JPH06137107A - Turbine control device - Google Patents
Turbine control deviceInfo
- Publication number
- JPH06137107A JPH06137107A JP28415792A JP28415792A JPH06137107A JP H06137107 A JPH06137107 A JP H06137107A JP 28415792 A JP28415792 A JP 28415792A JP 28415792 A JP28415792 A JP 28415792A JP H06137107 A JPH06137107 A JP H06137107A
- Authority
- JP
- Japan
- Prior art keywords
- speed
- control
- turbine
- command
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Turbines (AREA)
- Feedback Control In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子力及び火力発電所
等の蒸気タービン並びにガスタービン等を制御するター
ビン制御装置に係り、特にタービンの特性や経年変化に
応じた制御装置の微調整を不要ならしめ、かつ応答性及
び制御性を向上するのに好適なタービン制御装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device for controlling steam turbines and gas turbines of nuclear and thermal power plants, etc., and in particular, fine adjustment of the control device according to the characteristics and aging of the turbine is unnecessary. The present invention relates to a turbine control device suitable for smoothing and improving responsiveness and controllability.
【0002】[0002]
【従来の技術】図2は、従来のタービン制御装置の一例
を示す。タービン昇速時においては、目標加速度TA
と、実速度ASから微分器31により演算して得られる
実加速度との偏差を速度型PI演算器(PIV)32に
入力し、該速度型PI演算器及び積分器35によりター
ビン2の蒸気弁に対する位置指令信号VPを作成し、該
指令信号VPにより弁を開閉して蒸気流量を調節するこ
とによって、実加速度を目標加速度TAに近い値となる
様に制御する。速度が上昇して目標速度TSと実速度A
Sの偏差が少なくなると、切替ロジック34により速度
型PI演算器33に切り替わり、目標速度TSと実速度
ASの偏差をなくすように速度一定制御を行う。2. Description of the Related Art FIG. 2 shows an example of a conventional turbine control device. At the time of turbine acceleration, the target acceleration TA
And the deviation from the actual acceleration obtained from the actual speed AS by the differentiator 31 are input to the speed PI calculator (PIV) 32, and the steam valve of the turbine 2 is operated by the speed PI calculator and integrator 35. Is generated and the valve is opened / closed by the command signal VP to adjust the steam flow rate, whereby the actual acceleration is controlled to be a value close to the target acceleration TA. The speed increases and the target speed TS and the actual speed A
When the deviation of S decreases, the switching logic 34 switches to the speed PI calculator 33, and constant speed control is performed so as to eliminate the deviation between the target speed TS and the actual speed AS.
【0003】上記従来のタービン制御装置においては、
PI演算器,制御ループパラメータ、及び切替ロジック
の設定値を、タービン本体の特性(容量,慣性)や経年
変化等に応じて微妙に調整する必要があった。In the above conventional turbine control device,
It was necessary to finely adjust the set values of the PI computing unit, the control loop parameter, and the switching logic according to the characteristics (capacity, inertia) of the turbine body, aging, and the like.
【0004】このような問題点を改善する制御方法とし
ては、最近注目されているファジィ制御がある。ファジ
ィ制御は1980年代から実用化が始まり、現在、自動
車道路のトンネル換気制御,列車定位置停止制御や家電
品の制御等に応用されている。ファジィ制御では、制御
の操作を「大きい」「小さい」というようなあいまいさ
を含む制御規則で記述し、ファジィ推論を用いて制御指
令を決定することにより制御対象を制御する。制御規則
のあいまいさの故に、制御対象の特性の違いや経年変化
に対して柔軟に対応できる自動制御が可能になる。As a control method for improving such a problem, there is a fuzzy control which has recently received attention. Fuzzy control has been put into practical use since the 1980s, and is currently applied to tunnel ventilation control of motorways, train fixed position stop control, control of home appliances, and the like. In fuzzy control, a control operation is described by a control rule including ambiguity such as "large" or "small", and a control target is controlled by determining a control command using fuzzy reasoning. Due to the ambiguity of the control rules, automatic control that can flexibly respond to differences in the characteristics of the controlled object and changes over time becomes possible.
【0005】ファジィ制御の従来例の一つとして、刊行
物「システムと制御」の第28巻第7号の442乃至4
46頁に記載されているように、制御量の実測値と目標
値との偏差(以下制御偏差と記す)並びに該制御偏差の
時間変化率に基づいたファジィ推論を用いる方法があ
る。As one of conventional examples of fuzzy control, the publication "Systems and Control," Vol. 28, No. 7, 442 to 4 is used.
