太陽電池100を電解槽301から引き上げ、純
水で十分に洗浄を行い、パッシベーション液を洗い流
し、80℃のオーブンに投入し、30分放置して水分を
乾燥させた。
Next, the back side of the substrate 101 was covered with an insulating film made of plastic, and immersed in the electrolytic cell 301 of FIG. 9 so that no current would flow to the back side of the substrate 101 during passivation. As the counter electrode 303, a SUS304 stainless plate having a size of 30 cm × 30 cm so that the polar ratio was 1: 1 and the back side of which was sealed with an insulating film made of plastic was used. As the passivation liquid, 1 of AlCl 3 is used.
A 0% solution was used. The conductivity of this solution is 60 mS / c
It was m. Next, with the substrate 101 side as a minus, 4V
Then, the voltage was applied for 3 seconds to perform passivation. Then, the solar cell 100 was pulled up from the electrolytic cell 301, thoroughly washed with pure water, the passivation liquid was washed off, placed in an oven at 80 ° C., and allowed to stand for 30 minutes to dry the water.

【0321】図9の電解槽301を用いて以下のように
して電着を行った。まず、基板304の裏面を前述した
方法と同様にマスクし、さらに対向電極303として前
述した方法と同様に、シールしたSUS304ステンレ
ス板を用いた。また、極比が1:1となるように30c
m×30cmの大きさとした。電着塗料302は、固形
分10%のアクリル系アニオン電着塗料を用い、架橋の
ためメラミンを用いた。この液の電導度は800μS/
cmであり、重量平均分子量は5000であった。電着
時は液温を25℃に保った。基板304と対向電極20
3を電解槽301に浸漬して前記基板101と対向電極
303とを液になじませるため30秒間保持した。その
後、基板304にプラス2Vの電圧を印加して10秒間
保持し、電着を行った。この時流れる電流と時間の関係
は図32に示すとおりであった。また、流れた電流のク
ーロン量は50mCであった。
Electrodeposition was carried out as follows using the electrolytic cell 301 of FIG. First, the back surface of the substrate 304 was masked in the same manner as described above, and a sealed SUS304 stainless plate was used as the counter electrode 303 in the same manner as described above. 30c so that the pole ratio is 1: 1
The size was m × 30 cm. As the electrodeposition paint 302, an acrylic anion electrodeposition paint having a solid content of 10% was used, and melamine was used for crosslinking. The conductivity of this solution is 800 μS /
cm and the weight average molecular weight was 5000. The liquid temperature was kept at 25 ° C. during electrodeposition. Substrate 304 and counter electrode 20
3 was immersed in the electrolytic bath 301, and the substrate 101 and the counter electrode 303 were held for 30 seconds in order to adapt to the liquid. After that, a voltage of plus 2 V was applied to the substrate 304 and kept for 10 seconds for electrodeposition. The relationship between the current flowing at this time and the time was as shown in FIG. In addition, the amount of Coulomb of the flowing current was 50 mC.

【0322】太陽電池100を電解槽201から引き上
げ、純水で十分に洗浄を行い、未反応の電着塗料を洗い
流し、50℃のオーブンに投入し、30分放置して水分
を乾燥させた。その後、オーブンの温度を10℃/分の
速度で昇温し、180℃に達してから30分保持し電着
樹脂の硬化を行った。さらに、上述した方法と同様にし
て電着時の電圧のみを0V〜60Vと変化させて試料を
作製した。次に、前述した方法でグリッド電極107の
バスバーを接着し、30cm角のシングルセルを作製し
た。
The solar cell 100 was pulled up from the electrolytic cell 201, thoroughly washed with pure water, the unreacted electrodeposition paint was washed off, placed in an oven at 50 ° C., and left for 30 minutes to dry the water. Then, the temperature of the oven was raised at a rate of 10 ° C./minute, and after reaching 180 ° C., the temperature was kept for 30 minutes to cure the electrodeposition resin. Further, similarly to the method described above, only the voltage during electrodeposition was changed from 0V to 60V to prepare a sample. Next, the bus bar of the grid electrode 107 was adhered by the method described above to produce a single cell of 30 cm square.

【0323】得られた試料のシャント抵抗と変換効率を
前述の方法と同様にして測定した。結果を図33に示し
た。図33により電着時の電圧は10Vから20Vが適
当であることが分かった。また50V以上の電圧で変換
効率が低くなるのは電着時に太陽電池に対して逆バイア
スが印加されるため太陽電池がブレークダウンするため
と考えられる。次に、変換効率の良好な電着電圧10V
の試料の一部を切り出して走査型電子顕微鏡で観察した
ところ上部電極106の表面には、約5μm〜50μm
の径の半球状の堆積物が点在して観察された。この部分
の赤外吸収を、顕微機能付きFTIRを用いて分析した
ところカルボニル基の吸収があり電着塗料が堆積してい
ることが確認された。さらにこの試料のOBIC像を観
察したところ、前記電着塗料の堆積部分のみが発電せ
ず、従って、前記堆積膜はシャント部分にのみ堆積して
いることが確認された。また、電着塗料の堆積している
面積はシャント部分の面積の10倍以下であった。
The shunt resistance and conversion efficiency of the obtained sample were measured by the same method as described above. The results are shown in Fig. 33. From FIG. 33, it was found that a suitable voltage during electrodeposition is 10V to 20V. Further, it is considered that the conversion efficiency decreases at a voltage of 50 V or higher because the solar cell breaks down because a reverse bias is applied to the solar cell during electrodeposition. Next, an electrodeposition voltage of 10 V with good conversion efficiency
When a part of the sample was cut out and observed with a scanning electron microscope, the surface of the upper electrode 106 was about 5 μm to 50 μm.
Hemispherical deposits with a diameter of 1 were observed. The infrared absorption of this portion was analyzed by using FTIR with a microscopic function, and it was confirmed that there was absorption of a carbonyl group and the electrodeposition coating was deposited. Further, when the OBIC image of this sample was observed, it was confirmed that only the deposited portion of the electrodeposition coating did not generate power, and therefore the deposited film was deposited only on the shunt portion. The area where the electrodeposition paint was deposited was 10 times or less the area of the shunt portion.

