JPH06138963A - Reactive power controller - Google Patents

Reactive power controller

Info

Publication number
JPH06138963A
JPH06138963A JP4291476A JP29147692A JPH06138963A JP H06138963 A JPH06138963 A JP H06138963A JP 4291476 A JP4291476 A JP 4291476A JP 29147692 A JP29147692 A JP 29147692A JP H06138963 A JPH06138963 A JP H06138963A
Authority
JP
Japan
Prior art keywords
phase
current
reactive power
transformer
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4291476A
Other languages
Japanese (ja)
Inventor
Seiji Sato
誠治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4291476A priority Critical patent/JPH06138963A/en
Publication of JPH06138963A publication Critical patent/JPH06138963A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PURPOSE:To produce the invalid power of cycloconverter as much as possible during a motor is stopped and to suppress the voltage rise by passing a circulating current to each phase of a transformer secondary winding rating. CONSTITUTION:Primary current Iu, Iu, and IW of a transformer 1 corresponding to the U-W phases of the motor are detected by current detecting devices 11, 12 and 13. A voltage detecting device 14 detects a system voltage V1, calculating the reactive power amount of each phase based on the values. A reactive power arithmetic circuit 15 compares the generation reactive power amount with a generation reactive power reference P0, outputting gate phase control signals 7, 8, 9 from a forward three-phase bridge connection thyrister rectifier 2 and a backward three-phase bridge connection thyrister rectifier 3 so that the circulating current within the current value subtracting the exciting current of the motor from the current capacity of the secondary winding of the transformer 1 can flow. Thus, the reactive power of the cycloconverter can be produced as much as possible during the motor is stopped and the voltage rise can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、かご形誘導電動機用循
環電流式サイクロコンバータにおける無効電力制御装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reactive power controller for a circulating current type cycloconverter for a squirrel cage induction motor.

【0002】[0002]

【従来の技術】従来のかご形誘導電動機用循環電流式サ
イクロコンバータ(以下、サイクロと称す)の主回路構
成を図3に示す。同図において、サイクロの主回路は、
トランス1、順方向3相ブリッジ接続サイリスタ整流器
2、逆方向3相ブリッジ接続サイリスタ整流器3、循環
電流抑制リアクトル4、かご形誘導電動機5で構成され
ている。トランス1の2次巻線にはモータ電流と循環電
流が流れる。
2. Description of the Related Art FIG. 3 shows a main circuit configuration of a conventional circulating current type cycloconverter for a squirrel cage induction motor (hereinafter referred to as a cyclo). In the figure, the main circuit of the cyclone is
It is composed of a transformer 1, a forward direction three-phase bridge connection thyristor rectifier 2, a reverse direction three-phase bridge connection thyristor rectifier 3, a circulating current suppressing reactor 4, and a squirrel cage induction motor 5. A motor current and a circulating current flow in the secondary winding of the transformer 1.

【0003】一方、サイクロが発生する遅れの無効電力
を補償するために、図3に示すように、進相コンデンサ
6がサイクロと同じ系統に接続される。この進相コンデ
ンサ6の容量は、一般にはサイクロが発生する最大無効
電力に許容電圧変動を加味して決定される。ここで、サ
イクロが発生する無効電力がモータ電流の増加とともに
増加するため最大無効電力は定格負荷運転中(場合によ
っては過負荷運転中)に発生する無効電力とする場合が
多い。この場合の循環電流はモータ定格電流の10%と
している。
On the other hand, in order to compensate the reactive power of the delay generated by the cyclo, a phase advance capacitor 6 is connected to the same system as the cyclo, as shown in FIG. The capacity of the phase advancing capacitor 6 is generally determined by adding the allowable voltage fluctuation to the maximum reactive power generated by the cyclo. Here, since the reactive power generated by the cyclo increases as the motor current increases, the maximum reactive power is often the reactive power generated during rated load operation (or in some cases overload operation). The circulating current in this case is 10% of the motor rated current.