As described on page 46, there is a method of using a fuzzy inference based on a deviation between a measured value of a controlled variable and a target value (hereinafter referred to as a control deviation) and a time change rate of the control deviation.
【0006】また、別の従来例として、計測自動制御学
会論文集の第19巻第11号の873乃至880頁には、
予見ファジィ制御が提唱されている。これは、あいまい
さに加え制御の実行結果に対する予測を含んだ複数の制
御規則を評価し、最も評価値の高い制御規則を選択する
方法であり、上記ファジィ制御の従来例に比べ、良好な
応答性,制御性を有する。As another conventional example, pages 1973 to 880 of Vol. 19 No. 11 of the Society of Instrument and Control Engineers,
Predictive fuzzy control has been proposed. This is a method of evaluating a plurality of control rules including predictions for control execution results in addition to ambiguity, and selecting the control rule with the highest evaluation value. A better response than the conventional fuzzy control example. And controllability.
【0007】更に、特開平3−258924 号公報記載のガス
タービンの制御装置は、ガス化炉燃料投入量で負荷を制
御し燃料弁の開度でシステム圧力を制御するガス化炉リ
ードモードと、逆にガス化炉燃料投入量でシステム圧力
を制御し燃料弁の開度で負荷を制御するガスタービンリ
ードモードという二つの制御モードの操作量を加重平均
により按分して新たな操作量を生成する際に、加重平均
の重みを負荷偏差とシステム圧力偏差という二つの制御
偏差に基づいてファジィ推論により求める手段を有す
る。これにより、プラントの運用形態やタービンの経年
変化にきめ細かくかつ柔軟,正確に対応できる自動制御
が可能となる。Further, the gas turbine control device described in Japanese Patent Laid-Open No. 3-258924 has a gasifier reed mode in which the load is controlled by the gasifier fuel input amount and the system pressure is controlled by the fuel valve opening degree. On the contrary, the operation amount of two control modes, gas turbine reed mode in which the system pressure is controlled by the gasifier fuel injection amount and the load is controlled by the fuel valve opening, is proportionally divided by a weighted average to generate a new operation amount. At this time, there is provided means for obtaining the weight of the weighted average by fuzzy inference based on two control deviations, a load deviation and a system pressure deviation. As a result, it becomes possible to perform automatic control that can precisely and flexibly respond to changes in the operating mode of the plant and aging of the turbine.
【0008】[0008]
【発明が解決しようとする課題】上記の各従来のファジ
ィ制御では、制御量の応答性,制御性を向上するために
は、制御規則の数を増やす必要がある。このため、制御
に要する計算時間が増大し、十分な応答性,制御性の向
上が難しいという問題がある。予見ファジィ制御につい
ては、良好な応答性,制御性を有することを上記した。
しかし、この制御方法においては、すべての制御規則に
対して評価値を求めて各制御の実行結果を予見する必要
があるために、アルゴリズムが複雑になる。このため、
制御量の応答性を向上するために制御規則の数を増やす
と、他の従来のファジィ制御以上に計算時間を要し、本
来予見ファジィ制御が有する良好な応答性及び制御性が
相殺されてしまう。また、評価則をうまく選ばないと、
所望の応答性及び制御性が得られないという問題もあ
る。In each of the conventional fuzzy controls described above, it is necessary to increase the number of control rules in order to improve the responsiveness and controllability of the controlled variable. Therefore, there is a problem that the calculation time required for control increases, and it is difficult to sufficiently improve responsiveness and controllability. It was mentioned above that the predictive fuzzy control has good responsiveness and controllability.
However, in this control method, it is necessary to obtain evaluation values for all control rules and foresee the execution result of each control, which complicates the algorithm. For this reason,
If the number of control rules is increased in order to improve the responsiveness of the control amount, the calculation time will be longer than that of other conventional fuzzy control, and the good responsiveness and controllability inherent in the predictive fuzzy control will be offset. . Also, if you do not choose the evaluation rule well,
There is also a problem that desired responsiveness and controllability cannot be obtained.
