JPH06134211A - Removing method for foam in liquid and measuring system for fine particle in liquid - Google Patents

Removing method for foam in liquid and measuring system for fine particle in liquid

Info

Publication number
JPH06134211A
JPH06134211A JP4288308A JP28830892A JPH06134211A JP H06134211 A JPH06134211 A JP H06134211A JP 4288308 A JP4288308 A JP 4288308A JP 28830892 A JP28830892 A JP 28830892A JP H06134211 A JPH06134211 A JP H06134211A
Authority
JP
Japan
Prior art keywords
liquid
bubbles
foams
container
wetting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4288308A
Other languages
Japanese (ja)
Inventor
Akira Morizaki
昭 森崎
Yutaka Shiomi
豊 塩見
Masao Morikawa
正男 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP4288308A priority Critical patent/JPH06134211A/en
Publication of JPH06134211A publication Critical patent/JPH06134211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Degasification And Air Bubble Elimination (AREA)

Abstract

PURPOSE:To improve the efficiency by flowing liquid containing foams by the given linear speed in the up and down direction while bringing the liquid into contact with the surface in a liquid passing container with smooth surface material quality and of not wetting properties to the liquid, making the foams adhere to the surface, making the diameter of foams large, collecting the foams on the upper face of the container and removing therefrom. CONSTITUTION:Liquid containing foams in the up and down direction is passed while being brought into contact with the surface of a liquid passing container, for example, a reverse U-shaped tube with the smooth surface composed of a material quality of not wetting to the liquid, for example, polyethylene fluoride resin such as a tetrafluoroethylene perfluoroalkyl vinyl ether copolymer. At that time, the speed is set as the linear speed of 0.5-800cm/min. The foams in the liquid are made to adhere to the surface by the arrangement, and the diameter of foams is turned into large, and the foams are collected on the surface of the container. The foams of large diameter are removed. The liquid to be used is water, sulfuric acid or the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液中の気泡の除去方法
及び液中の微細粒子の測定システムに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for removing bubbles in a liquid and a measuring system for fine particles in the liquid.

【0002】[0002]

【従来の技術】液中の気泡を除去する方法としては、長
時間静置する方法、減圧を利用する方法、遠心力を利用
する方法、多孔質物質を利用する方法などが知られてい
るが、これら従来の方法は、次の点において不満足なも
のであった。すなわち、長時間静置する方法は、時間効
率的に不利である。減圧を利用する方法及び遠心力を利
用する方法は、複雑で高価な装置を必要とし、該装置の
保守管理の点からも問題がある。また、多孔質物質を利
用する方法は、該多孔質物質の使用に伴う汚れの問題が
あり、その清浄化に多大な工数を要し、特に高純度の液
を対象とするには不都合である。
2. Description of the Related Art As methods for removing bubbles in a liquid, there are known a method of standing for a long time, a method of utilizing a reduced pressure, a method of utilizing a centrifugal force, a method of utilizing a porous substance and the like. However, these conventional methods have been unsatisfactory in the following points. That is, the method of standing still for a long time is disadvantageous in terms of time efficiency. The method using reduced pressure and the method using centrifugal force require a complicated and expensive device, and there is a problem in terms of maintenance of the device. Further, the method of using a porous substance has a problem of contamination associated with the use of the porous substance and requires a great number of man-hours for cleaning the porous substance, which is inconvenient especially for a high-purity liquid. .

【0003】[0003]

【発明が解決しようとする課題】かかる現状に鑑み、本
発明が解決しようとする課題は、従来の技術の問題点を
解消し、比較的簡単な装置を用い、保守管理も容易であ
り、汚染の問題を伴わず、極めて効率的に液中の気泡を
除去できる方法を提供し、更に該方法の特徴を生かした
液中の微細粒子の測定システムを提供する点に存する。
In view of the present situation, the problem to be solved by the present invention is to solve the problems of the prior art, to use a relatively simple device, to maintain and manage easily, and to prevent contamination. The present invention provides a method capable of removing bubbles in a liquid very efficiently without the above problem, and further provides a measuring system for fine particles in a liquid, which utilizes the characteristics of the method.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討の結果、本発明に到達した。す
なわち、本発明のうち、一の発明は、液に対して不湿潤
性の平滑な表面材質を含む通液容器内に、気泡を含有す
る液体を該表面と接触させながら線速度0.5〜800
cm/分の速度で概ね上下方向に流通させることにより
液中の気泡を該表面に付着させ、該付着した気泡が合一
して形成する大粒径の気泡を通液容器の上面部に集合さ
せて除去する液中の気泡の除去方法に係るものである。
The present inventors have arrived at the present invention as a result of intensive studies to solve the above problems. That is, one aspect of the present invention is that the linear velocity of 0.5 to 5 is obtained by bringing a liquid containing bubbles into contact with a surface of a liquid container containing a smooth surface material that is not wettable with the liquid. 800
The bubbles in the liquid are adhered to the surface by circulating the liquid in a generally vertical direction at a speed of cm / min, and the large-sized bubbles formed by coalescence of the adhered bubbles are collected on the upper surface of the liquid container. The present invention relates to a method of removing bubbles in a liquid to be removed.