【0324】次に、上述した方法と同様に4V3秒の条
件でパッシベーションを行い、10Vの電圧で電着し
た。その後、前述した方法と同様にしてグリッド電極1
07のバスバー108を形成し、30cm角のシングル
セル10枚を作製した。次に、これら試料のエンカプシ
ュレーションを行った。
Then, passivation was performed under the condition of 4V for 3 seconds in the same manner as in the above-mentioned method, and electrodeposition was performed at a voltage of 10V. Then, the grid electrode 1 is formed in the same manner as described above.
The bus bar 108 of 07 was formed, and 10 single cells of 30 cm square were prepared. Next, encapsulation of these samples was performed.

【0325】得られた試料の初期特性を上述した方法で
測定し、変換効率を求めたところ6.5%±0.5%で
あり、また、シャント抵抗が35KΩcm2 〜90KΩ
cm 2 であり良好な特性でばらつきも少なかった。
The initial characteristics of the obtained sample were measured by the method described above.
It was measured and the conversion efficiency was calculated to be 6.5% ± 0.5%.
Yes, and shunt resistance is 35 KΩcm2~ 90 KΩ
cm 2The characteristics were good and there was little variation.

【0326】これらの試料の信頼性試験を行った。次
に、試験終了後の試料を初期と同様にシミュレータを用
い太陽電池特性を測定したところ、初期変換効率に対し
て試験後の変換効率は平均で2%の低下であり有意な劣
化は生じなかった。また、シャント抵抗を測定したとこ
ろ約10%の減少で有意な劣化はなかった。
A reliability test was performed on these samples. Next, the solar cell characteristics of the sample after the test were measured using a simulator in the same manner as in the initial stage. The conversion efficiency after the test was 2% lower than the initial conversion efficiency, and no significant deterioration occurred. It was Further, when the shunt resistance was measured, there was no significant deterioration with a decrease of about 10%.

【0327】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り、耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0328】(実施例47)pn接合薄膜多結晶の太陽
電池を作製した。
Example 47 A pn junction thin film polycrystalline solar cell was prepared.

【0329】コーニング7059基板(30cm×30
cm、厚み3.0mm)101上に下部電極102を形
成した。基板101を取り出し、不図示のRFプラズマ
CVD成膜装置に入れn層103、p層105の順で堆
積を行った。n層は薄膜の多結晶となっている。次に、
上部電極106を形成して、実施例46と同様に4Vで
3秒間のパッシベーションを行った。さらに、実施例4
6と同様にして以下のように電着を行った。まず、基板
101を図9の電解槽301に浸漬した。本実施例では
フッ素系アニオン電着塗料にフッ素ポリマーのフィラー
を含有させた電着液302を用いて電着処理を施した。
電着終了後、純水で十分に洗浄し、オーブンで電着樹脂
の硬化を行った。その後、基板101をオーブンから取
り出し冷却後、実施例1と同様に、グリッド電極107
を形成し接着剤付きの銅箔のバスバー108を積層し、
30cm角のシングルセルを作製した。同様にして10
枚の試料を作製した。さらに、この試料のエンカプシュ
レーションを実施例1と同様に行った。
Corning 7059 substrate (30 cm × 30
The lower electrode 102 was formed on the (cm, thickness 3.0 mm) 101. The substrate 101 was taken out and placed in an RF plasma CVD film forming apparatus (not shown) to deposit the n layer 103 and the p layer 105 in this order. The n layer is a thin film polycrystal. next,
The upper electrode 106 was formed, and passivation was performed at 4 V for 3 seconds in the same manner as in Example 46. Furthermore, Example 4
Electrodeposition was performed in the same manner as in No. 6 as follows. First, the substrate 101 was immersed in the electrolytic bath 301 shown in FIG. In this example, the electrodeposition treatment was performed using the electrodeposition liquid 302 containing a fluorine-based anionic electrodeposition coating material containing a fluoropolymer filler.
After the electrodeposition was completed, the electrodeposition resin was thoroughly washed with pure water and the electrodeposition resin was cured in an oven. Then, the substrate 101 is taken out of the oven and cooled, and then the grid electrode 107 is cooled in the same manner as in the first embodiment.
To form a copper foil bus bar 108 with an adhesive,
A 30 cm square single cell was prepared. Similarly 10
A sample was prepared. Further, encapsulation of this sample was performed in the same manner as in Example 1.

【0330】得られた試料の初期特性は、10.4%±
1.5であり良好な特性でばらつきも少なかった。ま
た、シャント抵抗も60KΩcm2 から125KΩcm
2 であった。
The initial characteristics of the obtained sample are 10.4% ±
The value was 1.5, which was a good characteristic with little variation. Also, the shunt resistance is 60 KΩcm 2 to 125 KΩcm.
Was 2 .

【0331】次にこの試料の信頼性試験を実施例1と同
様に行った。
Next, the reliability test of this sample was conducted in the same manner as in Example 1.

【0332】温湿度サイクル試験終了後の試料の太陽電
池特性を測定したところ初期値に対し2%の低下であり
劣化は生じなかった。また、シャント抵抗を測定したと
ころほとんど変化していなかった。
When the solar cell characteristics of the sample after completion of the temperature / humidity cycle test were measured, it was found to be 2% lower than the initial value, and no deterioration occurred. In addition, when the shunt resistance was measured, there was almost no change.