【0009】本発明は、上記の問題点に鑑みてなされた
ものであり、タービンの特性や経年変化に応じた制御装
置の微調整を不要ならしめ、かつ高い応答性及び制御性
を有するタービン制御装置を提供することを目的とす
る。The present invention has been made in view of the above problems, and eliminates the need for fine adjustment of the control device according to the characteristics and aging of the turbine, and has high responsiveness and controllability. The purpose is to provide a device.
【0010】[0010]
【課題を解決するための手段】上記の目的は、タービン
制御装置に、回転の速度及び加速度、負荷に応じた発電
量等という制御量の現時点における指令値,現時点以降
の将来の時点における指令値の予測値,現在値、及び将
来の時点における予測値に基づき、ファジィ推論により
タービンを制御する手段を備えることにより達成され
る。Means for Solving the Problems The above object is to provide a turbine control device with a command value at a present time of a control amount such as a rotation speed and acceleration, an amount of power generation according to a load, and a command value at a future time point after the present time. It is achieved by providing means for controlling the turbine by fuzzy inference, based on the predicted value, the current value, and the predicted value at a future time.
【0011】[0011]
【作用】前記手段を施せば、ファジィ推論部の入力に、
制御出力に対する外乱や無駄時間等の現時点以降の将来
の時点における過渡的な影響に関する情報が含まれ、か
つ該過渡的な影響に応じた制御規則を設定するので、外
乱や無駄時間等の予測される影響に対応できるファジィ
制御が可能となる。従って、ファジィ推論部において制
御規則を増やしたり複雑なアルゴリズムを使用する必要
がないので、従来のファジィ制御のように制御に要する
計算時間は増大しない。従って、高い応答性及び制御性
を有し、かつプラントの運用形態やタービンの経年変化
にきめ細かくかつ柔軟,正確に対応できる自動制御が可
能なタービン制御装置を得ることができる。If the above means is applied, the fuzzy inference unit can be input to
It includes information about transient influences such as disturbances and dead time on the control output at future time points after the present time, and sets the control rule according to the transient influences so that disturbances and dead time are predicted. Fuzzy control that can cope with the influence of Therefore, since it is not necessary to increase the control rules or use complicated algorithms in the fuzzy inference unit, the calculation time required for control does not increase unlike the conventional fuzzy control. Therefore, it is possible to obtain a turbine control device having high responsiveness and controllability and capable of automatic control capable of precisely and flexibly accommodating the operating form of the plant and the secular change of the turbine.
【0012】[0012]
【実施例】以下、本発明の実施例を図面を用いて説明す
る。図面中の同一物並びに相当物には同じ符号を付け
た。Embodiments of the present invention will be described below with reference to the drawings. The same symbols are attached to the same components and equivalent components in the drawings.
【0013】図1は、本発明の一実施例である蒸気ター
ビン制御装置を示すブロック図である。タービン制御装
置1は、目標速度TS,目標加速度TA及び現時点にお
ける実速度ASを入力してファジィ推論によりタービン
2の蒸気弁の位置の変化量を出力するファジィ制御装置
部11と、該蒸気弁の位置の変化量に応じて同蒸気弁の
位置指令を作成する弁指令作成部17から成る。前記フ
ァジィ制御装置部11は、目標速度TS並びに目標加速
度TAから、現時点の指令速度と短時間後の予測指令速
度を求める速度指令作成部13,実速度ASから短時間
後の予測速度を求める速度予測部12,現時点での指令
速度と実速度の偏差eFIG. 1 is a block diagram showing a steam turbine controller according to an embodiment of the present invention. The turbine control device 1 inputs a target speed TS, a target acceleration TA, and an actual speed AS at the present time and outputs a change amount of a position of a steam valve of the turbine 2 by fuzzy inference, and a fuzzy control device portion 11 of the steam valve. It comprises a valve command creating unit 17 which creates a position command for the steam valve in accordance with the amount of change in position. The fuzzy control unit 11 calculates a command speed at present and a predicted command speed after a short time from a target speed TS and a target acceleration TA, and a speed command creation unit 13 calculates a predicted speed after a short time from an actual speed AS. Prediction unit 12, deviation e between current command speed and actual speed
〔0〕を求める加減算器14,短
時間後の予測指令速度と予測速度の偏差e〔1〕を求め
