JPH06138666A - Resist developer - Google Patents

Resist developer

Info

Publication number
JPH06138666A
JPH06138666A JP4307955A JP30795592A JPH06138666A JP H06138666 A JPH06138666 A JP H06138666A JP 4307955 A JP4307955 A JP 4307955A JP 30795592 A JP30795592 A JP 30795592A JP H06138666 A JPH06138666 A JP H06138666A
Authority
JP
Japan
Prior art keywords
resist
development
developer
developing solution
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4307955A
Other languages
Japanese (ja)
Inventor
Kiyoshi Mogi
清 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4307955A priority Critical patent/JPH06138666A/en
Publication of JPH06138666A publication Critical patent/JPH06138666A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To obtain such a resist pattern that the cross section of the pattern is not rounded after development and to prevent production of residue on a wafer by preparing a developer from a soln. essentially consisting of isopentyl acetate and isopropylalcohol. CONSTITUTION:This resist developer is used to develop a resist layer formed on a substrate after the resist layer is selectively exposed to light by irradiation of far UV irradiation. The developer is a soln. containing isopentyl acetate and isopropylalcohol. The vol. proportion of isopropyl alcohol in the soln. is preferably <=40%. Thereby, when a polymer resist such as polymethylmethacrylate is exposed to far UV rays for patterning, the resist pattern after development has a cross section without rounded but sharp edges. The resist dissolved is completely dissolved in the developer so that the resist can be completely removed by washing after development, and thereby, no resist remains on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の製造におけ
るリソグラフィー工程に用いるレジスト現像液に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resist developing solution used in a lithography process in manufacturing semiconductors and the like.

【0002】[0002]

【従来の技術】半導体装置の製造のための高解像のパタ
ーン形成が可能な一つの手法として、遠紫外(DUV)
域の特定波長の光源、例えば193nmのArFエキシ
マレーザ光を用いたリソグラフィが検討されている。こ
の場合、使用するレジストとしては、従来の遠紫外線用
レジストではこの波長の光に対する吸収が大き過ぎて使
用が困難であり、このため、例えば遠紫外線に対して比
較的吸収率の小さいポリメチルメタクリレート(PMM
A)を使用することが考えられる。
2. Description of the Related Art As one method capable of forming a high resolution pattern for manufacturing a semiconductor device, deep ultraviolet (DUV) is used.
Lithography using a light source having a specific wavelength in a range, for example, ArF excimer laser light of 193 nm is under study. In this case, as a resist to be used, a conventional deep-UV resist is too difficult to use because it absorbs too much light of this wavelength, and therefore, for example, polymethylmethacrylate having a relatively small absorptivity to deep-UV light. (PMM
It is conceivable to use A).

【0003】PMMAは、通常は電子線用レジストとし
て用いられており、化学構造的に見ると、以下の化1で
示される化学式を基本形とし、R1 を−CH3 、R2
−COOCH3 としたものである。
PMMA is usually used as an electron beam resist, and in terms of chemical structure, the chemical formula represented by the following chemical formula 1 is a basic form, and R 1 is --CH 3 and R 2 is --COOCH 3. It is what

【0004】[0004]

【化1】 [Chemical 1]

【0005】これは、以下の式2に示すように、照射エ
ネルギーの吸収によって主鎖構造の切断による低分子量
化、即ち、易溶解性構造が与えられる分解型高分子であ
る。
As shown in the following formula 2, this is a decomposable polymer in which a main chain structure is cleaved by absorption of irradiation energy to lower the molecular weight, that is, an easily soluble structure is given.