【0333】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0334】(実施例48)次に、パッシベーションと
電着の工程とをロールツーロール法で行い、図3に示す
層構成の太陽電池を以下のようにして作製した。ロール
状に巻かれた厚み0.2mm、幅30cmで長さ100
mのSUS430BA製基板301を繰り出しながら不
図示のロールツーロール成膜装置を用いて下部電極10
2、n層103、i層104、p層105、上部電極の
順で行い再びロール状に巻き取った。次にロール状基板
図12のパッシベーションと電着を連続して行う装置に
設置した。前記基板501を基板送り出しローラー50
2から送り出し、パッシベーションを行う電解槽50
4、洗浄槽505、乾燥炉506、電着を行う電解槽5
14、洗浄槽515、乾燥炉516を通過して最後に巻
き取りローラー503に巻き取った。同時に、マスクフ
ィルム送り出しローラー508,518からマスクフィ
ルム510,520を繰り出しながら前記基板501の
裏面をマスクし、マスク巻き取りローラー509,51
9に巻き取った。対向電極511,521として、極比
が1:1となるようにして、基板501に対して裏側を
プラスチック製の絶縁製フィルムを用いてシールしたS
US304ステンレス板を用いた。基板を2m/分の速
度で送った。この送り速度に於いて基板501がパッシ
ベーション用電解槽504に3秒間浸漬され、電着用電
解槽514には15秒間浸漬されるように前記電解槽5
04,514の長さを設計した。次に、パッシベーショ
ン用電解槽504に於いては基板501側をプラスとし
て4.0Vで電圧を印加し、電着用電解槽514に於い
ては電圧が15Vとした。電着塗料は、固形分10%の
アクリル系アニオン電着塗料を用い、架橋のためメラミ
ンを用いた。この液の電導度は800μS/cmであ
り、重量平均分子量は5000であった。電着時は液温
を25℃に保った。
(Example 48) Next, the steps of passivation and electrodeposition were performed by a roll-to-roll method, and a solar cell having a layer structure shown in FIG. 3 was produced as follows. Rolled in a thickness of 0.2 mm, width of 30 cm and length of 100
m of the SUS430BA substrate 301 while being unrolled, a lower electrode 10 is formed by using a roll-to-roll film forming apparatus (not shown).
Then, the n layer 103, the i layer 104, the p layer 105, and the upper electrode were formed in this order, and wound again in a roll shape. Next, the roll-shaped substrate was set in an apparatus for continuously performing passivation and electrodeposition shown in FIG. The substrate 501 is a substrate delivery roller 50.
Electrolyzer 50 for passivation from 2
4, cleaning tank 505, drying furnace 506, electrolytic tank 5 for electrodeposition
After passing through the cleaning tank 515, the cleaning tank 515, and the drying furnace 516, it was finally wound around the winding roller 503. At the same time, while masking the mask films 510 and 520 from the mask film feeding rollers 508 and 518, the back surface of the substrate 501 is masked and the mask winding rollers 509 and 51 are used.
I wound it up to 9. As the counter electrodes 511 and 521, the back side of the substrate 501 was sealed with a plastic insulating film so that the polar ratio was 1: 1 S
A US304 stainless plate was used. The substrate was sent at a speed of 2 m / min. At this feed rate, the substrate 501 is immersed in the passivation electrolytic bath 504 for 3 seconds and in the electrodeposition electrolytic bath 514 for 15 seconds.
A length of 04,514 was designed. Next, in the passivation electrolytic bath 504, a voltage of 4.0 V was applied with the substrate 501 side being positive, and in the electrodeposition electrolytic bath 514, the voltage was 15 V. As the electrodeposition coating, an acrylic anion electrodeposition coating having a solid content of 10% was used, and melamine was used for crosslinking. The electric conductivity of this liquid was 800 μS / cm, and the weight average molecular weight was 5,000. The liquid temperature was kept at 25 ° C. during electrodeposition.

【0335】パッシベーションおよび電着が終了した
後、巻き取られた太陽電池を切断機を用いて30cmの
長さに切断した。次に、実施例46に示した方法と同様
にして、幅100μm、長さ8cmのグリッド電極10
7を間隔1cmで印刷しキュアした。さらに、幅5mm
の接着剤付き銅箔のバスバーを接着し30cm角のシン
グルセルを10枚作製した。次に、これら試料のエンカ
プシュレーションを実施例1と同様に行った。得られた
試料の初期特性を実施例1と同様の方法で測定し、変換
効率を求めたところ6.1%±0.5%であり良好な特
性でありばらつきも少なかった。またシャント抵抗は
1.5KΩcm2 から10KΩcm2 であった。
After the passivation and electrodeposition were completed, the wound solar cell was cut into a length of 30 cm using a cutting machine. Then, in the same manner as in Example 46, the grid electrode 10 having a width of 100 μm and a length of 8 cm was used.
No. 7 was printed at intervals of 1 cm and cured. Furthermore, width 5mm
The bus bar of the copper foil with adhesive was adhered to prepare 10 single cells of 30 cm square. Next, encapsulation of these samples was performed in the same manner as in Example 1. The initial characteristics of the obtained sample were measured by the same method as in Example 1 and the conversion efficiency was determined to be 6.1% ± 0.5%, which was a good characteristic and had little variation. The shunt resistance was 1.5 KΩcm 2 to 10 KΩcm 2 .

【0336】これらの試料の信頼性試験を、実施例1と
同様に行った。
The reliability test of these samples was performed in the same manner as in Example 1.

【0337】初期変換効率に対して試験後の変換効率は
平均で2%の低下であり有意な劣化は生じなかった。ま
た、シャント抵抗を測定したところ約10%の減少で有
意な劣化はなかった。
The conversion efficiency after the test was decreased by 2% on average with respect to the initial conversion efficiency, and no significant deterioration occurred. Further, when the shunt resistance was measured, there was no significant deterioration with a decrease of about 10%.

【0338】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0339】(実施例49)定電流法の電着を行い、図
3に示す層構成の太陽電池を実施例46とほぼ同様にし
て作製した。実施例46と同様に基板101上に下部電
極102、n層103、i層104、p層105、上部
電極106を堆積した。
(Example 49) Electrodeposition according to the constant current method was carried out to manufacture a solar cell having the layer structure shown in FIG. 3 in substantially the same manner as in Example 46. Similarly to Example 46, the lower electrode 102, the n layer 103, the i layer 104, the p layer 105, and the upper electrode 106 were deposited on the substrate 101.

