JPH06136498A - Mirror finishing treatment for beta-type titanium alloy - Google Patents

Mirror finishing treatment for beta-type titanium alloy

Info

Publication number
JPH06136498A
JPH06136498A JP28867392A JP28867392A JPH06136498A JP H06136498 A JPH06136498 A JP H06136498A JP 28867392 A JP28867392 A JP 28867392A JP 28867392 A JP28867392 A JP 28867392A JP H06136498 A JPH06136498 A JP H06136498A
Authority
JP
Japan
Prior art keywords
titanium alloy
type titanium
temperature
beta
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28867392A
Other languages
Japanese (ja)
Inventor
Isao Kuboki
功 久保木
Yutaka Wakabayashi
豊 若林
Keitarou Koroishi
圭太郎 頃石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP28867392A priority Critical patent/JPH06136498A/en
Publication of JPH06136498A publication Critical patent/JPH06136498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To obtain a beta-type titanium alloy easy of working at high temp. and capable of a mirror finishing. CONSTITUTION:Thermomechanical treatment, where plastic working at a temp. in a range between (beta transformation temp. -150 deg.C) and (beta transformation temp. +50 deg.C) for improving workability and accelerating fine and uniform precipitation, successive solution heat treatment at a temp. in the range between the beta transformation temp. and (beta transformation temp. +50 deg.C), and further aging treatment for increasing strength are combined, is applied to a beta-type titanium alloy, followed by the mirror-finish polishing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塑性加工し易く、しか
も鏡面が得られるβ型チタン合金の鏡面処理方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for mirror-finishing a β-type titanium alloy which can be easily plastically worked and has a mirror surface.

【0002】[0002]

【従来の技術】準安定β型チタン合金と呼ばれる急冷で
マルテンサイト変態せず、室温でβ単相であるβ型チタ
ン合金は、一般にβ変態温度と再結晶温度がほぼ一致す
る。したがって、β変態温度以上の熱処理では急激に再
結晶・粒成長が起こり、β変態温度以下の熱処理ではま
だ再結晶せず、加工時の変形帯などに沿ってα相が析出
している加工組織のままである。故に、従来のβ型チタ
ン合金の再結晶処理は、β変態温度以上の温度で行われ
ており、その処理によって得られる結晶粒の粒径は、最
も微細化してもたかだか15μm程度であった(例えば
茨城大学工学部研究集報、37(1989)155)。
このような組織を有するβ型チタン合金を時効処理して
も得られる硬さはせいぜいHv400程度であり、鏡面
は得られない。チタン合金を腕時計外装品やネックレス
などの装飾品に利用する場合、鏡面性はデザインバラエ
ティを広げるために重要である。
2. Description of the Related Art A β-type titanium alloy, which is called a metastable β-type titanium alloy and which does not undergo martensite transformation by quenching and is in a β single phase at room temperature, generally has a β transformation temperature and a recrystallization temperature substantially equal to each other. Therefore, recrystallization and grain growth occur rapidly in the heat treatment above the β transformation temperature, recrystallization does not occur yet in the heat treatment below the β transformation temperature, and the α phase precipitates along the deformation zone during processing. It remains. Therefore, the conventional recrystallization treatment of β-type titanium alloy is carried out at a temperature higher than the β-transformation temperature, and the grain size of the crystal grains obtained by the treatment is about 15 μm at the most even if it is made finer ( For example, Bulletin of Faculty of Engineering, Ibaraki University, 37 (1989) 155).
Even if the β-type titanium alloy having such a structure is subjected to an aging treatment, the hardness obtained is at most about Hv400, and a mirror surface cannot be obtained. When titanium alloy is used for exterior parts of wristwatches and ornaments such as necklaces, specularity is important for expanding design variety.

【0003】[0003]

【発明が解決しようとする課題】等軸粒の再結晶組織か
らの時効処理によるα相の析出は、粒界およびその近傍
にα相が優先して析出するため不均一となる。このよう
な組織では研磨加工しても鏡面が得られない。また時効
時間に長時間を要し、実用上好ましくない。
The precipitation of the α phase from the recrystallized structure of equiaxed grains by aging treatment is non-uniform because the α phase preferentially precipitates at and near the grain boundaries. With such a structure, a mirror surface cannot be obtained even by polishing. Further, it requires a long aging time, which is not preferable in practice.