【0006】[0006]

【化2】 [Chemical 2]

【0007】このような分解型高分子には、化1の構造
においてR1 を−CH3 、R2 を−C65 とするポリ
αメチルスチンや、同様にR1 を−CH3 、R2 を−C
OONH2 とするポリメタクリルアミド、さらにR1
−CH3 、R2 を−COCH3 とするポリメチルイソプ
ロペニルケトン等、種々のものがある。
Examples of such decomposable polymers include poly-α-methylstin in which R 1 is —CH 3 and R 2 is —C 6 H 5 in the structure of Chemical formula 1 , and similarly R 1 is —CH 3 , R 3 . 2 to -C
There are various ones such as polymethacrylamide having OONH 2 and polymethylisopropenyl ketone having R 1 as —CH 3 and R 2 as —COCH 3 .

【0008】また、逆に、化1の構造においてR1 を−
H、R2 を−C65 とするポリスチレンや、R1 を−
H、R2 を−COCH3 とするポリメチルビニルケトン
など、下記の式3に示すようにエネルギー吸収によって
架橋構造、即ち不溶性を与える架橋型高分子もある。な
お、ポリスチレンは感度が低すぎて実用性に欠けている
ため、感度向上の工夫がいくつか試みられており、その
1つに例えばクロルメチル化ポリスチレン(CMS)が
ある。
On the contrary, in the structure of Chemical formula 1 , R 1 is
H and R 2 -C 6 H 5 polystyrene or R 1-
There is also a cross-linking polymer such as polymethyl vinyl ketone in which H and R 2 are —COCH 3 , which gives a cross-linked structure, that is, insolubility by energy absorption as shown in the following formula 3. Since polystyrene has too low sensitivity and lacks practicality, some attempts have been made to improve the sensitivity, and one of them is, for example, chloromethylated polystyrene (CMS).

【0009】[0009]

【化3】 [Chemical 3]

【0010】ここで、PMMAを用いた場合のレジスト
パターン形成方法の一例を図2に示す。図2において、
基板1にPMMAを回転塗布し、厚さ0.5〜1.0μ
mのレジスト膜を得る(図2a)。次に例えば193n
mのArFエキシマレーザ光を用い、投影レンズにより
マスク(レチクル)パターンをレジスト2に結像し投影
露光を行う(図2b)。そして、最後に現像処理を施し
てレジストパターン2aが得られる。
An example of a resist pattern forming method using PMMA is shown in FIG. In FIG.
Spin coating of PMMA on the substrate 1, thickness 0.5-1.0μ
m resist film is obtained (FIG. 2a). Next, for example, 193n
By using Ar m excimer laser beam of m, a mask (reticle) pattern is imaged on the resist 2 by a projection lens to perform projection exposure (FIG. 2b). Finally, development processing is performed to obtain the resist pattern 2a.

【0011】例えば、図4(a)のような遮光部(黒塗
り部分)と透光部とを等しく並べてマスク(レチクル)
上に形成されたラインアンドスペース(デューティ1:
1)のパターン像を投影レンズを通してウエハ上に形成
する場合、マスクを透過した光のレジスト上での光強度
分布は、理想的には図4(b)のような矩形状の光強度
分布となる。しかし、実際にはパターンによる回折等に
より図4(c)のような山形(sin波状)の光強度分
布となる。従って、図4(c)に符号Xで示すように、
本来照射されるべきでないレジスト部位にまで照射が行
われてしまう。その結果、現像後に得られるレジストパ
ターンの断面形状は図5(a)に示すように丸みを帯び
たものになってしまう。
For example, a mask (reticle) in which a light-shielding portion (black-painted portion) and a light-transmitting portion as shown in FIG.
Line and space formed above (duty 1:
When the pattern image of 1) is formed on the wafer through the projection lens, the light intensity distribution on the resist of the light transmitted through the mask is ideally a rectangular light intensity distribution as shown in FIG. 4B. Become. However, in reality, due to the diffraction due to the pattern or the like, a mountain-shaped (sin wave) light intensity distribution as shown in FIG. 4C is obtained. Therefore, as indicated by the symbol X in FIG.
Irradiation is performed even to the resist portion that should not be originally irradiated. As a result, the cross-sectional shape of the resist pattern obtained after development becomes rounded as shown in FIG.