【0340】次に、実施例46と同様に前記基板101
の裏面側をプラスチック製の絶縁性フィルムで覆い、対
向電極301とともに図9のパッシベーション槽301
に浸漬した。基板304をプラスとして4.0Vで3秒
間電圧を印加し、パッシベーションを行った。次に、電
着塗料302は、固形分10%のアクリル系アニオン電
着塗料を用い、架橋のためメラミンを用いた。この液の
電導度は800μS/cmであり、重量平均分子量を5
000であった。電着時は液温25℃に保った。基板3
04と対向電極303とを電解槽301に浸漬して前記
基板304と対向電極303とを液になじませるため3
0秒間保持した。その後、基板304に流す電流を2m
A/cm2 に設定し、10秒間保持した。流れた電流は
100mC/cm2 であった。さらに、上述した方法と
全く同様にして電着時の電流のみを5mA/cm2 ,1
0mA/cm2 ,15mA/cm2 ,20mA/c
2 ,30mA/cm2 と変化させてそれぞれクーロン
量は100mCとして試料を作製した。これらの試料を
実施例1と同様にして、幅100μm、長さ8cmのグ
リッド電極107を間隔1cmで印刷してキュアした。
さらに、幅5mmの接着剤付き銅箔のバスバー108を
接着し、30cm角のシングルセルを作製した。得られ
た試料のシャント抵抗と変換効率を前述の方法と同様に
して測定したところ、電着時の電流は10mA/cm2
から20mA/cm2 が適当であることが分かった。
Next, as in the 46th embodiment, the substrate 101 is used.
9 is covered with an insulating film made of plastic, and the passivation tank 301 of FIG.
Soaked in. Passivation was performed by applying a voltage of 4.0 V for 3 seconds with the substrate 304 as a plus. Next, as the electrodeposition paint 302, an acrylic anion electrodeposition paint having a solid content of 10% was used, and melamine was used for crosslinking. This liquid has an electric conductivity of 800 μS / cm and a weight average molecular weight of 5
It was 000. The liquid temperature was kept at 25 ° C. during electrodeposition. Board 3
04 and the counter electrode 303 are immersed in the electrolytic bath 301 so that the substrate 304 and the counter electrode 303 are soaked in liquid 3
Hold for 0 seconds. After that, apply a current of 2 m to the substrate 304.
It was set to A / cm 2 and held for 10 seconds. The electric current that flowed was 100 mC / cm 2 . Further, in the same manner as described above, only the electric current during electrodeposition was 5 mA / cm 2 , 1
0 mA / cm 2 , 15 mA / cm 2 , 20 mA / c
A sample was prepared by changing the m 2 and 30 mA / cm 2 and setting the Coulomb amount to 100 mC. These samples were printed and cured in the same manner as in Example 1 by printing grid electrodes 107 having a width of 100 μm and a length of 8 cm at intervals of 1 cm.
Further, a bus bar 108 of copper foil with an adhesive having a width of 5 mm was adhered to produce a 30 cm square single cell. The shunt resistance and conversion efficiency of the obtained sample were measured in the same manner as the above-mentioned method, and the current during electrodeposition was 10 mA / cm 2
From this, it was found that 20 mA / cm 2 is suitable.

【0341】次に、上述した方法と同様に15mA/c
2 の条件で電着を行い、太陽電池100に、幅100
μm長さ8cmのグリッド電極107を間隔1cmで印
刷し、幅5mmの接着剤付き銅箔のバスバー108を接
着し30cm角のシングルセル10枚を作製した。次
に、これら試料のエンカプシュレーションを行った。
Next, in the same manner as the above-mentioned method, 15 mA / c
Electrodeposition was carried out under the condition of m 2 to obtain a solar cell 100 and a width of 100
A grid electrode 107 having a length of 8 μm and a length of 8 cm was printed at intervals of 1 cm, and a bus bar 108 of copper foil with an adhesive having a width of 5 mm was adhered to produce 10 single cells of 30 cm square. Next, encapsulation of these samples was performed.

【0342】得られた試料の初期特性を上述した方法で
測定し、変換効率を求めたところ6.7%±1.2%で
あり良好な特性でありばらつきも少なかった。また、シ
ャント抵抗は10KΩcm2 から30KΩcm2 であっ
た。
The initial characteristics of the obtained sample were measured by the above-mentioned method, and the conversion efficiency was determined to be 6.7% ± 1.2%, which was a good characteristic with little variation. The shunt resistance was 10 KΩcm 2 to 30 KΩcm 2 .

【0343】これらの試料の信頼性試験を、実施例1と
同様に行った。次に、試験終了後の試料を初期と同様に
シミュレータを用い太陽電池特性を測定したところ、初
期変換効率に対して試験後の変換効率は平均で2%であ
り有意な劣化は生じなかった。また、シャント抵抗を測
定したところ約10%の減少で有意な劣化はなかった。
The reliability test of these samples was performed in the same manner as in Example 1. Next, when the solar cell characteristics of the sample after the test were measured using a simulator as in the initial stage, the conversion efficiency after the test was 2% on average with respect to the initial conversion efficiency, and no significant deterioration occurred. Further, when the shunt resistance was measured, there was no significant deterioration with a decrease of about 10%.