る加減算器15、及び該偏差eAn adder / subtractor 14 for obtaining [0], an adder / subtractor 15 for obtaining a deviation e [1] between the predicted command speed and the predicted speed after a short time, and the deviation e
〔0〕及びe〔1〕から
ファジィ推論により蒸気弁の位置の変化量を出力するフ
ァジィ推論部16から構成される。該ファジィ推論部1
6は、例えば「偏差eThe fuzzy inference unit 16 outputs a change amount of the position of the steam valve by fuzzy inference from [0] and e [1]. The fuzzy inference unit 1
6 is, for example, “deviation e
〔0〕が0に近くかつ偏差e
〔1〕が負で大きいならば蒸気弁の位置の変化量を負で
大きくする(すなわち蒸気弁を大きく閉じる)」のよう
に表現される複数の制御規則を格納した制御規則記憶部
161、及び、偏差e[0] is close to 0 and the deviation e
If [1] is negative and large, the amount of change in the position of the steam valve is negatively increased (that is, the steam valve is greatly closed), and a control rule storage unit 161 that stores a plurality of control rules, and , Deviation e
〔0〕,偏差e〔1〕並びに蒸気
弁の位置の変化量の値が、制御規則に含まれる「0に近
い」や「負で大きい」等に該当する度合を区間[0,
1]の実数値で表す複数のメンバシップ関数を格納した
メンバシップ関数記憶部162を有する。次に、本実施
例の制御装置における制御方法を、タービンの昇速制
御,速度一定制御を例に採り説明する。[0], the deviation e [1] and the value of the amount of change in the position of the steam valve correspond to "close to 0", "negative and large", etc. included in the control rule in the interval [0,
1] has a membership function storage unit 162 that stores a plurality of membership functions represented by real values. Next, a control method in the control apparatus of the present embodiment will be described by taking turbine speed increasing control and constant speed control as examples.
【0014】オペレータが設定する目標速度TS及び目
標加速度TAを入力として、速度指令作成部13によ
り、現時点での指令速度と短時間後の予測指令速度を求
め、目標速度TSを目指して目標加速度TAで昇速する
パターンとして指令速度パターンを作成する。また、現
時点において計測されたタービン2の実速度ASを入力
として、速度予測部12により、短時間後の予測速度を
求める。更に、加減算器14及び15により、現時点で
の指令速度と実速度の偏差eWith the target speed TS and the target acceleration TA set by the operator as inputs, the speed command preparation unit 13 obtains the command speed at the present time and the predicted command speed after a short time, and the target acceleration TA is aimed at the target speed TS. A command speed pattern is created as a pattern for speeding up. Further, the actual speed AS of the turbine 2 measured at the present time is input, and the predicted speed after a short time is obtained by the speed prediction unit 12. Furthermore, the adder / subtractors 14 and 15 are used to deviate the deviation e between the current command speed and the actual speed e.
〔0〕(=指令速度−実速
度)、短時間後の予測指令速度と予測速度の偏差e
〔1〕(=予測指令速度−予測速度)を作成する。ここ
で、短時間後の予測指令速度は、現在の目標速度及び目
標加速度が選択され続けるものとして求め、短時間後の
予測速度は、数サンプリング前の速度と現時点の実速度
から、速度変化が直線的であるとして求める。上記の偏
差e[0] (= command speed-actual speed), deviation e between predicted command speed and predicted speed after a short time
[1] (= predicted command speed-predicted speed) is created. Here, the predicted command speed after a short time is obtained as the current target speed and the target acceleration continue to be selected, and the predicted speed after a short time is the speed change from the speed before several sampling and the actual speed at the present time. Obtained as being linear. Deviation e above
〔0〕及びe〔1〕を入力として、ファジィ推論部
16により蒸気弁の位置の変化量を求める。この蒸気弁
の位置の変化量をもとにして弁指令作成部17で作成さ
れるタービン蒸気弁の位置指令により、蒸気弁を操作し
蒸気流量を調節することによってタービンの速度を制御
する。The fuzzy inference unit 16 obtains the amount of change in the position of the steam valve by inputting [0] and e [1]. The turbine speed is controlled by operating the steam valve and adjusting the steam flow rate in accordance with the turbine steam valve position command created by the valve command creation unit 17 based on the amount of change in the steam valve position.
【0015】ここで、本実施例におけるファジィ推論部
16の動作を説明する。Here, the operation of the fuzzy inference unit 16 in this embodiment will be described.
【0016】制御規則記憶部161に格納された制御規
則は「偏差eThe control rule stored in the control rule storage unit 161 is "deviation e.