【0012】そこで、現像後に得られるレジストパター
ンの断面形状を図5(b)に示されるようにエッジ部分
がシャープで、しかも前記ラインアンドスペースのパタ
ーンのライン幅とスペース間隔が等しいものにするに
は、図4(c)に示した強度分布の極大値Imax と極小
値Imin の平均値Iave がレジストの完全溶解のための
照射光量と等しく、またそれ以下の照射光量ではレジス
トの溶解が生じないという特性のレジストと現像液を用
いる必要がある。
Therefore, the cross-sectional shape of the resist pattern obtained after development should be such that the edge portion is sharp and the line width and space interval of the line-and-space pattern are equal, as shown in FIG. 5B. Means that the average value I ave of the maximum value I max and the minimum value I min of the intensity distribution shown in FIG. 4C is equal to the irradiation light amount for completely dissolving the resist, and the irradiation light amount less than that causes the resist dissolution. It is necessary to use a resist and a developer that have the property of not causing

【0013】一方、PMMAレジスト用の現像液として
は、従来はメチルイソブチルケトン(MIBK)とイソ
プロピルアルコール(IPA)の混合液、あるいは酢酸
イソペンチルと酢酸エチルの混合液等が一般的に用いら
れている。
On the other hand, as a developing solution for a PMMA resist, a mixed solution of methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA) or a mixed solution of isopentyl acetate and ethyl acetate has been generally used. .

【0014】酢酸イソペンチルと酢酸エチルの混合液を
現像液として用いた場合、193nm遠紫外線照射光量
EとPMMAレジストの膜厚比(残膜率)との関係は図
3(a)に示す通りである。ここでは、レジスト膜は照
射光量AE0 以上で溶解が始まり、AEth以上の照射光
量で完全に溶解する。
When a mixed solution of isopentyl acetate and ethyl acetate is used as a developing solution, the relationship between the 193 nm far ultraviolet irradiation light amount E and the film thickness ratio (residual film rate) of the PMMA resist is as shown in FIG. 3 (a). is there. Here, the resist film begins to dissolve at an irradiation light amount of AE 0 or more, and completely dissolves at an irradiation light amount of AEth or more.

【0015】同様に、MIBKとIPAの混合液を現像
液として用いた場合、レジストの照射光量Eとレジスト
の膜厚比(残膜率)の関係は図3(b)に示す通りであ
る。この場合、レジスト膜は照射光量BE0 以上で溶解
が始まり、照射光量BEth以上で完全に溶解する。
Similarly, when a mixed solution of MIBK and IPA is used as a developing solution, the relationship between the resist irradiation light amount E and the resist film thickness ratio (residual film ratio) is as shown in FIG. 3 (b). In this case, the resist film begins to dissolve when the irradiation light amount BE 0 or more and completely dissolves when the irradiation light amount BEth or more.

【0016】[0016]

【発明が解決しようとする課題】しかしながら、酢酸イ
ソペンチルと酢酸エチルの混合液からなる現像液では、
図3(a)から明らかなように、照射光量の低い領域
(A)でもレジストの溶解が生じている。従って、この
ような特性の現像液を用いた場合、完全にレジストが溶
解される照射光量であるAEthと前述のIave とを等し
く設定して照射を行っても、それ以下の照射光量でもレ
ジストが溶解されてしまうので、本来照射されるべきで
ない部位でありながら低照射光量で照射(図4(c)の
X)された部位は溶解されてしまい、現像後、断面形状
が図5(a)に示すようにエッジ部分が丸みを帯びたレ
ジストパターンとなってしまう。
However, in the case of a developing solution comprising a mixed solution of isopentyl acetate and ethyl acetate,
As is clear from FIG. 3A, the resist is dissolved even in the region (A) where the irradiation light amount is low. Therefore, when a developing solution having such characteristics is used, even if irradiation is performed with AEth, which is the irradiation light amount at which the resist is completely dissolved, and I ave described above being set equal, the irradiation light amount less than that can also be used. Is dissolved, the part which should not be originally irradiated but is irradiated with a low irradiation light amount (X in FIG. 4C) is dissolved, and the cross-sectional shape after development is shown in FIG. ), The edge portion becomes a rounded resist pattern.