【0344】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留まりが良く良好
な特性で有り、耐久性も良いことがわかる。
From the results of this example, it is understood that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0345】(実施例50)次に、図4に示す層構造の
トリプル型太陽電池100を実施例46とほぼ同様にし
て作製した。まず、基板101上にテクスチャー構造の
AlSi層とシャント防止用の高抵抗透明導電性部材と
してのZnO層とからなる下部電極102を形成し、そ
の後、不図示のマイクロ波プラズマCVD成膜装置に入
れn層103、i層104、p層105の順で堆積を行
いボトム層を形成した。この時i層104はa−SiG
eとした。次にn層113、i層114、p層115の
順で堆積を行いミドル層を形成した。i層114はボト
ム層と同様にa−SiGeとした。次にn層123、i
層124、p層125の順で堆積を行いトップ層を形成
した。i層124はa−Siとした。次に実施例46と
同様に、反射防止効果を兼ねた機能を有する透明な上部
電極106を700Å堆積した。上部電極106として
In2 3 (IO)を用いた。
(Example 50) Next, a triple solar cell 100 having a layer structure shown in Fig. 4 was produced in substantially the same manner as in Example 46. First, a lower electrode 102 consisting of a textured AlSi layer and a ZnO layer as a high resistance transparent conductive member for shunt prevention is formed on a substrate 101, and then placed in a microwave plasma CVD film forming apparatus (not shown). An n layer 103, an i layer 104, and a p layer 105 were deposited in this order to form a bottom layer. At this time, the i layer 104 is a-SiG
e. Next, the n layer 113, the i layer 114, and the p layer 115 were deposited in this order to form a middle layer. The i layer 114 was made of a-SiGe similarly to the bottom layer. Next, the n-layer 123, i
A layer 124 and a p layer 125 were deposited in this order to form a top layer. The i layer 124 was a-Si. Next, as in Example 46, 700 Å of transparent upper electrode 106 having a function of also serving as an antireflection effect was deposited. In 2 O 3 (IO) was used as the upper electrode 106.

【0346】次に、実施例46と同様に前記基板204
の裏面側をプラスチック製の絶縁性フィルムで覆い、対
向電極303とともに図9の電解槽301に浸漬した。
基板304をプラスとして4.0Vで3秒間電圧を印加
し、パッシベーションを行った。次に、電着塗料は、固
形分10%のアクリル系アニオン電着塗料を用い、架橋
のためメラミンを用いた。この液の電導度は800μS
/cmであり、重量平均分子量は5000であった。電
着時は液温を25℃に保った。前記基板304と対向電
極303を電解槽301に浸漬して前記基板304と対
向電極303とを液になじませるため30秒間保持し
た。その後、基板304に15Vの電圧を印加して20
秒間保持した。これらの試料を実施例1と同様にして、
幅100μm、長さ8cmのグリッド電極107を間隔
1cmで印刷してキュアした。さらに、幅5mmの接着
剤付き銅箔のバスバー108を接着し30cm角のトリ
プルセルを作製した。次に、これら試料のエンカプシュ
レーションを実施例1と同様に行った。
Next, as in the 46th embodiment, the substrate 204 is used.
The back side of was covered with an insulating film made of plastic, and was immersed in the electrolytic cell 301 of FIG. 9 together with the counter electrode 303.
Passivation was performed by applying a voltage of 4.0 V for 3 seconds with the substrate 304 as a plus. Next, as the electrodeposition coating, an acrylic anion electrodeposition coating having a solid content of 10% was used, and melamine was used for crosslinking. The conductivity of this liquid is 800 μS
/ Cm and the weight average molecular weight was 5000. The liquid temperature was kept at 25 ° C. during electrodeposition. The substrate 304 and the counter electrode 303 were immersed in the electrolytic bath 301 and held for 30 seconds in order to adapt the substrate 304 and the counter electrode 303 to the liquid. After that, a voltage of 15V is applied to the substrate 304 and the voltage of 20V is applied.
Hold for a second. These samples were processed as in Example 1,
A grid electrode 107 having a width of 100 μm and a length of 8 cm was printed at a distance of 1 cm and cured. Further, a bus bar 108 of copper foil with adhesive having a width of 5 mm was adhered to produce a 30 cm square triple cell. Next, encapsulation of these samples was performed in the same manner as in Example 1.

【0347】得られた試料の初期特性を実施例1と同様
に測定し、変換効率を求めたところ7.2%±1.4%
であり良好な特性でありばらつきも少なかった。また、
シャント抵抗は35KΩcm2 から105KΩcm2
あった。
The initial characteristics of the obtained sample were measured in the same manner as in Example 1 and the conversion efficiency was determined to be 7.2% ± 1.4%.
The characteristics were good and there were few variations. Also,
The shunt resistance was 35 KΩcm 2 to 105 KΩcm 2 .

【0348】これらの試料の信頼性試験を行って、試験
後の太陽電池特性を測定したところ、初期変換効率に対
して試験後の変換効率は平均で2%の低下であり有意な
劣化は生じなかった。また、シャント抵抗を測定したと
ころ約10%の減少で有意な劣化はなかった。
The reliability test of these samples was performed, and the solar cell characteristics after the test were measured. The conversion efficiency after the test was decreased by 2% on average with respect to the initial conversion efficiency, and significant deterioration occurred. There wasn't. Further, when the shunt resistance was measured, there was no significant deterioration with a decrease of about 10%.

【0349】本実施例の結果から本発明の太陽電池製造
方法で作製した本発明の太陽電池は歩留りが良く良好な
特性で有り、耐久性も良いことがわかる。
From the results of this example, it can be seen that the solar cell of the present invention manufactured by the solar cell manufacturing method of the present invention has good yield, good characteristics, and good durability.

【0350】[0350]

【発明の効果】以上述べたように、太陽電池を本発明の
構成とする事により、欠陥部分を選択的に電着樹脂によ
り絶縁被覆でき、シャント抵抗が103Ωcm2以上とす
ることが可能となるため、高い特性を有ししかも優れた
大面積の太陽電池を高い歩留まりで提供することが可能
となる。
As described above, by constructing the solar cell according to the present invention, the defective portion can be selectively insulation-coated with the electrodeposition resin, and the shunt resistance can be 10 3 Ωcm 2 or more. Therefore, it is possible to provide an excellent large-area solar cell having high characteristics with a high yield.

【0351】また、本発明の製造方法は、欠陥の検出に
特殊な方法・装置が不要であり、しかもロールツーロー
ル方式を採用することができるため、量産性が高く、低
コストの大面積太陽電池を提供することができる。
Further, since the manufacturing method of the present invention does not require a special method and device for detecting defects and can adopt the roll-to-roll method, it has high mass productivity and is low in cost, and has a large area. A battery can be provided.