〔0〕がA1でかつ偏差e〔1〕がA2な
らば蒸気弁の位置の変化量をBにせよ」という内容を含
み、制御規則中のA1,A2及びBは、各偏差及び蒸気
弁の位置の変化量の正負並びに大小を言語で表したあい
まいな変数(以下ファジィ変数と記す)である。本実施
例では、ファジィ変数として「正で大」,「正で中くら
い」,「ゼロに近い」,「負で中くらい」及び「負で
大」の5種類を使用し、それぞれPB(PositiveBigの
略),PM(Positive Mediumの略),Z(Zeroの
略),NM(NegativeMediumの略)及びNB(Negative
Bigの略)と記す。If [0] is A1 and the deviation e [1] is A2, the change amount of the position of the steam valve should be B. ”A1, A2 and B in the control rule are It is an ambiguous variable (hereinafter referred to as fuzzy variable) that expresses the magnitude of change in position and its magnitude in language. In this embodiment, five types of fuzzy variables, "positive and large", "positive and medium", "close to zero", "negative and medium", and "negative and large", are used respectively and PB (PositiveBig) Abbreviation), PM (abbreviation of Positive Medium), Z (abbreviation of Zero), NM (abbreviation of Negative Medium) and NB (Negative)
Short for Big).
【0017】図3は、ファジィ推論部16のメンバシッ
プ関数記憶部162に格納された、上記ファジィ変数に
対応したメンバーシップ関数である。横軸は偏差e
FIG. 3 shows membership functions stored in the membership function storage unit 162 of the fuzzy inference unit 16 and corresponding to the fuzzy variables. Horizontal axis shows deviation e
〔0〕及びe〔1〕並びに蒸気弁の位置の変化量を示
し、0を中心として正負の領域に分かれる。但し、横軸
の数値はタービンにより異なるので、具体的な数値の記
載は省略した。縦軸は、各偏差並びに蒸気弁の位置の変
化量が各ファジィ変数に該当する度合い(図中グレード
と記す)を示し、0から1の数値で表す。[0] and e [1] and the amount of change in the position of the steam valve are shown and divided into positive and negative regions with 0 as the center. However, since the value on the horizontal axis differs depending on the turbine, the description of specific values is omitted. The vertical axis represents the degree to which each deviation and the amount of change in the position of the steam valve correspond to each fuzzy variable (denoted as grade in the figure), and is represented by a numerical value from 0 to 1.
【0018】図4は、制御規則を示す。本実施例では、
9とおりの制御規則を用いている。例えば、規則番号1
は「偏差eFIG. 4 shows a control rule. In this embodiment,
Nine control rules are used. For example, rule number 1
Is the deviation e
〔0〕がZでかつ偏差e〔1〕がNBならば
蒸気弁の位置の変化量をNBにせよ」という制御規則を
表す。これは、言い替えると、タービン速度が、現時点
においては指令速度に近く、かつ短時間後には指令速度
よりかなり大きくなると予測されるならば、蒸気弁を大
きく閉じろという内容の制御規則である。If [0] is Z and the deviation e [1] is NB, the change amount of the position of the steam valve should be NB. " In other words, if the turbine speed is predicted to be close to the command speed at the present time and to be considerably higher than the command speed in a short time, the steam valve should be closed greatly.
【0019】ファジィ推論部16においては、まず偏差
eIn the fuzzy reasoning section 16, first, the deviation e
〔0〕及びe〔1〕を入力し、図3のメンバシップ関
数から、各偏差が前記5種類のファジィ変数に該当する
程度(グレード)を求める。これら各偏差のグレード、
図4に示した制御規則並びに蒸気流量の変化量に対する
メンバシップ関数から、公知のファジィ推論方法を用い
て蒸気弁の位置の変化量を出力する。ファジィ推論方法
としては、例えばProceeding of IEEEの第121巻の第
1585乃至1588頁に記載される、Mamdani教授の
方法としてよく知られているMin−Max重心法がある。By inputting [0] and e [1], the degree (grade) where each deviation corresponds to the above-mentioned five types of fuzzy variables is obtained from the membership function of FIG. The grade of each of these deviations,
From the control rules shown in FIG. 4 and the membership function with respect to the variation of the steam flow rate, the variation of the position of the steam valve is output using a known fuzzy inference method. As a fuzzy inference method, there is the Min-Max centroid method, which is well known as the method of Professor Mamdani, described in Proceeding of IEEE Vol. 121, pp. 1585 to 1588.
