JPH06135879A - Production of naphthaldehyde - Google Patents

Production of naphthaldehyde

Info

Publication number
JPH06135879A
JPH06135879A JP4307894A JP30789492A JPH06135879A JP H06135879 A JPH06135879 A JP H06135879A JP 4307894 A JP4307894 A JP 4307894A JP 30789492 A JP30789492 A JP 30789492A JP H06135879 A JPH06135879 A JP H06135879A
Authority
JP
Japan
Prior art keywords
cobalt
cerium
methylnaphthalene
naphthaldehyde
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4307894A
Other languages
Japanese (ja)
Inventor
Yasuhito Ogawa
泰仁 小川
Teruaki Yamada
輝明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP4307894A priority Critical patent/JPH06135879A/en
Publication of JPH06135879A publication Critical patent/JPH06135879A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain a naphthaldehyde compound in high yield by oxidation of a methylnaphthalene compound in a specific solution in the presence of cobalt, cerium and bromine using molecular oxygen. CONSTITUTION:The objective naphthaldehyde compound can be obtained by oxidation of methylnaphthalene (alpha- or beta-modification) or a substituted methylnaphthalene in a lower carboxylic acid-contg. solvent (pref. acetic acid solution) in the presence of 0.0005-0.1mol per 100ml of the solvent of cobalt plus cerium (the atomicratio of cerium to cobalt being 0.1 to 10) and bromine using molecular oxygen pref. at 40-120 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、メチルナフタレンまた
は他の置換基を有するメチルナフタレン等のメチルナフ
タレン類を酸化することによりナフトアルデヒド類を製
造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing naphthaldehydes by oxidizing methylnaphthalenes such as methylnaphthalenes or methylnaphthalenes having other substituents.

【0002】このナフトアルデヒド類は、エンジニアリ
ングプラスチックスの改質剤や各種の医薬、農薬の合成
中間体等として利用される。
These naphthaldehydes are used as modifiers for engineering plastics, various pharmaceuticals, synthetic intermediates for agricultural chemicals, and the like.

【0003】[0003]

【従来の技術】このナフトアルデヒドの製造方法として
は、メチルナフタレンを酢酸溶媒中で、コバルト塩及び
可溶性臭素化合物を触媒として、分子状酸素により酸化
する方法が提案されている〔特開昭55-7235号公
報、有機合成化学、第37巻第8号第667頁(197
9)〕。しかし、上記の従来の方法ではメチルナフタレン
の転化率が低く、しかも選択性も低いためアルデヒドの
収率が低いという問題があった。
2. Description of the Related Art As a method for producing naphthaldehyde, a method has been proposed in which methylnaphthalene is oxidized with molecular oxygen in a solvent of acetic acid using a cobalt salt and a soluble bromine compound as a catalyst [JP-A-55-55]. 7235, Synthetic Organic Chemistry, Vol. 37, No. 8, p. 667 (197
9)]. However, the above conventional method has a problem that the conversion rate of methylnaphthalene is low and the selectivity is low, so that the yield of aldehyde is low.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題を
解決したもので、本発明の目的は、高転化率、高選択性
によりナフトアルデヒド類を高収率で製造できる方法を
提供することにある。
The present invention has solved the above problems, and an object of the present invention is to provide a method capable of producing naphthaldehydes in a high yield with a high conversion and a high selectivity. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、メチルナフタ
レン或いは他の置換基を有するメチルナフタレンを低級
脂肪族カルボン酸を含有する溶液中で、コバルト及びセ
リウムをコバルトに対するセリウムの量が原子比で0.
1〜10となる割合で存在させ、かつ臭素化合物の存在
下に分子状酸素により酸化するナフトアルデヒド類の製
造方法からなるものである。
DISCLOSURE OF THE INVENTION According to the present invention, methylnaphthalene or methylnaphthalene having another substituent is dissolved in a solution containing a lower aliphatic carboxylic acid, and cobalt and cerium are added in an atomic ratio of cerium to cobalt. 0.
It is a method for producing naphthaldehydes, which is present in a ratio of 1 to 10 and is oxidized by molecular oxygen in the presence of a bromine compound.