【0017】また、MIBKとIPAの混合液からなる
現像液では、図3(b)に示すように、完全にレジスト
が溶解される照射光量であるBEth以下でレジストの溶
解が生じる低照射量領域(B)は、図3(a)の上記酢
酸イソペンチルと酢酸エチルの混合液からなる現像液を
用いた場合の低照射量領域(A)に比べて狭い。
Further, in the developing solution composed of a mixed solution of MIBK and IPA, as shown in FIG. 3B, a low irradiation amount region where the resist is dissolved at BEth which is the irradiation light amount at which the resist is completely dissolved (B) is narrower than the low dose region (A) in the case of using the developing solution composed of the mixed solution of isopentyl acetate and ethyl acetate in FIG. 3A.

【0018】このような特性の現像液を用いた場合に
は、現像後に得られるレジストパターンは図5(b)に
示すような同図(a)に比べエッジ部分がシャープな形
状となる。したがって、現像液としては図3(b)のよ
うな特性のものが好ましい。しかし、図3(b)のMI
BKとIPAとの混合液からなる現像液は、現像後に溶
解したレジストの残渣がウエハ上に生じるという問題が
あった。ここで、残渣とは現像液中に溶解したレジスト
分子あるいは塊が現像後にウエハ表面またはレジストパ
ターン上に再付着した状態で残ったものである。このよ
うに、従来は、例えば遠紫外光源を用いるステッパの性
能評価ができるようなレジストパターンを得るのに十分
な現像液は知られていなかった。
When a developing solution having such characteristics is used, the resist pattern obtained after development has a sharp edge portion as shown in FIG. 5B as compared with FIG. 5A. Therefore, it is preferable that the developing solution has the characteristics shown in FIG. However, the MI of FIG.
The developing solution composed of the mixed solution of BK and IPA has a problem that the residue of the resist dissolved after the development is generated on the wafer. Here, the residue means that the resist molecules or lumps dissolved in the developing solution remain in the state of being redeposited on the wafer surface or the resist pattern after the development. As described above, hitherto, no sufficient developing solution has been known for obtaining a resist pattern capable of evaluating the performance of a stepper using a deep ultraviolet light source, for example.

【0019】本発明は、上記問題を解消し、現像後のレ
ジストパターンの断面形状が丸みを帯びることなくシャ
ープなエッジのパターンとなると共に、ウエハ上に残渣
が生じることのないレジスト現像液を得ることを目的と
する。
The present invention solves the above problems and provides a resist developing solution in which the resist pattern after development has a sharp edge pattern without rounding and no residue is formed on the wafer. The purpose is to

【0020】[0020]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明は基板上に形成されたレジス
ト層への遠紫外線照射による選択露光を行った後の現像
に用いるレジスト現像液として、酢酸イソペンチルとイ
ソプロピルアルコールを主として含む溶液からなるレジ
スト現像液を提供するものである。
In order to achieve the above object, the invention described in claim 1 is a resist development used for development after selective exposure of a resist layer formed on a substrate by irradiation with far ultraviolet rays. As a liquid, there is provided a resist developer which is a solution mainly containing isopentyl acetate and isopropyl alcohol.

【0021】また、請求項2に記載の発明では、請求項
1に記載のレジスト現像液において、前記溶液における
前記イソプロピルアルコールの容積比を40%以下とし
ている。
According to the second aspect of the invention, in the resist developing solution according to the first aspect, the volume ratio of the isopropyl alcohol in the solution is 40% or less.

【0022】また、請求項3に記載の発明では、請求項
1に記載のレジスト現像液において、前記レジストを分
解型高分子もしくは架橋型高分子であるものとした。
Further, in the invention described in claim 3, in the resist developer according to claim 1, the resist is a decomposable polymer or a cross-linked polymer.