【0004】このようにして決定された進相コンデンサ
容量は、固定値のため定格負荷より軽い負荷の場合には
サイクロが発生する遅れの無効電力より進相コンデンサ
の進みの無効電力の方が大きくなり、系統の許容電圧変
動以上の電圧上昇となる。これを防ぐために、負荷が軽
くなって遅れの無効電力が減少した分だけ循環電流を増
加してサイクロが発生する無効電力を一定にするような
制御を行っている。
Since the phase advancing capacitor capacity thus determined is a fixed value, the advance reactive power of the phase advancing capacitor is larger than the delay reactive power which occurs when a load is lighter than the rated load. The voltage rise exceeds the allowable voltage fluctuation of the system. In order to prevent this, the control is performed so that the circulating current is increased by the amount by which the load becomes lighter and the delayed reactive power decreases to make the reactive power generated by the cyclone constant.

【0005】このように無効電力を一定に制御する無効
電力演算回路10は、図4に示すように、系統の電圧V
1 とU相,V相,W相の合計電流I1 とを入力して、そ
の系統の無効電力量を演算し、この無効電力量とそのサ
イクロが発生すべき無効電力基準P0 とを比較して偏差
が0となるように、循環電流を制御する順方向3相ブリ
ッジ接続サイリスタ整流器2と逆方向3相ブリッジ接続
サイリスタ整流器3のゲート位相制御信号7,8,9を
出力するように構成されている。
As shown in FIG. 4, the reactive power operation circuit 10 for controlling the reactive power at a constant level as described above has a system voltage V.
1 and U-phase, V-phase, and inputs the total current I 1 of the W-phase, calculates the reactive power of the system, comparing the amount of reactive power and the reactive power reference P 0 to be the Cyclo occurs Then, the gate phase control signals 7, 8 and 9 of the forward direction three-phase bridge connection thyristor rectifier 2 and the reverse direction three-phase bridge connection thyristor rectifier 3 for controlling the circulating current are output so that the deviation becomes zero. Has been done.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の無効
電力一定制御は、前述したようにU相,V相,W相一括
で無効電力量が一定となるように制御しているため、モ
ータ停止中に次に述べるような問題点があった。すなわ
ち、サイクロのモータ電流はトルク分電流とモータ励磁
電流分とが合成されたものであり、モータ停止中のモー
タ電流としては励磁電流分のみとなる。励磁電流はモー
タ回転中は図5に示すような3相交流波形であるが、モ
ータが停止するとU相,V相,W相それぞれが直流とな
る。この直流電流値はモータのロータが停止した位置に
より異なり、例えば、図6のA点で停止したとするとU
相には励磁電流の最大値が連続して流れ、V相およびW
相には励磁電流の最大値の1/2の電流が連続して流れ
る。励磁電流と循環電流との和がトランス2次巻線に流
れる電流であるため、励磁電流が大きければ循環電流は
あまり流すことができず発生無効電力も少ない。この場
合は、U相,V相,W相のうち、最大の励磁電流である
U相の励磁電流を流した時に、トランス2次巻線に流す
ことができる循環電流を最大値として流し、他のV相,
W相もU相と同じ量の循環電流を流している。したがっ
て、この場合V相およびW相についてはトランスの定格
電流値まで循環電流を流していないため、発生無効電力
量が足りなくなり、系統が許容電圧変動以上に電圧上昇
することがあるという問題があった。
By the way, in the conventional reactive power constant control, as described above, the reactive power amount is controlled to be constant in the U-phase, V-phase, and W-phase collectively, so that the motor is stopped. There were the following problems. That is, the cyclone motor current is a combination of the torque current and the motor exciting current, and the motor current while the motor is stopped is only the exciting current. The exciting current has a three-phase AC waveform as shown in FIG. 5 while the motor is rotating, but when the motor is stopped, each of the U phase, V phase, and W phase becomes DC. This DC current value varies depending on the position where the motor rotor stops. For example, if it stops at point A in FIG.
The maximum value of the exciting current flows continuously in the phase, V phase and W
A half of the maximum exciting current continuously flows through the phase. Since the sum of the exciting current and the circulating current is the current flowing through the secondary winding of the transformer, if the exciting current is large, the circulating current cannot flow so much and the reactive power generated is small. In this case, of the U-phase, V-phase, and W-phase, when the exciting current of the U-phase, which is the maximum exciting current, is passed, the circulating current that can be passed through the secondary winding of the transformer is passed as the maximum value, and the others. V phase of
The W phase also carries the same amount of circulating current as the U phase. Therefore, in this case, since the circulating current does not flow up to the rated current value of the transformer for the V phase and the W phase, there is a problem that the amount of generated reactive power becomes insufficient and the voltage of the system may rise more than the allowable voltage fluctuation. It was