【0006】本発明の原料であるメチルナフタレンに
は、α-体、β-体の2種類の異性体があるが、本発明で
は、それぞれ単体、あるいは混合体のいずれでも用いる
ことができる。また本発明においては、前記メチルナフ
タレンに、酸化に対して比較的安定な官能基であるニト
ロ基、メトキシ基、ハロゲン基等が1〜7個置換した他
の置換基を有するメチルナフタレンも同様に原料として
用いることができる。
Methylnaphthalene, which is a raw material of the present invention, has two kinds of isomers, an α-form and a β-form. In the present invention, either a single substance or a mixture can be used. Further, in the present invention, methylnaphthalene having another substituent in which 1 to 7 nitro groups, methoxy groups, halogen groups and the like, which are functional groups relatively stable to oxidation, are substituted on the methylnaphthalene is also the same. It can be used as a raw material.

【0007】コバルト及びセリウムは、低級脂肪族カル
ボン酸を含有する反応溶媒に可溶或いは分散できる単体
又は化合物の形態のものを用い、例として金属粉末、金
属酸化物、金属塩等、特に好ましくは、金属脂肪酸塩、
ハロゲン化金属等を用いることができる。
Cobalt and cerium are used in the form of a simple substance or a compound which can be dissolved or dispersed in a reaction solvent containing a lower aliphatic carboxylic acid, and examples thereof include metal powders, metal oxides, metal salts, etc., particularly preferably , Metal fatty acid salt,
A metal halide or the like can be used.

【0008】臭素は、臭素の単体又は化合物の何れでも
良く、分子状臭素、臭化アルキル、臭化アルカリ、臭化
アンモニウム、臭化水素、金属の臭化物塩等が好適であ
るが、特には臭化アルカリが好ましい。
The bromine may be either a simple substance or a compound of bromine, and molecular bromine, alkyl bromide, alkali bromide, ammonium bromide, hydrogen bromide, metal bromide salts and the like are preferable, but bromine is particularly preferable. Alkali oxide is preferred.

【0009】上記コバルトとセリウムは、その合計量が
多くなるほどアルデヒド選択性が向上する傾向が見られ
るが、溶媒への溶解性や経済性などを考慮するとその合
計量は溶媒100mlに対して0.0005〜0.1モル、
特には0.002〜0.05モルとすることが好ましい。
Although the aldehyde selectivity tends to improve as the total amount of cobalt and cerium increases, the total amount of cobalt and cerium is 0.10 with respect to 100 ml of solvent in consideration of solubility in a solvent and economic efficiency. 0005-0.1 mol,
It is particularly preferable to set the amount to 0.002 to 0.05 mol.

【0010】このコバルトとセリウムの割合は、コバル
トに対するセリウムの量が原子比で、0.1〜10とす
るが、特に好ましくは0.4〜4とするとよい。セリウ
ムがコバルトよりもこの範囲を越えて多量に存在する場
合は、セリウムはコバルトに比べて酸化活性が極めて低
いので酸化反応速度が低下して、メチルナフタレン類の
転化率が減少することになる。一方、コバルトがセリウ
ムよりも上記範囲を越えて多量に存在する場合は、酸化
反応速度が速くなり、ナフトアルデヒド類がナフトエ酸
類まで酸化され、ナフトアルデヒド類の選択性が低下す
ることになる。
The ratio of cobalt to cerium is 0.1 to 10 in terms of atomic ratio of the amount of cerium to cobalt, and particularly preferably 0.4 to 4. If cerium is present in a larger amount than cobalt in this range, cerium has an extremely low oxidation activity as compared with cobalt, so that the oxidation reaction rate decreases and the conversion rate of methylnaphthalene compounds decreases. On the other hand, when cobalt is present in a larger amount than cerium in an amount exceeding the above range, the oxidation reaction rate is increased, naphthaldehydes are oxidized to naphthoic acids, and naphthaldehyde selectivity is reduced.

【0011】また臭素は、酸化反応を効率よく進めるた
めに必要であり、臭素がないと十分な酸化活性が得られ
ない。この臭素量は、前記コバルト及びセリウムの合計
量に対しその原子比で0.001以上、特には0.01〜
1とすることが好ましい。
Further, bromine is necessary for efficiently proceeding the oxidation reaction, and sufficient oxidation activity cannot be obtained without bromine. The amount of bromine is 0.001 or more in terms of atomic ratio with respect to the total amount of cobalt and cerium, and particularly 0.01 to
It is preferably 1.