【0020】以上がファジィ推論部16の動作である
が、メンバシップ関数,制御規則、並びにファジィ推論
方法は上記のものに限定されるものではない。The above is the operation of the fuzzy inference unit 16, but the membership function, the control rule, and the fuzzy inference method are not limited to the above.
【0021】次に、本発明者等が行った上記実施例の制
御装置によるタービン制御の動作シミュレーションにつ
いて説明する。Next, an operation simulation of turbine control by the control device of the above embodiment performed by the inventors will be described.
【0022】図5は、本実施例の動作シミュレーション
に用いたタービンのモデルである。蒸気弁の位置指令を
入力、蒸気弁の実位置並びに実速度を出力とする、各ブ
ロック図内に示した要素の結合からなるモデルである。
同図における、K1,H1,L1,B,H2,T2,K
2,K3及びT3は、パラメータである。FIG. 5 is a model of the turbine used in the operation simulation of this embodiment. It is a model consisting of a combination of the elements shown in each block diagram, which inputs the position command of the steam valve and outputs the actual position and the actual speed of the steam valve.
In the figure, K1, H1, L1, B, H2, T2, K
2, K3 and T3 are parameters.
【0023】図6,図7、及び図8はシミュレーション
結果である。前記パラメータの値を併記している。図6
に対し、図7はパラメータH2及びT3が変化してお
り、図8ではパラメータL1,H2及びT3が変化して
いる。H2及びL1は蒸気弁の特性(例えば弁の位置と
蒸気流量の関係)に関連し、T3はタービンの時定数を
表す。従ってこれらのパラメータの変化は、経年変化等
によるタービンや弁の特性変化等に対応する。図中にお
いて、1はファジィ推論部の出力(すなわち蒸気弁の位
置の変化量)、2は蒸気弁の位置指令、3は蒸気弁の実
位置、4は速度指令、5は実速度を表す。各シミュレー
ション結果において、実速度は指令速度にほとんど一致
している。すなわち、経年変化等によるタービンや弁の
特性変化があっても、本実施例の制御装置は高い制御性
を示すことが判る。FIGS. 6, 7 and 8 show simulation results. The values of the above parameters are also shown. Figure 6
On the other hand, the parameters H2 and T3 are changed in FIG. 7, and the parameters L1, H2 and T3 are changed in FIG. H2 and L1 relate to the characteristics of the steam valve (for example, the relationship between the valve position and the steam flow rate), and T3 represents the time constant of the turbine. Therefore, changes in these parameters correspond to changes in the characteristics of the turbine and valves due to changes over time. In the figure, 1 is the output of the fuzzy inference unit (that is, the amount of change in the position of the steam valve), 2 is the position command of the steam valve, 3 is the actual position of the steam valve, 4 is the speed command, and 5 is the actual speed. In each simulation result, the actual speed almost matches the command speed. That is, it can be seen that the control device of the present embodiment exhibits high controllability even if the characteristics of the turbine or the valve change due to aging or the like.
【0024】上記のように、本実施例におけるファジィ
推論は、タービン速度の制御偏差の現在値及び短時間後
の予測値に基づいて実行されるので、制御規則数を増や
したりアルゴリズムを複雑にしなくても、高い制御性が
得られる。さらに、ファジィ制御の柔軟性により、ター
ビンの特性や運転条件が変化した場合、制御装置の微調
整をしなくても安定かつ高精度の速度制御が可能であ
る。また、制御偏差の時間変化率は用いていないので、
ノイズの影響を受けにくいという効果もある。As described above, the fuzzy inference in this embodiment is executed based on the present value of the control deviation of the turbine speed and the predicted value after a short time, so that the number of control rules is not increased and the algorithm is not complicated. However, high controllability is obtained. Further, due to the flexibility of fuzzy control, stable and highly accurate speed control is possible without fine adjustment of the control device when the characteristics or operating conditions of the turbine change. Also, since the rate of change in control deviation over time is not used,
It also has the effect of being less susceptible to noise.