【0352】[0352]

【表1】 [Table 1]

【0353】[0353]

【表2】 [Table 2]

【0354】[0354]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】欠陥部を絶縁被覆した本発明の太陽電池の一例
を示す模式図である。
FIG. 1 is a schematic view showing an example of a solar cell of the present invention in which a defective portion is insulation-coated.

【図2】欠陥部を絶縁被覆した本発明の太陽電池の一例
を示す模式図である。
FIG. 2 is a schematic view showing an example of a solar cell of the present invention in which a defective portion is insulation-coated.

【図3】太陽電池の構造例を示す模式図である。FIG. 3 is a schematic diagram showing a structural example of a solar cell.

【図4】太陽電池の構造例を示す模式図である。FIG. 4 is a schematic view showing a structural example of a solar cell.

【図5】太陽電池の構造例を示す模式図である。FIG. 5 is a schematic view showing a structural example of a solar cell.

【図6】太陽電池の構造例を示す模式図である。FIG. 6 is a schematic view showing a structural example of a solar cell.

【図7】太陽電池の構造例を示す模式図である。FIG. 7 is a schematic diagram showing a structural example of a solar cell.

【図8】太陽電池の構造例を示す模式図である。FIG. 8 is a schematic diagram showing a structural example of a solar cell.

【図9】バッシベーション装置及び電着装置の一例を示
す模式図である。
FIG. 9 is a schematic view showing an example of a passivation device and an electrodeposition device.

【図10】フォーミング装置の一例をを示す模式図であ
る。
FIG. 10 is a schematic view showing an example of a forming device.

【図11】ロール・ツー・ロール方式の電着装置の一例
を示す模式図である。
FIG. 11 is a schematic view showing an example of a roll-to-roll system electrodeposition device.

【図12】ロール・ツー・ロール方式の電着装置の一例
を示す模式図である。
FIG. 12 is a schematic view showing an example of a roll-to-roll system electrodeposition apparatus.

【図13】電着時の電流変化を示すグラフである。FIG. 13 is a graph showing changes in current during electrodeposition.

【図14】電着時の電圧と作製した太陽電池の変換効率
の関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the voltage during electrodeposition and the conversion efficiency of the manufactured solar cell.

【図15】電着時の電流密度と作製した太陽電池の変換
効率の関係を示すグラフである。
FIG. 15 is a graph showing the relationship between the current density during electrodeposition and the conversion efficiency of the manufactured solar cell.

【図16】電着時の電流変化を示すグラフである。FIG. 16 is a graph showing changes in current during electrodeposition.

【図17】電着時の電圧の時間変化を示すグラフであ
る。
FIG. 17 is a graph showing the change over time in voltage during electrodeposition.

【図18】電着時の電流の時間変化を示すグラフであ
る。
FIG. 18 is a graph showing a change over time in current during electrodeposition.

【図19】パッシベーション電圧と作製した太陽電池の
変換効率の関係を示すグラフである。
FIG. 19 is a graph showing the relationship between the passivation voltage and the conversion efficiency of the manufactured solar cell.

【図20】電着時の電圧と作製した太陽電池の変換効率
の関係を示すグラフである。
FIG. 20 is a graph showing the relationship between the voltage during electrodeposition and the conversion efficiency of the manufactured solar cell.

【図21】実施例41の太陽電池の初期と信頼性試験後
の特性を示す図である(変換効率)。
FIG. 21 is a diagram showing the characteristics of the solar cell of Example 41 at the initial stage and after the reliability test (conversion efficiency).

【図22】実施例41の太陽電池の初期と信頼性試験後
の特性を示す図である(シャント抵抗)。
22 is a diagram showing the characteristics of the solar cell of Example 41 after the initial test and after the reliability test (shunt resistance). FIG.

【図23】実施例42の太陽電池の初期と信頼性試験後
の特性を示す図である(変換効率)。
23 is a diagram showing the characteristics of the solar cell of Example 42 in the initial stage and after the reliability test (conversion efficiency). FIG.

【図24】実施例42の太陽電池の初期と信頼性試験後
の特性を示す図である(シャント抵抗)。
FIG. 24 is a diagram showing characteristics of the solar cell of Example 42 in the initial stage and after the reliability test (shunt resistance).

【図25】実施例43の太陽電池の初期と信頼性試験後
の特性を示す図である(変換効率)。
FIG. 25 is a diagram showing characteristics of the solar cell of Example 43 in the initial stage and after the reliability test (conversion efficiency).

【図26】実施例43の太陽電池の初期と信頼性試験後
の特性を示す図である(シャント抵抗)。
FIG. 26 is a diagram showing the characteristics of the solar cell of Example 43 at the initial stage and after the reliability test (shunt resistance).

【図27】電着時の電流密度と作製した太陽電池の変換
効率の関係を示すグラフである。
FIG. 27 is a graph showing the relationship between the current density during electrodeposition and the conversion efficiency of the manufactured solar cell.

【図28】実施例44の太陽電池の初期と信頼性試験後
の特性を示す図である(変換効率)。
28 is a diagram showing the characteristics of the solar cell of Example 44 in the initial stage and after the reliability test (conversion efficiency). FIG.

【図29】実施例44の太陽電池の初期と信頼性試験後
の特性を示す図である(シャント抵抗)。
FIG. 29 is a diagram showing the characteristics of the solar cell of Example 44 initially and after a reliability test (shunt resistance).

【図30】実施例45の太陽電池の初期と信頼性試験後
の特性を示す図である(変換効率)。
FIG. 30 is a diagram showing characteristics of the solar cell of Example 45 in the initial stage and after the reliability test (conversion efficiency).

【図31】実施例45の太陽電池の初期と信頼性試験後
の特性を示す図である(シャント抵抗)。
FIG. 31 is a diagram showing the characteristics of the solar cell of Example 45 at the initial stage and after the reliability test (shunt resistance).