【0012】本発明では、低級脂肪族カルボン酸を含有
する溶媒を反応溶媒として用いるが、この低級脂肪族カ
ルボン酸としては、酢酸、プロピオン酸、酪酸などを例
示できる。これらは、単独で或いは2種以上混合して用
いることができ、また、クロロベンゼン、ブロモベンゼ
ン、ジクロロベンゼン、ニトロベンゼン等のベンゼン化
合物やハロゲン化アルキル、無水酢酸、水、アルコール
などの低級脂肪族モノカルボン酸と混和性を有する溶媒
との混合溶媒として用いることもできる。しかし溶媒の
回収、再利用等を考慮すると低級脂肪族モノカルボン酸
単独での方が好ましく、特に酢酸単独で用いることが好
ましい。
In the present invention, a solvent containing a lower aliphatic carboxylic acid is used as a reaction solvent, and examples of the lower aliphatic carboxylic acid include acetic acid, propionic acid and butyric acid. These can be used alone or as a mixture of two or more kinds, and also include benzene compounds such as chlorobenzene, bromobenzene, dichlorobenzene and nitrobenzene, and lower aliphatic monocarboxylic acids such as alkyl halides, acetic anhydride, water and alcohols. It can also be used as a mixed solvent with a solvent miscible with an acid. However, considering the recovery and reuse of the solvent, the lower aliphatic monocarboxylic acid alone is preferable, and the acetic acid alone is particularly preferable.

【0013】反応に使用する分子状酸素としては、酸素
又はそれを不活性ガスで希釈した混合ガスが好適であ
る。工業的にはコスト面から空気を用いるのが好まし
い。この場合の酸素分圧は0.2kg/cm2(絶対圧)以上あ
れば充分であるが、分圧が高い程反応は速く進行する。
The molecular oxygen used in the reaction is preferably oxygen or a mixed gas obtained by diluting it with an inert gas. Industrially, it is preferable to use air from the viewpoint of cost. In this case, it is sufficient that the oxygen partial pressure is 0.2 kg / cm 2 (absolute pressure) or more, but the higher the partial pressure, the faster the reaction proceeds.

【0014】この酸化反応は、220℃以下、特に好ま
しくは40〜120℃で行うと良い。反応温度が高くな
ると酸化反応速度が速くなり、ナフトアルデヒド類がナ
フトエ酸類まで酸化され、ナフトアルデヒド類の選択性
が低下することになり、また反応温度が低くなると酸化
反応速度が低下して、メチルナフタレン類の転化率が減
少することになる。
This oxidation reaction is preferably carried out at 220 ° C. or lower, particularly preferably 40 to 120 ° C. When the reaction temperature increases, the oxidation reaction rate increases, naphthaldehydes are oxidized to naphthoic acids, and the selectivity of naphthaldehydes decreases, and when the reaction temperature decreases, the oxidation reaction rate decreases, and The conversion rate of naphthalene will decrease.

【0015】本発明の方法は、回分式、半回分あるいは
連続式のいずれの場合においても実施することができる
が、副生物の生成を抑えてかつ効率的に製造できるとい
う点で半回分式または連続式で行うのがよい。
The method of the present invention can be carried out in any of a batch system, a semi-batch system and a continuous system, but it is a semi-batch system or a semi-batch system in that the production of by-products can be suppressed and the production can be carried out efficiently. It is better to do it continuously.

【0016】反応終了後、反応混合物を減圧蒸留等で濃
縮することにより生成物が析出するので、これを濾過等
の公知の固液分離方法によって分離回収できる。濃縮後
に水を添加することにより生成物の析出を促すことが出
来る。得られる粗ナフトアルデヒド類は、蒸留等の従来
の公知の技術手段によって精製することができる。
After completion of the reaction, the reaction mixture is concentrated by vacuum distillation or the like to precipitate a product, which can be separated and recovered by a known solid-liquid separation method such as filtration. By adding water after concentration, precipitation of the product can be promoted. The obtained crude naphthaldehydes can be purified by a conventionally known technical means such as distillation.