【0007】本発明は上記問題を解決するためになされ
たもので、その目的はかご形誘導電動機停止中も系統の
許容電圧変動以内に電圧上昇を抑える無効電力制御装置
を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a reactive power control device that suppresses a voltage rise within the allowable voltage fluctuation of the system even when the squirrel cage induction motor is stopped.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の無効電力制御装置は、トランスと、順方向
3相ブリッジ接続サイリスタ整流器と、逆方向3相ブリ
ッジ接続サイリスタ整流器と、循環電流制御リアクトル
と、かご形誘導電動機とから構成されたかご形誘導電動
機用循環電流式サイクロコンバータにおいて、前記電動
機のU相,V相,W相の各相に相当する前記トランスの
1次側の電流を検出する電流検出器と、系統の電圧を検
出する電圧検出器と、この電流と電圧からU相,V相,
W相の各相が発生する無効電力量を演算し、この発生無
効電力量と発生無効電力基準とを比較し両者の偏差が0
となるように前記トランスの2次巻線の電流容量から前
記電動機の励磁電流を差し引いた電流値以内の循環電流
を流すように前記順方向3相ブリッジ接続サイリスタ整
流器と前記逆方向3相ブリッジ接続サイリスタ整流器の
ゲート位相制御信号を出力する無効電力演算回路とから
構成されたことを特徴とする。
In order to achieve the above object, a reactive power control apparatus of the present invention comprises a transformer, a forward direction three-phase bridge connection thyristor rectifier, a reverse direction three-phase bridge connection thyristor rectifier, and a circulation circuit. In a circulating current type cycloconverter for a squirrel-cage induction motor, which is composed of a current control reactor and a squirrel-cage induction motor, a primary side of the transformer corresponding to each phase of U-phase, V-phase and W-phase of the motor. A current detector that detects the current, a voltage detector that detects the voltage of the system, and U-phase, V-phase,
The amount of reactive power generated in each phase of the W phase is calculated, the generated reactive power amount is compared with the generated reactive power reference, and the deviation between the two is 0.
The forward direction three-phase bridge connection thyristor rectifier and the reverse direction three-phase bridge connection so that a circulating current within a current value obtained by subtracting the exciting current of the motor from the current capacity of the secondary winding of the transformer And a reactive power calculation circuit that outputs a gate phase control signal of the thyristor rectifier.

【0009】[0009]

【作用】本発明によると、かご形誘導電動機のU相,V
相,W相の各相に相当するトランス1次側の各主回路電
流を検出し、トランス2次巻線定格までU相,V相,W
相の各相に循環電流を流すことによりかご形誘導電動機
停止中もサイクロの無効電力を最大限に発生することが
できるので、系統の許容電圧変動以内に電圧上昇を抑え
ることができる。
According to the present invention, the U phase, V of the squirrel cage induction motor is used.
The main circuit current on the transformer primary side corresponding to each phase of W phase and W phase is detected, and U phase, V phase, W up to the transformer secondary winding rating.
By circulating the circulating current in each phase, the maximum reactive power of the cyclone can be generated even when the squirrel-cage induction motor is stopped, so that the voltage rise can be suppressed within the allowable voltage fluctuation of the system.