【図32】電着時の電流変化を示すグラフである。FIG. 32 is a graph showing changes in current during electrodeposition.

【図33】電着時の電圧と作製した太陽電池の変換効率
の関係を示すグラフである。
FIG. 33 is a graph showing the relationship between the voltage during electrodeposition and the conversion efficiency of the manufactured solar cell.

【符号の説明】[Explanation of symbols]

100 太陽電池本体 101 基板 102 下部電極 103、113、123 n層 104、114、124 i層 105、115、125 p層 106 上部電極 107 グリッド電極 108 バスバー 109 欠陥部分 110 電着膜 301 電解槽 302 電解液 303 対向電極 304 基板 305 半導体層 306 電源 307 導線 401 ステージ 402 太陽電池 403 導電性ブラシ 404 レール 405 電源 406 導線 501 基板 502 基板送り出しローラー 503 基板巻き取りローラー 504、514 電解槽 505、515 洗浄槽 506、516 乾燥炉 507、517 電源 508、518 マスクフイルム送り出しローラー 509、519 マスクフイルム巻き取りローラー 510、520 マスクフイルム 511、521 対向電極 512、522 導電性ローラー。 100 solar cell main body 101 substrate 102 lower electrode 103, 113, 123 n layer 104, 114, 124 i layer 105, 115, 125 p layer 106 upper electrode 107 grid electrode 108 bus bar 109 defective portion 110 electrodeposition film 301 electrolytic cell 302 electrolysis Liquid 303 Counter electrode 304 Substrate 305 Semiconductor layer 306 Power supply 307 Conductive wire 401 Stage 402 Solar cell 403 Conductive brush 404 Rail 405 Power supply 406 Conductive wire 501 Substrate 502 Substrate feeding roller 503 Substrate take-up roller 504, 514 Electrolytic bath 505, 515 Cleaning bath 506 516 Drying furnace 507, 517 Power supply 508, 518 Mask film feeding roller 509, 519 Mask film take-up roller 510, 520 Mask film 511, 52 Counter electrodes 512 and 522 conductive roller.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森 隆弘 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 (72)発明者 川上 総一郎 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Takahiro Mori 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Soichiro Kawakami 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Within the corporation