【0017】[0017]

【実施例】以下、実施例にて本発明を更に説明する。な
お、実施例及び比較例中のメチルナフタレンの転化率、
ナフトアルデヒドの選択率及び収率は、ガスクロマトグ
ラフィの内部標準法によって求めたものである。
EXAMPLES The present invention will be further described below with reference to examples. Incidentally, the conversion rate of methylnaphthalene in Examples and Comparative Examples,
The selectivity and yield of naphthaldehyde are determined by the internal standard method of gas chromatography.

【0018】(実施例1)2-メチルナフタレン6.22
g(43.8mmol)、酢酸50ml、酢酸コバルト4水和物
0.952g(3.84mmol)、酢酸セリウム1水和物0.5
51g(1.64mmol)、臭化ナトリウム0.0563g(0.
548mmol)を反応容器に入れ、常圧条件下で88℃に
加熱した。これに純酸素ガスを300ml/minの割合で
反応液中に吹き込みながら撹拌し、2.5時間反応を行
った。
Example 1 2-Methylnaphthalene 6.22
g (43.8 mmol), acetic acid 50 ml, cobalt acetate tetrahydrate 0.952 g (3.84 mmol), cerium acetate monohydrate 0.5
51 g (1.64 mmol), sodium bromide 0.0563 g (0.06)
(548 mmol) was placed in a reaction vessel and heated to 88 ° C. under normal pressure conditions. Pure oxygen gas was blown into the reaction solution at a rate of 300 ml / min while stirring to carry out a reaction for 2.5 hours.

【0019】反応終了後、反応液を減圧下で濃縮し、水
を加えて析出した固体状物質を濾過して回収し、乾燥
し、ナフトアルデヒドを得た。この時の転化率、選択率
及び収率を表1に示した。
After completion of the reaction, the reaction solution was concentrated under reduced pressure, water was added thereto, and the precipitated solid substance was collected by filtration and dried to obtain naphthaldehyde. The conversion rate, selectivity and yield at this time are shown in Table 1.

【0020】(実施例2)酢酸コバルト4水和物を0.
682g(2.74mmol)、酢酸セリウム1水和物0.91
8g(2.74mmol)、加熱温度80℃、反応時間8時間と
した以外は実施例1と同様にして、ナフトアルデヒドを
得た。この時の転化率、選択率及び収率を表1に示し
た。
(Example 2) Cobalt acetate tetrahydrate was added to 0.2%.
682 g (2.74 mmol), cerium acetate monohydrate 0.91
Naphthaldehyde was obtained in the same manner as in Example 1 except that 8 g (2.74 mmol), the heating temperature was 80 ° C., and the reaction time was 8 hours. The conversion rate, selectivity and yield at this time are shown in Table 1.

【0021】(実施例3)酢酸コバルト4水和物1.3
64g(5.48mmol)、酢酸セリウム1水和物1.837g
(5.48mmol)、加熱温度70℃、反応時間8時間とし
た以外は実施例1と同様にして、ナフトアルデヒドを得
た。この時の転化率、選択率及び収率を表1に示した。
(Example 3) Cobalt acetate tetrahydrate 1.3
64 g (5.48 mmol), cerium acetate monohydrate 1.837 g
(5.48 mmol), a heating temperature of 70 ° C. and a reaction time of 8 hours were repeated to obtain naphthaldehyde in the same manner as in Example 1. The conversion rate, selectivity and yield at this time are shown in Table 1.

【0022】(比較例1)実施例1において、酢酸コバ
ルト4水和物1.364g(5.48mmol)とし、酢酸セリ
ウム1水和物を加えずに行った以外は実施例1と同様に
して、ナフトアルデヒドを得た。この時の転化率、選択
率及び収率を表1に併記した。
(Comparative Example 1) The same procedure as in Example 1 was repeated except that the amount of cobalt acetate tetrahydrate was 1.364 g (5.48 mmol), and cerium acetate monohydrate was not added. , Naphthaldehyde was obtained. The conversion rate, selectivity and yield at this time are also shown in Table 1.