【0004】従来技術では冷間加工後に上述のような溶
体化処理を行っているので、製品の場所による強度のば
らつきを抑えるためには、時効処理によって均一微細な
α相を析出させるための冷間加工として、比較的均一な
ひずみ分布となる圧延や押し出しなどの加工が必要であ
った。したがってこの冷間加工としては、実際に構造物
を成形する型鍛造や薄板のバルジ成形などは、ひずみ分
布が不均一になったり、大きな伸びが得られず成形でき
なかったりするために利用することができず、製品への
加工が困難であった。
In the prior art, since the solution treatment as described above is performed after cold working, in order to suppress the variation in strength depending on the location of the product, the cold treatment for precipitating a uniform and fine α phase by aging treatment is performed. As the inter-working, it was necessary to carry out the working such as rolling or extrusion which gives a relatively uniform strain distribution. Therefore, as this cold working, it is necessary to use die forging to actually form a structure or bulge forming of a thin plate because the strain distribution becomes uneven or a large elongation cannot be obtained and it cannot be formed. It was difficult to process the product.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
にこの発明は、β型チタン合金にβ変態温度以下150
℃からβ変態温度以上50℃の温度範囲で塑性加工を施
し、均一な回復組織とした後、さらにβ変態温度からβ
変態温度以上50℃の温度範囲で溶体化処理を行い、続
く400〜550℃の時効処理によって、α相を均一・
微細に析出させるようにした。このような組織を有する
チタン合金を研磨加工することによって鏡面が得られ
る。
In order to solve the above problems, the present invention provides a β-type titanium alloy with a β transformation temperature of 150 or less.
After performing plastic working in the temperature range from ℃ to β transformation temperature or more to 50 ℃ to obtain a uniform recovery structure,
The solution treatment is performed in the temperature range of not less than the transformation temperature and 50 ° C, and the aging treatment at 400 to 550 ° C is performed to make the α phase uniform
It was made to precipitate finely. A mirror surface can be obtained by polishing the titanium alloy having such a structure.

【0006】[0006]

【作用】β型チタン合金はβ変態温度以下150℃から
β変態温度以上50℃の温度範囲で加工(熱間加工)を
終了させると、変形中に回復が進行し、加工によって再
結晶の駆動力となるひずみエネルギーがあまり蓄積せ
ず、加工が終了した温度が静的再結晶温度以上であって
もその温度では再結晶しない。つまり、熱間加工を加え
ることによって再結晶温度が上昇する。したがって、熱
間加工を加えることによって上昇する再結晶温度以下で
加工を行うことによって回復組織が得られる。この回復
組織は比較的高温で加工しているためひずみが比較的均
一となるがまだ十分ではなく、β変態温度以下の加工で
はα相の析出も見られる。そこで、ひずみの均一化とα
相の固溶のための溶体化処理を行う。このようにして得
られた組織からの時効によるα相の析出は非常に均一・
微細となり、硬さは非常に高くばらつきが小さくなる。
したがってこのような組織を有するチタン合金は研磨加
工によって鏡面化が可能になる。
[Operation] When processing (hot working) of β-type titanium alloy is completed within a temperature range of 150 ° C below the β-transformation temperature to 50 ° C above the β-transformation temperature, recovery progresses during deformation, and recrystallization is driven by the processing. Strain energy, which is a force, does not accumulate so much, and even if the temperature at which the processing is completed is higher than the static recrystallization temperature, recrystallization does not occur at that temperature. That is, the recrystallization temperature rises due to the hot working. Therefore, the recovery structure can be obtained by performing the processing at a temperature equal to or lower than the recrystallization temperature which is increased by the hot working. Since this recovery structure is processed at a relatively high temperature, the strain is relatively uniform, but it is not yet sufficient, and α phase precipitation is also observed in the processing below the β transformation temperature. Therefore, uniform strain and α
Perform solution treatment for solid solution of the phases. Precipitation of α phase due to aging from the structure thus obtained is very uniform.
It becomes fine and the hardness is very high, and the variation is small.
Therefore, the titanium alloy having such a structure can be mirror-finished by polishing.