【0023】[0023]

【作用】本発明によるレジスト現像液は、酢酸イソペン
チルアルコールとイソプロピルアルコールを主として含
む溶液からなるものであり、PMMAなどの高分子レジ
ストに遠紫外域の露光光によってマスクパターンを露光
した場合、現像後に得られるレジストパターンはその断
面形状が丸みを帯びることが無く、シャープなエッジの
パターンとなる。
The resist developing solution according to the present invention comprises a solution mainly containing isopentyl acetate and isopropyl alcohol, and when a mask pattern is exposed to a polymer resist such as PMMA by exposure light in the far ultraviolet region, it is developed. The resist pattern obtained later does not have a round cross-sectional shape and has a sharp edge pattern.

【0024】本発明のレジスト現像液は、或る照射光量
を境界としてそれ以下の照射を受けたレジスト部位に対
しては急激に溶解性が低くなり、レジスト溶解を生じる
低照射光量領域が狭いという特性を有する。これによ
り、本来照射されるべきでないのに照射されてしまった
部位であっても、照射光量が或る閾値より少しでも低け
ればレジストの溶解が殆ど生じないこととなる。
The resist developing solution of the present invention is characterized by a sharp decrease in solubility with respect to a resist site irradiated below a certain irradiation light amount, and the low irradiation light amount region causing resist dissolution is narrow. Have characteristics. As a result, even if the portion that should not be irradiated is irradiated, the resist is hardly dissolved if the irradiation light amount is slightly lower than a certain threshold.

【0025】また、酢酸イソペンチルとイソプロピルア
ルコールを主として含む溶液からなるレジスト現像液に
おいてイソプロピルアルコールの容積比を40%以下と
すると、溶解したレジストは現像液中に完全溶解状態と
なり、従って現像後の洗浄で完全に除去することができ
るので、ウエハ基板上にレジスト残渣が生じることはな
い。
Further, when the volume ratio of isopropyl alcohol is set to 40% or less in the resist developing solution mainly composed of a solution mainly containing isopentyl acetate and isopropyl alcohol, the dissolved resist is completely dissolved in the developing solution, and therefore the cleaning after development is performed. Since it can be completely removed by, the resist residue is not generated on the wafer substrate.

【0026】[0026]

【実施例】以下に、本発明の実施例を説明する。図1
は、本発明の一実施例によるレジスト現像液を用いた場
合のレジストへの遠紫外線照射光量とレジスト膜厚比
(残膜率)との関係を以下の実験1の方法によって求め
た結果を示すものである。
EXAMPLES Examples of the present invention will be described below. Figure 1
Shows the result of the relationship between the amount of far-ultraviolet irradiation light on the resist and the resist film thickness ratio (residual film ratio) obtained by the method of Experiment 1 below when the resist developing solution according to one example of the present invention is used. It is a thing.

【0027】実験1 まず、Siウエハ基板上に、スピンコートによって厚さ
0.5μmのPMMA(商品名OEBR−1000:東
京応化工業株式会社)のレジスト層を形成し、170℃
で20minのプリベークを行った。次に、このレジス
ト層へ、波長λ=193nmのエキシマレーザ光によっ
て露光を行った後、容積比が酢酸イソペンチル/IPA
=8/2で混合温度22℃の現像液により2〜3min
の現像処理を行った。その後エタノールでリンスした
後、レジスト残膜を観察した。この場合、各々異なる照
射光量におけるレジストの残膜率を各々プロットして図
1の結果を得た。
Experiment 1 First, a resist layer of PMMA (trade name OEBR-1000: Tokyo Ohka Kogyo Co., Ltd.) having a thickness of 0.5 μm was formed on a Si wafer substrate by spin coating, and 170 ° C.
A pre-baking was performed for 20 minutes. Next, this resist layer is exposed by an excimer laser beam having a wavelength λ = 193 nm, and then the volume ratio is isopentyl acetate / IPA.
= 8/2 with a developer having a mixing temperature of 22 ° C for 2 to 3 minutes
Was developed. Then, after rinsing with ethanol, the residual resist film was observed. In this case, the residual film ratio of the resist at each different irradiation light amount was plotted, and the result of FIG. 1 was obtained.