【0025】なお、本発明のタービン制御装置は、速度
制御のみならず、負荷制御にも適用できる。この場合、
外部からの発電量指令と、発電機の出力をタービン制御
装置への入力とする。また、上記実施例のファジィ制御
装置部は、タービンのみならず、無駄時間を含む制御対
象や経年変化などにより制御装置の微調整が必要な制御
対象に対して有効であり、微調整の手間を省きかつ高い
制御性が得られる。さらに、本発明のタービン制御装置
におけるファジィ制御方法と従来の非ファジィ制御方法
を併用し、両者を適宜切替て使用することも可能であ
る。The turbine control device of the present invention can be applied not only to speed control but also to load control. in this case,
The power generation amount command from the outside and the output of the generator are input to the turbine control device. Further, the fuzzy control unit of the above embodiment is effective not only for turbines, but also for control targets including dead time and control targets that require fine adjustment of the control device due to secular change, etc. High controllability can be obtained. Furthermore, it is possible to use the fuzzy control method in the turbine control device of the present invention and the conventional non-fuzzy control method together, and to switch between the two as appropriate.
【0026】[0026]
【発明の効果】以上詳述したように、本発明によれば、
タービンが経年変化した場合や運転条件を変更した場合
に、制御装置の微調整をしなくても、高い制御性が得ら
れ、高精度のタービン制御が可能である。さらに、発電
プラントの外乱に対する耐力が向上するとともに、プラ
ントの信頼性が向上する。また、タービンの保守点検に
伴う制御装置の微調整も不要となり、タービンを再稼働
するまでに要する時間を短縮できる。As described in detail above, according to the present invention,
When the turbine has changed over time or the operating conditions have been changed, high controllability can be obtained and high-precision turbine control is possible without fine adjustment of the control device. Further, the resistance to disturbance of the power plant is improved and the reliability of the plant is improved. Further, fine adjustment of the control device due to maintenance and inspection of the turbine is unnecessary, and the time required to restart the turbine can be shortened.
【図1】本発明の実施例のブロック図。FIG. 1 is a block diagram of an embodiment of the present invention.
【図2】従来のタービン制御装置のブロック図。FIG. 2 is a block diagram of a conventional turbine control device.
【図3】実施例におけるメンバシップ関数。FIG. 3 is a membership function according to an embodiment.
【図4】実施例における制御規則。FIG. 4 is a control rule according to the embodiment.
【図5】シミュレーションに用いたタービンモデル。FIG. 5 is a turbine model used in the simulation.
【図6】実施例の動作シミュレーション結果。FIG. 6 is a result of operation simulation of the example.
【図7】実施例の動作シミュレーション結果。FIG. 7 is a result of operation simulation of the example.
【図8】実施例の動作シミュレーション結果。FIG. 8 is a result of operation simulation of the example.
1…タービン制御装置、2…タービン、11…ファジィ
制御装置部、12…速度予測部、13…速度指令作成
部、14…加減算器、15…加減算器、16…ファジィ
推論部、17…弁指令作成部、161…制御規則記憶
部、162…メンバシップ関数記憶部。DESCRIPTION OF SYMBOLS 1 ... Turbine control device, 2 ... Turbine, 11 ... Fuzzy control device part, 12 ... Speed prediction part, 13 ... Speed command preparation part, 14 ... Adder / subtractor, 15 ... Adder / subtractor, 16 ... Fuzzy inference part, 17 ... Valve command Creation unit, 161 ... Control rule storage unit, 162 ... Membership function storage unit.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G05B 13/04 9131−3H (72)発明者 河合 巧 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内 (72)発明者 柳田 貞雄 茨城県日立市大みか町五丁目2番1号 株 式会社日立製作所大みか工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Internal reference number FI technical display location G05B 13/04 9131-3H (72) Inventor Takumi Kawai 5-2-1 Omika-cho, Hitachi-shi, Ibaraki No. Incorporated company Hitachi Ltd. Omika factory (72) Inventor Sadao Yanagida 5-2-1 Omika-cho, Hitachi City, Ibaraki Prefecture Incorporated company Hitachi Ltd. Omika factory
Claims (2)
御量の目標値に基づいて、該制御量の現時点における指
令値を作成する手段及び現時点以降の将来の時点におけ
る指令値の予測値を作成する手段と、少なくとも制御量
の現在値に基づいて、前記将来の時点における制御量の
予測値を求める手段と、上記制御量の現時点における指
令値,現時点以降の将来の時点における指令値の予測
値,現在値、及び将来の時点における予測値に基づい
て、ファジィー推論によりタービンを制御する手段を備
えることを特徴とするタービン制御装置。1. A turbine control device comprising: a means for creating a command value of the control quantity at the present time based on at least a target value of the control quantity; and a means for creating a predicted value of the command value at a future time point after the present time. , A means for obtaining a predicted value of the controlled variable at the future time point based on at least the current value of the controlled variable, a command value at the present time point of the controlled variable value, a predicted value of the command value at a future time point after the present time point, and a present value And a means for controlling the turbine by fuzzy inference based on a predicted value at a future time point.