【0007】[0007]

【実施例】以下実施例によって本発明を詳述する。本発
明に使用した供試材は表1に示した化学成分を有する溶
体化処理されたβ型チタン合金である。なお、本供試材
のβ変態温度は約740℃であった。
EXAMPLES The present invention will be described in detail below with reference to examples. The test material used in the present invention is a solution-treated β-type titanium alloy having the chemical components shown in Table 1. The β transformation temperature of this test material was about 740 ° C.

【0008】 (実施例1)この供試材に80%の冷間圧延を施し、こ
の冷間圧延材から標点間距離15mm、幅7mm、厚さ
2mmの引張試験片を切り出した。次にこれらの試験片
から、次の5種類の試料A、B、C、D、Eを作製し
た。試料Aは、引張試験片をβ変態温度以下の温度50
0℃で10分間保持後、10mm/minの変形速度
で、約50%引張試験し、試験後750℃で10分間加
熱保持し、さらに450℃で24hr時効処理した試料
である。試料B、C、D、Eは試料Aの引張試験温度を
それぞれ600、700、800、900℃に変えた試
料である。
[0008] (Example 1) This test material was subjected to 80% cold rolling, and a tensile test piece having a gauge length of 15 mm, a width of 7 mm and a thickness of 2 mm was cut out from the cold rolled material. Next, the following five types of samples A, B, C, D and E were prepared from these test pieces. Sample A is a tensile test piece with a temperature of 50 below the β transformation temperature.
After being held at 0 ° C. for 10 minutes, a tensile test of about 50% was performed at a deformation rate of 10 mm / min, after the test, the sample was heated and held at 750 ° C. for 10 minutes, and further aged at 450 ° C. for 24 hours. Samples B, C, D, and E are samples in which the tensile test temperature of Sample A was changed to 600, 700, 800, and 900 ° C., respectively.

【0009】 これらの試料をサンドペーパーで研磨した後、アルミナ
砥粒でバフ研磨した。このようにした試料の硬さを測定
し、鏡面性を評価した。その結果をを表2に示す。試料
A、Eはかたさが低く、鏡面性も悪い。試料B、C、D
は硬さ、鏡面性ともに良好であった。したがって、塑性
加工温度をβ変態温度以下150℃からβ変態温度以上
50℃の温度範囲とした。ここで、高温引張変形後の溶
体化処理は、高温引張変形後に冷却させてから行って
も、もしくは冷却させずに高温引張変形後にそのまま溶
体化処理しても表2と同様の結果が得られた。また、引
張試験温度に加熱する前の初期組織が圧延材でなく等軸
組織を有する材料であっても同様な結果になった。
[0009] After polishing these samples with sandpaper, they were buffed with alumina abrasive grains. The hardness of the sample thus obtained was measured and the specularity was evaluated. The results are shown in Table 2. Samples A and E have low hardness and poor specularity. Samples B, C, D
Had good hardness and specularity. Therefore, the plastic working temperature is set to a temperature range of 150 ° C. or less from the β transformation temperature to 50 ° C. or more from the β transformation temperature. Here, the solution treatment after high-temperature tensile deformation can be performed after cooling after high-temperature tensile deformation, or even if it is solution-treated after high-temperature tensile deformation without cooling, the same results as in Table 2 are obtained. It was Similar results were obtained even when the initial structure before heating to the tensile test temperature was not a rolled material but a material having an equiaxial structure.