【0010】[0010]

【実施例】本発明の実施例を図を参照して説明する。図
1は本発明の一実施例の回路図であり、既に説明した図
3の回路図と異なる点は、かご形誘導電動機のU相,V
相,W相の各相に相当するトランス1の1次側の電流I
U ,IV ,IW を検出する電流検出器11,12,13
を設けた点のみであり、その他の回路構成は同一である
ので、同一部分には同一符号を付して説明する。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of an embodiment of the present invention. The difference from the circuit diagram of FIG. 3 already described is that the U-phase, V
Current I on the primary side of the transformer 1 corresponding to each of the W and W phases
U, the current detector 11, 12, 13 for detecting the I V, I W
The other circuit configurations are the same, and therefore the same parts will be described with the same reference numerals.

【0011】図1に示すように、本発明が適用されるサ
イクロの主回路構成は、従来と同様にトランス1、順方
向3相ブリッジ接続サイリスタ整流器2、逆方向3相ブ
リッジ接続サイリスタ整流器3、循環電流抑制リアクト
ル4、かご形誘導電動機5で構成されている。
As shown in FIG. 1, the main circuit configuration of a cyclo to which the present invention is applied is the same as that of the conventional one, a transformer 1, a forward direction 3-phase bridge connection thyristor rectifier 2, a reverse direction 3-phase bridge connection thyristor rectifier 3, It is composed of a circulating current suppressing reactor 4 and a squirrel cage induction motor 5.

【0012】このようなサイクロの無効電力を制御する
ために、本実施例の無効電力制御装置は、図2に示すよ
うに電動機のU相,V相,W相の各相に相当するトラン
ス1の1次側の電流IU ,IV ,IW を検出する電流検
出器11,12,13と、系統の電圧V1 を検出する電
圧検出器14と、この電流IU ,IV ,IW と電圧V1
からU相,V相,W相の各相が発生する無効電力量を演
算し、この発生無効電力量と発生無効電力基準P0 とを
比較し両者の偏差が0となるように、トランス1の2次
巻線の電流容量からかご形誘導電動機の励磁電流を差し
引いた電流値以内の循環電流を流すように順方向3相ブ
リッジ接続サイリスタ整流器2と逆方向3相ブリッジ接
続サイリスタ整流器3のゲート位相制御信号7,8,9
を出力する無効電力演算回路15とから構成されてい
る。
In order to control the reactive power of such a cyclo, the reactive power control device of the present embodiment, as shown in FIG. 2, is a transformer 1 corresponding to each phase of the U phase, V phase and W phase of the motor. Current detectors 11, 12, 13 for detecting the primary currents I U , I V , I W , a voltage detector 14 for detecting the system voltage V 1 , and the currents I U , I V , I W and voltage V 1
From the U phase, the V phase, and the W phase are calculated, the generated reactive power amount and the generated reactive power reference P 0 are compared, and the transformer 1 is set so that the deviation between them becomes zero. Gate of forward three-phase bridge-connected thyristor rectifier 3 and reverse three-phase bridge-connected thyristor rectifier 3 so that circulating current within a current value obtained by subtracting the exciting current of the squirrel-cage induction motor from the current capacity of the secondary winding Phase control signals 7, 8, 9
And a reactive power calculation circuit 15 that outputs