【0028】以上の実験の結果、図1から明らかなよう
に、酢酸イソペンチルとIPAからなる本実施例の現像
液は、レジストが完全に溶解してしまう照射光量CEth
以下でレジストの溶解が生じてしまう低照射光量領域C
が狭いという特性を有する。さらに、この現像液による
現像後のレジストパターンは、その断面形状がシャープ
なエッジを呈し、しかもリンス後のウエハ上にはレジス
ト残渣は全く見られなかった。
As a result of the above experiment, as is apparent from FIG. 1, the developer of this embodiment, which is composed of isopentyl acetate and IPA, has an irradiation light amount CEth at which the resist is completely dissolved.
A low irradiation light amount region C in which the resist is dissolved in the following
Has the property of being narrow. Furthermore, the resist pattern after development with this developing solution had a sharp cross-sectional edge, and no resist residue was found on the rinsed wafer.

【0029】酢酸イソペンチルとIPAの容積比が各々
異なる現像液を用いた場合の残渣の程度を上記実験1と
同様の操作によって調べ、結果を表1に示す。
The degree of residue when the developing solutions having different volume ratios of isopentyl acetate and IPA were used was examined by the same procedure as in Experiment 1 above, and the results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から分かるように、IPAの容積比が
40%以上では、ウエハ基板上に残渣が生じており、実
用的ではないことがわかった。また、酢酸イソペンチル
の容積比が大きくなるに従って、レジストが完全に溶解
される照射光量であるCEthが大きくなり、露光に要す
る時間が長くなる。以上の結果から、PMMAレジスト
の193nmエキシマレーザによる照射では、容積比が
酢酸イソペンチル/IPA=8/2の現像液を用いるの
が適当である。
As can be seen from Table 1, when the volume ratio of IPA is 40% or more, residues are found on the wafer substrate, which is not practical. Further, as the volume ratio of isopentyl acetate increases, CEth, which is the irradiation light amount at which the resist is completely dissolved, increases, and the time required for exposure increases. From the above results, it is appropriate to use a developing solution having a volume ratio of isopentyl acetate / IPA = 8/2 for irradiation of a PMMA resist with a 193 nm excimer laser.

【0032】なお、上記実施例においては、現像後のリ
ンスにエタノールを用いたが、本発明はこれに限らず、
メタノール等洗浄可能なものであれば良い。また、レジ
ストとしてPMMAを用いた場合のみを示したが、本発
明はこれに限るものでなく、他の分解型高分子やあるい
は架橋型高分子であっても、さらにポジ型レジストであ
ってもネガ型レジストであっても、本発明による現像液
に溶解可能なレジストであれば広く使用可能であること
は言うまでもない。
Although ethanol was used for the rinse after development in the above-mentioned embodiment, the present invention is not limited to this.
Any washable material such as methanol may be used. Further, although only the case where PMMA is used as the resist is shown, the present invention is not limited to this, and other decomposing type polymer or cross-linking type polymer, and further positive type resist may be used. Needless to say, even negative resists can be widely used as long as they are soluble in the developer according to the present invention.

【0033】また、露光光についても、実施例において
用いた波長193nmのエキシマレーザ光に限定される
ものではなく、分解型高分子や架橋型高分子のレジスト
に対して露光に必要な吸収率を有する波長域のエネルギ
ー光であればよい。従って、例えば248nmのエキシ
マレーザ光であっても本発明は適用可能であるが、特に
200nm以下の遠紫外域の光に対して有効である。
Further, the exposure light is not limited to the excimer laser light having a wavelength of 193 nm used in the embodiment, and the absorptance necessary for exposure can be applied to the resist of the decomposition type polymer or the crosslinked type polymer. Any energy light in the wavelength range that it has may be used. Therefore, the present invention can be applied to, for example, excimer laser light of 248 nm, but is particularly effective for light in the far ultraviolet region of 200 nm or less.