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体上に少なくとも1つの接合を
有する半導体層と電極とを積層してなる太陽電池におい
て、低抵抗の欠陥部分が選択的に電着樹脂により絶縁被
覆され、シャント抵抗を1×103Ωcm2以上としたこ
とを特徴とする太陽電池。
1. A solar cell in which a semiconductor layer having at least one junction and an electrode are laminated on a conductive substrate, and a defective portion having a low resistance is selectively insulation-coated with an electrodeposition resin to improve shunt resistance. A solar cell characterized by having a resistance of 1 × 10 3 Ωcm 2 or more.
【請求項2】 前記電着樹脂は、前記電極上に設けられ
ていることを特徴とする請求項1記載の太陽電池。
2. The solar cell according to claim 1, wherein the electrodeposition resin is provided on the electrode.
【請求項3】 前記電着樹脂は、前記電極と前記半導体
層の間に設けられていることを特徴とする請求項1記載
の太陽電池。
3. The solar cell according to claim 1, wherein the electrodeposition resin is provided between the electrode and the semiconductor layer.
【請求項4】 前記欠陥部分の電極が選択的に除去さ
れ、除去された部分が電着樹脂により被覆されているこ
とを特徴とする請求項1記載の太陽電池。
4. The solar cell according to claim 1, wherein the electrode of the defective portion is selectively removed, and the removed portion is covered with an electrodeposition resin.
【請求項5】 前記電着樹脂の大きさは、欠陥部分の大
きさの10倍以下であることを特徴とする請求項1〜4
のいずれか1項に記載の太陽電池。
5. The size of the electrodeposition resin is not more than 10 times the size of the defective portion, and the size of the electrodeposition resin is less than 10 times.
The solar cell according to any one of 1.
【請求項6】 前記電着樹脂は透明であることを特徴と
する請求項1〜5のいずれか1項に記載の太陽電池。
6. The solar cell according to claim 1, wherein the electrodeposition resin is transparent.
【請求項7】 前記電着樹脂は、アクリル樹脂、エポキ
シ樹脂、フッ素樹脂、ウレタン樹脂、ポリブタジエン樹
脂の内少なくとも1つを含むことを特徴とする請求項1
〜6のいずれか1項に記載の太陽電池。
7. The electrodeposition resin contains at least one of acrylic resin, epoxy resin, fluororesin, urethane resin, and polybutadiene resin.
The solar cell according to claim 1.
【請求項8】 前記電着樹脂の最低成膜温度は50℃以
上であることを特徴とする請求項1〜7のいずれか1項
に記載の太陽電池。
8. The solar cell according to claim 1, wherein the minimum film formation temperature of the electrodeposition resin is 50 ° C. or higher.
【請求項9】 前記電着樹脂のガラス転移点が100℃
以上であることを特徴とする請求項1〜8のいずれか1
項に記載の太陽電池。
9. The glass transition point of the electrodeposition resin is 100 ° C.
It is above, It is any one of Claims 1-8 characterized by the above-mentioned.
The solar cell according to the item.
【請求項10】 導電性基体上に少なくとも1つの接合
を有する半導体層と電極とを積層してなる太陽電池の製
造方法において、前記半導体層を形成後、欠陥部分に選
択的に電着樹脂膜を形成し、その後、前記電極を形成す
ることを特徴とする太陽電池の製造方法。
10. A method of manufacturing a solar cell comprising a conductive substrate, and a semiconductor layer having at least one junction and an electrode, which are laminated on each other, wherein an electrodeposition resin film is selectively formed on a defective portion after the semiconductor layer is formed. Is formed, and then the electrode is formed.
【請求項11】 導電性基体上に少なくとも1つの接合
を有する半導体層と電極とを積層してなる太陽電池の製
造方法において、前記半導体層、前記電極を順次形成
後、欠陥部分に選択的に電着樹脂膜を形成することを特
徴とする太陽電池の製造方法。
11. A method of manufacturing a solar cell, which comprises a semiconductor layer having at least one junction and an electrode laminated on a conductive substrate, wherein the semiconductor layer and the electrode are sequentially formed, and then a defect portion is selectively formed. A method for manufacturing a solar cell, which comprises forming an electrodeposition resin film.
【請求項12】 前記電極形成後電着樹脂膜を形成する
前に、欠陥部の電極を除去することを特徴とする請求項
11記載の太陽電池の製造方法。
12. The method of manufacturing a solar cell according to claim 11, wherein the electrode of the defective portion is removed after the electrode is formed and before the electrodeposition resin film is formed.
【請求項13】 前記電極を形成後、前記欠陥部の電極
を除去する前に電界を印加してフォーミングを行うこと
を特徴とする請求項11記載の太陽電池の製造方法。
13. The method for manufacturing a solar cell according to claim 11, wherein after forming the electrodes, forming is performed by applying an electric field before removing the electrodes of the defective portion.
【請求項14】 前記電着は、太陽電池のブレークダウ
ン電圧以下の逆バイアスを印加して行うことを特徴とす
る請求項10〜13のいずれか1項に記載の太陽電池の
製造方法。
14. The method of manufacturing a solar cell according to claim 10, wherein the electrodeposition is performed by applying a reverse bias equal to or lower than a breakdown voltage of the solar cell.
【請求項15】 前記電着は、太陽電池の順方向電流が
シャント電流に対し2倍以下となるように順方向バイア
スを印加して行うことを特徴とする請求項10〜13の
いずれか1項に記載の太陽電池の製造方法。
15. The electrodeposition is performed by applying a forward bias so that the forward current of the solar cell is not more than twice the shunt current. A method for manufacturing a solar cell according to item.
【請求項16】 前記電着樹脂は透明であることを特徴
とする請求項10〜14のいずれか1項に記載の太陽電
池の製造方法。
16. The method for manufacturing a solar cell according to claim 10, wherein the electrodeposition resin is transparent.
【請求項17】 前記電着樹脂は、アクリル樹脂、エポ
キシ樹脂、フッ素樹脂、ウレタン樹脂、ポリブタジエン
樹脂の内少なくとも1つを含むことを特徴とする請求項
10〜16のいずれか1項に記載の太陽電池の製造方
法。
17. The electrodeposition resin according to claim 10, wherein the electrodeposition resin contains at least one of acrylic resin, epoxy resin, fluororesin, urethane resin, and polybutadiene resin. Method for manufacturing solar cell.
【請求項18】 前記電着樹脂の最低成膜温度は50℃
以上であることを特徴とする請求項10〜17いずれか
1項に記載の太陽電池の製造方法。
18. The minimum film forming temperature of the electrodeposition resin is 50 ° C.
It is above, The manufacturing method of the solar cell of any one of Claims 10-17 characterized by the above-mentioned.
【請求項19】 前記電着樹脂のガラス転移点が100
℃以上であることを特徴とする請求項10〜18のいず
れか1項に記載の太陽電池の製造方法。
19. The glass transition point of the electrodeposition resin is 100.
The temperature is not lower than 0 ° C, and the method for manufacturing a solar cell according to any one of claims 10-18.
JP4284737A 1992-10-22 1992-10-22 Solar cell and manufacture thereof Pending JPH06140648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4284737A JPH06140648A (en) 1992-10-22 1992-10-22 Solar cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4284737A JPH06140648A (en) 1992-10-22 1992-10-22 Solar cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06140648A true JPH06140648A (en) 1994-05-20

Family

ID=17682339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4284737A Pending JPH06140648A (en) 1992-10-22 1992-10-22 Solar cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06140648A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121982B2 (en) 2013-07-01 2018-11-06 Kabushiki Kaisha Toshiba Solar cell, solar cell module, and method for manufacturing solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10121982B2 (en) 2013-07-01 2018-11-06 Kabushiki Kaisha Toshiba Solar cell, solar cell module, and method for manufacturing solar cell

Similar Documents

Publication Publication Date Title
US6132585A (en) Semiconductor element and method and apparatus for fabricating the same
AU651486B2 (en) Photoelectric conversion element and fabrication method thereof
KR100325952B1 (en) Photovoltaic devices and how to manufacture them
CN1140932C (en) Photovaltaic device, process for production thereof, and zinc oxide thin film
KR100334595B1 (en) Manufacturing method of photovoltaic device
US6491808B2 (en) Electrolytic etching method, method for producing photovoltaic element, and method for treating defect of photovoltaic element
JP3078936B2 (en) Solar cell
JPH06318724A (en) Electrode and photovoltaic element
JPH06318723A (en) Photovoltaic element and its manufacture
JP2002094096A (en) Manufacturing method of collector electrode for photovoltaic element
JPH06140648A (en) Solar cell and manufacture thereof
JPH06196732A (en) Solar battery
JPH06204519A (en) Solar cell
JPH06151908A (en) Method of sealing defect of solar battery
JPH06204520A (en) Sealing method for defective part of solar cell
JP3078935B2 (en) Solar cell manufacturing method
JPH0794767A (en) Photoelectric converter
Tanda et al. Large-area, light-weight, flexible solar cell production technology: ready for market entry
AU722932B2 (en) Photovoltaic element and method for producing the same
Tham et al. Electrodepositing switchable photovoltaic window electron and hole transport layers
Vijh Triple junction amorphous silicon based flexible photovoltaic submodules on polyimide substrates
JPH04226085A (en) Method for removing short circuit point of photoelectric transducer
JPH0563219A (en) Solar battery and manufacture thereof
JPH0918035A (en) Collector electrode and photovoltaic element
JPH0846230A (en) Electrode for photovoltaic element, and photovoltaic element