【0013】次に、本実施例の動作について説明する。
図6においてA点で停止したとすると、前述のようにU
相には励磁電流の最大値が、またV相およびW相には励
磁電流の最大値の1/2の電流が流れる。したがって、
本実施例によればU相には(トランス2次巻線定格電流
−励磁電流電流最大値)の循環電流を流すことができ、
V相およびW相には(トランス2次巻線定格電流−励磁
電流電流最大値×1/2)の循環電流を流すことができ
るため、このサイクロが発生する無効電力量は、V相お
よびW相もトランスの定格電流値まで循環電流を流すこ
とになり、従来の装置に比べ大きい値となる。
Next, the operation of this embodiment will be described.
Assuming that the vehicle stops at point A in FIG.
The maximum value of the exciting current flows in the phase, and the current of 1/2 the maximum value of the exciting current flows in the V phase and the W phase. Therefore,
According to this embodiment, a circulating current of (transformer secondary winding rated current-exciting current maximum value) can be passed through the U phase,
Since a circulating current of (transformer secondary winding rated current−excitation current / current maximum value × 1/2) can be passed through the V phase and the W phase, the amount of reactive power generated by this cyclone is the V phase and the W phase. The phase also causes the circulating current to flow up to the rated current value of the transformer, which is a larger value than the conventional device.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
電動機停止中でも大きな無効電力を発生することができ
るので、系統の電圧上昇を抑えることができるという優
れた効果を奏する。
As described above, according to the present invention,
Since a large reactive power can be generated even when the electric motor is stopped, there is an excellent effect that a voltage increase in the system can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の回路図。FIG. 1 is a circuit diagram of an embodiment of the present invention.

【図2】本発明の無効電力演算回路の入出力回路図。FIG. 2 is an input / output circuit diagram of a reactive power arithmetic circuit of the present invention.

【図3】従来のかご形誘導電動機用循環電流式サイクロ
コンバータの主回路図。
FIG. 3 is a main circuit diagram of a conventional circulating current type cycloconverter for a squirrel cage induction motor.

【図4】図3の無効電力演算回路の入出力回路図。4 is an input / output circuit diagram of the reactive power arithmetic circuit of FIG.

【図5】かご形誘導電動機回転中の励磁電流波形図。FIG. 5 is an excitation current waveform diagram during rotation of the squirrel cage induction motor.

【図6】かご形誘導電動機停止中の励磁電流波形図。FIG. 6 is an excitation current waveform diagram when the squirrel cage induction motor is stopped.

【符号の説明】[Explanation of symbols]

1…トランス、2…順方向3相ブリッジ接続サイリスタ
整流器、3…逆方向3相ブリッジ接続サイリスタ整流
器、4…循環電流抑制リアクトル、5…かご形誘導電動
機、6…進相コンデンサ、7…U相ゲート位相制御信
号、8…V相ゲート位相制御信号、9…W相ゲート位相
制御信号、10…無効電力演算回路、11…U相電流検
出器、12…V相電流検出器、13…W相電流検出器、
14…電圧検出器、15…無効電力演算回路。
1 ... Transformer, 2 ... Forward three-phase bridge connection thyristor rectifier, 3 ... Reverse three-phase bridge connection thyristor rectifier, 4 ... Circulating current suppressing reactor, 5 ... Squirrel cage induction motor, 6 ... Leading capacitor, 7 ... U phase Gate phase control signal, 8 ... V phase gate phase control signal, 9 ... W phase gate phase control signal, 10 ... Reactive power arithmetic circuit, 11 ... U phase current detector, 12 ... V phase current detector, 13 ... W phase Current detector,
14 ... Voltage detector, 15 ... Reactive power calculation circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 トランスと、順方向3相ブリッジ接続サ
イリスタ整流器と、逆方向3相ブリッジ接続サイリスタ
整流器と、循環電流制御リアクトルと、かご形誘導電動
機とから構成されたかご形誘導電動機用循環電流式サイ
クロコンバータにおいて、前記電動機のU相,V相,W
相の各相に相当する前記トランスの1次側の電流を検出
する電流検出器と、系統の電圧を検出する電圧検出器
と、この電流と電圧からU相,V相,W相の各相が発生
する無効電力量を演算し、この発生無効電力量と発生無
効電力基準とを比較し両者の偏差が0となるように前記
トランスの2次巻線の電流容量から前記電動機の励磁電
流を差し引いた電流値以内の循環電流を流すように前記
順方向3相ブリッジ接続サイリスタ整流器と前記逆方向
3相ブリッジ接続サイリスタ整流器のゲート位相制御信
号を出力する無効電力演算回路とから構成されたことを
特徴とする無効電力制御装置。
1. A circulating current for a squirrel cage induction motor comprising a transformer, a forward three-phase bridge connection thyristor rectifier, a reverse three-phase bridge connection thyristor rectifier, a circulating current control reactor, and a squirrel cage induction motor. Type cycloconverter, U phase, V phase, W of the electric motor
A current detector that detects the current on the primary side of the transformer corresponding to each phase, a voltage detector that detects the voltage of the system, and U-phase, V-phase, and W-phase based on this current and voltage Is calculated, the generated reactive power is compared with the generated reactive power reference, and the exciting current of the electric motor is calculated from the current capacity of the secondary winding of the transformer so that the deviation between the two becomes zero. A forward power 3-phase bridge connection thyristor rectifier and a reverse power 3-phase bridge connection thyristor rectifier configured to output a gate phase control signal so as to pass a circulating current within a subtracted current value. Characteristic reactive power control device.
JP4291476A 1992-10-29 1992-10-29 Reactive power controller Pending JPH06138963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4291476A JPH06138963A (en) 1992-10-29 1992-10-29 Reactive power controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4291476A JPH06138963A (en) 1992-10-29 1992-10-29 Reactive power controller