【0010】(実施例2)供試材から図1に示すような
R付きリングを切り出し、それをブランク材として図2
に示すような腕時計ケースの金型鍛造加工を行った。こ
の加工法としては、750℃に保持してある金型に上述
のブランク材をセットし、0.05〜20mm/min
の変形速度において、一工程で成形する恒温鍛造法(超
塑性鍛造法)を用いた。恒温鍛造後、バリ抜き、切削を
おこない、腕時計ケースに仕上げた後、750℃で10
分間溶体化処理し、その後450℃で24hr時効処理
を施した。この時効処理後鏡面研磨を行った。そして腕
時計ケースの断面の硬さ分布と表面の鏡面性を調べた。
変形速度3mm/minの場合の硬さ分布の結果を図3
に示す。硬さは測定部分によらず、ほぼHv450を示
し、場所による強度のばらつきが少ないことがわかる。
また鏡面性も良好であった。ここで鍛造加工での金型温
度は問題でなく、ブランク材が加工後もβ変態温度以上
であり、しかも加工後に再結晶が終了しない温度であれ
ば良い。つまり、金型温度がブランク材の温度よりも低
い、熱間鍛造などであっても本発明は適用できる。
Example 2 A ring with a radius R as shown in FIG. 1 was cut out from a test material and used as a blank material in FIG.
The wristwatch case was die forged as shown in. As this processing method, the blank material described above is set in a mold maintained at 750 ° C., and 0.05 to 20 mm / min.
A constant temperature forging method (superplastic forging method) for forming in one step was used at a deformation rate of. After constant temperature forging, deburring and cutting are carried out to finish the watch case, then at 750 ℃
The solution treatment was carried out for a minute, and then an aging treatment was carried out at 450 ° C. for 24 hours. After this aging treatment, mirror polishing was performed. Then, the hardness distribution of the cross section of the wristwatch case and the specularity of the surface were examined.
Fig. 3 shows the result of hardness distribution at a deformation rate of 3 mm / min.
Shown in. The hardness is almost Hv450 regardless of the measured portion, and it is understood that there is little variation in strength depending on the location.
The specularity was also good. Here, the die temperature in the forging process does not matter, and it is sufficient if the blank material is at or above the β-transformation temperature even after the process and the recrystallization is not completed after the process. That is, the present invention can be applied even to hot forging in which the mold temperature is lower than the temperature of the blank material.

【0011】本実施例では、Ti−15V−3Cr−3
Sn−3Al合金を用いているが、本発明は他のβ型チ
タン合金にも適用できる鏡面処理方法であることはいう
までもない。
In this embodiment, Ti-15V-3Cr-3 is used.
Although Sn-3Al alloy is used, it goes without saying that the present invention is a mirror-finishing method applicable to other β-type titanium alloys.

【0012】[0012]

【発明の効果】以上説明したように、本発明によれば、
β型チタン合金にβ変態温度以下150℃からβ変態温
度以上50℃の温度範囲において塑性加工を行い、それ
に続くβ変態温度からβ変態温度以上50℃の温度範囲
における溶体化処理を施した後、高硬度化のための時効
処理を行うという非常に簡単な方法によって、非常に鏡
面性が良好なβ型チタン合金を得ることができる。ま
た、β変態温度以上での加工は超塑性的な挙動を示し、
非常に加工し易いといった効果も有する。
As described above, according to the present invention,
After subjecting the β-type titanium alloy to plastic working in a temperature range of 150 ° C or lower than the β transformation temperature to 50 ° C or higher of the β transformation temperature, and subsequently performing solution treatment in a temperature range of β transformation temperature to the β transformation temperature or higher and 50 ° C or higher. A β-type titanium alloy having very good specularity can be obtained by a very simple method of aging treatment for increasing hardness. In addition, processing above the β transformation temperature shows superplastic behavior,
It also has the effect of being extremely easy to process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の加工前のブランク材の断面図である。FIG. 1 is a cross-sectional view of a blank material before processing according to the present invention.

【図2】本発明による腕時計ケースの(a)は平面図、
(b)は断面図、(c)は側面断面図である。
2A is a plan view of a wristwatch case according to the present invention, FIG.
(B) is a sectional view and (c) is a side sectional view.