て、制御量がタービンの速度であることを特徴とするタ
ービン制御装置。2. The turbine controller according to claim 1, wherein the controlled variable is the speed of the turbine.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28415792A JP3278931B2 (en) | 1992-10-22 | 1992-10-22 | Turbine control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28415792A JP3278931B2 (en) | 1992-10-22 | 1992-10-22 | Turbine control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06137107A true JPH06137107A (en) | 1994-05-17 |
JP3278931B2 JP3278931B2 (en) | 2002-04-30 |
Family
ID=17674921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28415792A Expired - Lifetime JP3278931B2 (en) | 1992-10-22 | 1992-10-22 | Turbine control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3278931B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003034160A1 (en) * | 2001-10-09 | 2003-04-24 | Kabushiki Kaisha Yaskawa Denki | Servo control apparatus control method |
-
1992
- 1992-10-22 JP JP28415792A patent/JP3278931B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003034160A1 (en) * | 2001-10-09 | 2003-04-24 | Kabushiki Kaisha Yaskawa Denki | Servo control apparatus control method |
KR100740403B1 (en) * | 2001-10-09 | 2007-07-16 | 가부시키가이샤 야스카와덴키 | Servo control apparatus control method |
Also Published As
Publication number | Publication date |
---|---|
JP3278931B2 (en) | 2002-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mann et al. | Analysis of direct action fuzzy PID controller structures | |
Vachtsevanos et al. | Fuzzy logic control of an automotive engine | |
Karray et al. | The hierarchical expert tuning of PID controllers using tools of soft computing | |
Lee et al. | A fuzzy controller for an electro-hydraulic fin actuator using phase plane method | |
Laghrouche et al. | Pressure and friction observer-based backstepping control for a VGT pneumatic actuator | |
Djukanovic et al. | Neural-net based coordinated stabilizing control for the exciter and governor loops of low head hydropower plants | |
Liu et al. | Model-reference adaptive control based on neurofuzzy networks | |
Zhao | Adaptive Fuzzy Control of a Class of Discrete-Time Nonlinear Systems | |
Branco et al. | Design of an electro-hydraulic system using neuro-fuzzy techniques | |
Lee et al. | A fuzzy controller for an aeroload simulator using phase plane method | |
Ling et al. | ANFIS modeling and Direct ANFIS Inverse control of an Electro-Hydraulic Actuator system | |
JPH06137107A (en) | Turbine control device | |
Pomares et al. | A two-stage approach to self-learning direct fuzzy controllers | |
Altas et al. | A fuzzy logic decision maker and controller for reducing load frequency oscillations in multi-area power systems | |
Kopasakis et al. | Adaptive performance seeking control using fuzzy model reference learning control and positive gradient control | |
Chan et al. | Neurofuzzy network based self-tuning control with offset eliminating | |
Aboelela | Development of a fractional order PID controller for a physical system based on bat inspired algorithm | |
Liu et al. | Hybrid feedback linearization/fuzzy logic control of a flexible link manipulator | |
Li et al. | A novel composite adaptive flap controller design by a high-efficient modified differential evolution identification approach | |
Campos-Peña et al. | Performance Comparison between LQR, GPC and ANFIS controllers for Load Frequency Control in a Small Hydro Power Plant | |
Tseng et al. | Fuzzy servocontrollers: the hierarchical approach | |
Liu et al. | Neuro-fuzzy generalized predictive control of boiler steam temperature | |
Liu et al. | Application of optimal-tuning PID control to industrial hydraulic systems | |
Liu et al. | Stochastic policies for online computation triggering in powertrain control | |
John et al. | Enhancement of load frequency control concerning high penetration of wind turbine using PSO-fuzzy technique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080222 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20090222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20100222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20110222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120222 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20120222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20130222 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130222 Year of fee payment: 11 |