Publications (1)

Publication Number Publication Date
JPH06138963A true JPH06138963A (en) 1994-05-20

Family

ID=17769372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4291476A Pending JPH06138963A (en) 1992-10-29 1992-10-29 Reactive power controller

Country Status (1)

Country Link
JP (1) JPH06138963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325067A (en) * 2021-11-19 2022-04-12 国网新疆电力有限公司电力科学研究院 Rapid judgment and detection method and detection device for circulation between parallel operation transformers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325067A (en) * 2021-11-19 2022-04-12 国网新疆电力有限公司电力科学研究院 Rapid judgment and detection method and detection device for circulation between parallel operation transformers
CN114325067B (en) * 2021-11-19 2023-10-20 国网新疆电力有限公司电力科学研究院 Method and device for rapidly judging and detecting circulating current between parallel operation transformers

Similar Documents

Publication Publication Date Title
EP1404015B1 (en) Method and compensation modulator for dynamically controlling induction machine regenerating energy flow
US4767976A (en) Control system for PWM inverter
US5390102A (en) Parallel running control apparatus for PWM inverters
US7091690B1 (en) Power conversion device
JP2515903B2 (en) AC motor drive system and control method thereof
JP2002010684A (en) Driving system for ac motor
JP3773794B2 (en) Power converter
JP6448757B2 (en) Inverter control method
JP3381465B2 (en) Control method of power converter
JP2003189474A (en) System linked power converter
JPH06138963A (en) Reactive power controller
JP3462347B2 (en) Control device for variable speed generator motor
JP3312178B2 (en) Control device for self-excited inverter
JP2019062660A (en) Voltage adjusting device
JPS60139186A (en) Controller for motor
JPS5819169A (en) Controlling method for pwm control converter
JP2001238455A (en) Multiple power converter
JP3323901B2 (en) Control device for linear motor electric vehicle
JPH06245565A (en) Regenerative controller for voltage-type inverter
JP2644222B2 (en) Induction motor torque control method
JP3751827B2 (en) Power converter
JP2569016B2 (en) Induction machine control device
JPH11164568A (en) Power converter
JPH03183389A (en) Controller for induction motor
JP2002152914A (en) Control device for electric vehicle equipped with linear induction motor