【図3】本発明による腕時計ケースの硬さの分布図であ
る。
FIG. 3 is a hardness distribution diagram of a wristwatch case according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 β型チタン合金を (a)温度範囲 Tβ−150℃≦T≦Tβ+50℃で
塑性加工する工程、 (b)温度範囲 Tβ≦T≦Tβ+50℃で溶体化処理
を行う工程、 (c)温度範囲 400℃≦T≦550℃で時効処理を
行う工程、 (d)温研磨処理をする工程 (Tβはβ変態温度) を順次行うことを特徴とするβ型チタン合金の鏡面処理
方法。
1. A step of plastically working a β-type titanium alloy in a temperature range Tβ-150 ° C. ≦ T ≦ Tβ + 50 ° C., and a step (b) a solution treatment in a temperature range Tβ ≦ T ≦ Tβ + 50 ° C. c) A mirror surface treatment method for a β-type titanium alloy, which comprises sequentially performing an aging treatment in a temperature range of 400 ° C. ≦ T ≦ 550 ° C., and (d) performing a hot polishing treatment (Tβ is a β transformation temperature). .
【請求項2】 塑性加工が構造物を成形するための熱間
加工あるいは恒温加工であることを特徴とする請求項1
記載のβ型チタン合金の鏡面処理方法。
2. The plastic working is hot working or isothermal working for forming a structure.
A method for mirror-finishing a β-type titanium alloy as described.
JP28867392A 1992-10-27 1992-10-27 Mirror finishing treatment for beta-type titanium alloy Pending JPH06136498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28867392A JPH06136498A (en) 1992-10-27 1992-10-27 Mirror finishing treatment for beta-type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28867392A JPH06136498A (en) 1992-10-27 1992-10-27 Mirror finishing treatment for beta-type titanium alloy

Publications (1)

Publication Number Publication Date
JPH06136498A true JPH06136498A (en) 1994-05-17

Family

ID=17733207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28867392A Pending JPH06136498A (en) 1992-10-27 1992-10-27 Mirror finishing treatment for beta-type titanium alloy

Country Status (1)

Country Link
JP (1) JPH06136498A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037827A1 (en) * 1998-01-27 1999-07-29 Tag-Heuer S.A. Titanium alloy watch part
EP4273287A1 (en) * 2022-05-06 2023-11-08 Rolex Sa Timepiece component made of polished titanium alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999037827A1 (en) * 1998-01-27 1999-07-29 Tag-Heuer S.A. Titanium alloy watch part
EP4273287A1 (en) * 2022-05-06 2023-11-08 Rolex Sa Timepiece component made of polished titanium alloy
WO2023214024A1 (en) * 2022-05-06 2023-11-09 Rolex Sa Timepiece component made of polished titanium alloy

Similar Documents

Publication Publication Date Title
EP0663453B1 (en) Titanium alloy and method for production thereof
EP0263503A1 (en) A method for producing beta type titanium alloy materials having excellent strength and elongation
JPH03140447A (en) Forging of microcrystalline titanium powder and method of its manufacture
US4077812A (en) Method of working steel machine parts including machining during quench cooling
US4799974A (en) Method of forming a fine grain structure on the surface of an aluminum alloy
US4295901A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
JPS6160871A (en) Manufacture of titanium alloy
US4486242A (en) Method for producing superplastic aluminum alloys
US4528042A (en) Method for producing superplastic aluminum alloys
JPH06136498A (en) Mirror finishing treatment for beta-type titanium alloy
US4358324A (en) Method of imparting a fine grain structure to aluminum alloys having precipitating constituents
RU2691471C1 (en) Method of production of rolled sheet from titanium alloy of grade bt8
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
JPH06272004A (en) Method for working titanium alloy
US5217548A (en) Process for working β type titanium alloy
JPH0649609A (en) Working heat treating method for beta type titanium alloy
RU2184795C2 (en) Method of producing flat section from zirconium alloys
US5223053A (en) Warm work processing for iron base alloy
JPS5925963A (en) Manufacture of hot rolled ti alloy plate
JPH08193254A (en) Method for working titanium alloy
JPS59150017A (en) Heat treatment of martensitic stainless cast steel
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
JPH0225553A (en) Manufacture of alpha and hear-alpha titanium-alloy plate
JPH01195265A (en) Manufacture of high-strength beta-type titanium alloy
JPS63206457A (en) Working and heat treatment of alpha+beta type titanium alloy