【0034】[0034]

【発明の効果】本発明によれば、以上説明したとおり、
現像後のレジストパターンの断面形状が丸みを帯びるこ
となくシャープなエッジのパターンとなり、またウエハ
上に残渣も生じることのないレジスト現像液が得られ
る。従って、遠紫外域の露光光を利用した高解像度リソ
グラフィによる半導体装置の製造が実現する。
According to the present invention, as described above,
After the development, the resist pattern has a cross-sectional shape that is not rounded and has a sharp edge pattern, and a resist developer that does not cause residues on the wafer can be obtained. Therefore, it is possible to manufacture a semiconductor device by high resolution lithography that uses exposure light in the far ultraviolet region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるレジスト現像液の現像
特性を示す線図である。
FIG. 1 is a diagram showing development characteristics of a resist developing solution according to an embodiment of the present invention.

【図2】レジストパターン形成工程の要点を示す説明図
である。
FIG. 2 is an explanatory diagram showing the main points of a resist pattern forming step.

【図3】従来のレジスト現像液の現像特性を示す線図で
ある。
FIG. 3 is a diagram showing development characteristics of a conventional resist developing solution.

【図4】ラインアンドスペースパターンのレジスト上へ
の露光時の光強度分布を示す説明図である。
FIG. 4 is an explanatory diagram showing a light intensity distribution at the time of exposure on a resist having a line-and-space pattern.

【図5】レジストパターンの断面形状を示す模式図であ
る。
FIG. 5 is a schematic view showing a cross-sectional shape of a resist pattern.

【符号の説明】[Explanation of symbols]

1:ウエハ(基板) 2:PMMAレジスト層 1: Wafer (substrate) 2: PMMA resist layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板上に形成されたレジスト層への遠紫
外線照射による選択露光を行った後の現像に用いるレジ
スト現像液において、 酢酸イソペンチルアルコールとイソプロピルアルコール
を主として含む溶液からなることを特徴とするレジスト
現像液。
1. A resist developing solution used for development after selective exposure of a resist layer formed on a substrate by far-ultraviolet irradiation, comprising a solution mainly containing isopentyl alcohol acetate and isopropyl alcohol. Resist developer.
【請求項2】 前記溶液における前記イソプロピルアル
コールの容積比が、40%以下であることを特徴とする
請求項1に記載のレジスト現像液。
2. The resist developing solution according to claim 1, wherein the volume ratio of the isopropyl alcohol in the solution is 40% or less.
【請求項3】 前記レジストは、分解型高分子もしくは
架橋型高分子であることを特徴とする請求項1に記載の
レジスト現像液。
3. The resist developing solution according to claim 1, wherein the resist is a decomposable polymer or a crosslinked polymer.
JP4307955A 1992-10-23 1992-10-23 Resist developer Pending JPH06138666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4307955A JPH06138666A (en) 1992-10-23 1992-10-23 Resist developer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4307955A JPH06138666A (en) 1992-10-23 1992-10-23 Resist developer

Publications (1)

Publication Number Publication Date
JPH06138666A true JPH06138666A (en) 1994-05-20

Family

ID=17975186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307955A Pending JPH06138666A (en) 1992-10-23 1992-10-23 Resist developer

Country Status (1)