【0023】(比較例2)実施例1において、酢酸セリ
ウム1水和物1.837g(5.48mmol)とし、酢酸コバ
ルト4水和物を加えず、8時間反応を行った以外は実施
例1と同様にして、ナフトアルデヒドを得た。この時の
転化率、選択率及び収率を表1に併記した。
Comparative Example 2 Example 1 was repeated except that the cerium acetate monohydrate was 1.837 g (5.48 mmol) and the reaction was carried out for 8 hours without adding cobalt acetate tetrahydrate. In the same manner as above, naphthaldehyde was obtained. The conversion rate, selectivity and yield at this time are also shown in Table 1.

【0024】(比較例3)実施例1において、臭化ナト
リウムを加えず、加熱温度80℃、反応時間8次官とし
た以外は実施例1と同様にしてナフトアルデヒドを得
た。この時の転化率、選択率及び収率を表1に併記し
た。
(Comparative Example 3) A naphthaldehyde was obtained in the same manner as in Example 1 except that sodium bromide was not added and the heating temperature was 80 ° C and the reaction time was 8 times. The conversion rate, selectivity and yield at this time are also shown in Table 1.

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明はナフトアルデヒド類を高収率で
製造することができるという効果を奏する。
INDUSTRIAL APPLICABILITY The present invention has the effect that naphthaldehydes can be produced in high yield.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メチルナフタレンまたは他の置換基を有
するメチルナフタレンを低級脂肪族カルボン酸を含有す
る溶液中で、コバルト及びセリウムをコバルトに対する
セリウムの量が原子比で0.1〜10となる割合で存在
させ、かつ臭素の存在下に分子状酸素により酸化するこ
とを特徴とするナフトアルデヒド類の製造方法。 【0001】
1. A ratio of methylnaphthalene or methylnaphthalene having another substituent in a solution containing a lower aliphatic carboxylic acid such that cobalt and cerium have an atomic ratio of cerium to cobalt of 0.1 to 10. And a method for producing naphthaldehydes, which comprises oxidizing with molecular oxygen in the presence of bromine. [0001]
JP4307894A 1992-10-23 1992-10-23 Production of naphthaldehyde Pending JPH06135879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4307894A JPH06135879A (en) 1992-10-23 1992-10-23 Production of naphthaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4307894A JPH06135879A (en) 1992-10-23 1992-10-23 Production of naphthaldehyde

Publications (1)

Publication Number Publication Date
JPH06135879A true JPH06135879A (en) 1994-05-17

Family

ID=17974450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4307894A Pending JPH06135879A (en) 1992-10-23 1992-10-23 Production of naphthaldehyde

Country Status (1)

Country Link
JP (1) JPH06135879A (en)

Similar Documents

Publication Publication Date Title
KR100965633B1 (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPS60246346A (en) Manufacture of higher aryl ester
JPH06135879A (en) Production of naphthaldehyde
EP0170520B1 (en) Process for the production of cinnamic acid
EP0323309A2 (en) Process for the preparation of naphthalene dicarboxylic acids
JP3027162B2 (en) Method for producing biphenylcarboxylic acid
JPS62212340A (en) Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
US4683346A (en) Selective preparation of monohalohydroquinones
US7598415B2 (en) Process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPH05339202A (en) Production of naphthoic acid
EP0132990B1 (en) Production of hexanitrostilbene (hns)
JP2611232B2 (en) Method for producing 2,6-naphthalenedicarboxylic acid
JP4352191B2 (en) Production of pyromellitic acid
US4003923A (en) Preparation of quinones
JPS61172851A (en) Method of dimerization of orthophthalic ester through oxidation and dehydrogenation
US4655974A (en) Manufacture of phenyl esters
JPH06211733A (en) Production of 2,6-naphthalene dicarboxylic acid
JPH0639444B2 (en) 2.3-Method for producing naphthalenedicarboxylic acid
JPH06211740A (en) Production of 4,4'-biphenyldicarboxylic acid
JPH0725811A (en) Production of diacetylbiphenyl
JPH0725817A (en) Production of alkylbiphenyl carboxylic acid
JP2729294B2 (en) Method for producing 4'-isopropylbiphenyl-4-carboxylic acid
JP2931679B2 (en) Method for producing aromatic polycarboxylic acid
JPH06211732A (en) Production of 2,6-naphthalene dicarboxylic acid
JPS60255746A (en) Production of 2,3,5-trimethylbenzoquinone