Country Link
JP (1) JPH06138666A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2157479A1 (en) * 2007-06-12 2010-02-24 Fujifilm Corporation Resist composition for negative development and method of forming pattern therewith
US7985534B2 (en) 2007-05-15 2011-07-26 Fujifilm Corporation Pattern forming method
US7998655B2 (en) 2007-06-12 2011-08-16 Fujifilm Corporation Method of forming patterns
US8017298B2 (en) 2007-06-12 2011-09-13 Fujifilm Corporation Method of forming patterns
US8017304B2 (en) 2007-04-13 2011-09-13 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US8852847B2 (en) 2007-06-12 2014-10-07 Fujifilm Corporation Method of forming patterns
US8895225B2 (en) 2007-06-12 2014-11-25 Fujifilm Corporation Method of forming patterns
US8951718B2 (en) 2006-12-25 2015-02-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US9046782B2 (en) 2007-06-12 2015-06-02 Fujifilm Corporation Resist composition for negative tone development and pattern forming method using the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9465298B2 (en) 2006-12-25 2016-10-11 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US9291904B2 (en) 2006-12-25 2016-03-22 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8951718B2 (en) 2006-12-25 2015-02-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8241840B2 (en) 2007-04-13 2012-08-14 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US8017304B2 (en) 2007-04-13 2011-09-13 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US7985534B2 (en) 2007-05-15 2011-07-26 Fujifilm Corporation Pattern forming method
US8088557B2 (en) 2007-06-12 2012-01-03 Fujifilm Corporation Method of forming patterns
EP2157479A1 (en) * 2007-06-12 2010-02-24 Fujifilm Corporation Resist composition for negative development and method of forming pattern therewith
US8071272B2 (en) 2007-06-12 2011-12-06 Fujifilm Corporation Method of forming patterns
US8642253B2 (en) 2007-06-12 2014-02-04 FUJIFILM Incorporated Resist composition for negative tone development and pattern forming method using the same
US8852847B2 (en) 2007-06-12 2014-10-07 Fujifilm Corporation Method of forming patterns
US8895225B2 (en) 2007-06-12 2014-11-25 Fujifilm Corporation Method of forming patterns
US8017298B2 (en) 2007-06-12 2011-09-13 Fujifilm Corporation Method of forming patterns
US9046782B2 (en) 2007-06-12 2015-06-02 Fujifilm Corporation Resist composition for negative tone development and pattern forming method using the same
US9176386B2 (en) 2007-06-12 2015-11-03 Fujifilm Corporation Method of forming patterns
US7998655B2 (en) 2007-06-12 2011-08-16 Fujifilm Corporation Method of forming patterns
US9458343B2 (en) 2007-06-12 2016-10-04 Fujifilm Corporation Method of forming patterns
EP2157479A4 (en) * 2007-06-12 2011-02-02 Fujifilm Corp Resist composition for negative development and method of forming pattern therewith

Similar Documents

Publication Publication Date Title
JP3943741B2 (en) Pattern formation method
US4775609A (en) Image reversal
US7396482B2 (en) Post exposure resist bake
US8383316B2 (en) Resists for lithography
WO2010097856A1 (en) Pattern forming method
JPH07261393A (en) Negative resist composition
JP4105106B2 (en) Fine pattern forming method
CN108983546A (en) Method for photolithography
JPH06138666A (en) Resist developer
JPH08262717A (en) Resist composition and resist pattern forming method
TWI247343B (en) Method for forming openings in a substrate using a packing and unpacking process
TW449799B (en) Method of manufacturing a semiconductor device having a fine pattern, and semiconductor device manufactured thereby
EP0449272B1 (en) Pattern forming process
JP2001318472A5 (en)
JPS5918637A (en) Method of forming image pattern
Rothschild et al. 193-nm lithography
JP2000241989A (en) Production of photolithographic structure
JP3392728B2 (en) Pattern formation method
JPH04221814A (en) Pattern forming method
Han et al. Deep-UV positive-tone dry-development process using chemically amplified resist and its application to 256 Mbit DRAM
JP2000267280A (en) Pattern forming method
JP3130672B2 (en) Photomask pattern forming method
JP3813211B2 (en) Resist composition and pattern forming method
White et al. VUV laser photolithography
JPH057706B2 (en)