【0005】また、本発明のうち、他の発明は、液に対
して不湿潤性の平滑な表面材質を含む通液容器内に、気
泡を含有する液体を、該表面と接触させながら線速度
0.5〜800cm/分の速度で概ね上下方向に流通さ
せることにより液中の気泡を該表面に付着させ、該付着
した気泡が合一して形成する大粒径の気泡を通液容器の
上面部に集合させて除去する液中の気泡の除去する手
段、及び該手段の後に置かれた光散乱式微細粒子測定装
置からなる液中の微細粒子の測定システムに係るもので
ある。
Another aspect of the present invention is that a liquid containing air bubbles is placed in a liquid passage container containing a smooth surface material which is not wettable with respect to the liquid, while the liquid containing air bubbles is being brought into contact with the surface. The bubbles in the liquid are attached to the surface by circulating the liquid in the vertical direction at a speed of 0.5 to 800 cm / min, and the bubbles having a large particle size formed by coalescence of the attached bubbles are used in a liquid container. The present invention relates to a system for measuring fine particles in a liquid, which comprises means for removing bubbles in the liquid that are collected and removed on the upper surface portion, and a light scattering type fine particle measuring device placed after the means.

【0006】以下、詳細に説明する。本発明において用
いられる液としては、特に制限はないが、たとえば水、
硫酸、硝酸、リン酸、フッ酸、アンモニア水、フッ化ア
ンモニウム、過酸化水素水又は半導体製造用レジストポ
ジ型現像液など、及び各種の水溶液をあげることができ
る。
The details will be described below. The liquid used in the present invention is not particularly limited, for example, water,
Examples thereof include sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, aqueous ammonia, ammonium fluoride, aqueous hydrogen peroxide, resist positive developer for semiconductor production, and various aqueous solutions.

【0007】液に対して不湿潤性の材質とは、用いる液
に対して濡れを生じない材質をいい、すなわち接触角が
鋭角であるものをいう。たとえば、液として水、硫酸、
硝酸、リン酸、フッ酸、アンモニア水、フッ化アンモニ
ウム、過酸化水素水又は半導体製造用レジストポジ型現
像液など、及び各種の水溶液を用いる場合の不湿潤性の
材質としては、ポリフッ化エチレン系樹脂が好ましい。
ここでポリフッ化エチレン系樹脂としては、具体的には
テトラフルオロエチレンパーフルオロアルキルビニルエ
ーテル共重合体をあげることができ、これは耐薬品性を
有するという観点からも好ましいものである。
The material which is non-wetting with respect to the liquid means a material which does not get wet with respect to the used liquid, that is, a material whose contact angle is acute. For example, water, sulfuric acid,
As the non-wetting material when using nitric acid, phosphoric acid, hydrofluoric acid, ammonia water, ammonium fluoride, hydrogen peroxide water, resist positive developer for semiconductor manufacturing, or various aqueous solutions, polyfluorinated ethylene-based materials are used. Resins are preferred.
Specific examples of the polyfluorinated ethylene resin include tetrafluoroethylene perfluoroalkyl vinyl ether copolymer, which is also preferable from the viewpoint of having chemical resistance.

【0008】本発明において用いられる通液容器は、液
に対して不湿潤性の平滑な表面材質を有する通液容器で
ある。具体的には、不湿潤性の平滑な表面材質からなる
容器、不湿潤性の平滑な表面材質を液と接触する内面に
被覆した容器の他、該容器又は通常の材質からなる容器
の内部に不湿潤性の平滑な表面材質を有する充填物を充
填した容器などをあげることができる。ここで、充填物
としては、管状のもの、板状のもの、粒状のものなどを
用いることができる。容器の形状としては、特に制限は
ないが、たとえば管状のもの、箱状のものなどをあげる
ことができる。表面材質は平滑なものでなければならな
い。ここで平滑とは、微細な凹凸処理、多孔質化処理な
どを施していないものであることを意味する。平滑な材
質を用いることにより、表面への汚染物質の発生やその
付着を防止することができ、また装置の保守管理が容易
となる。
The liquid passage container used in the present invention is a liquid passage container having a smooth surface material which is not wettable by the liquid. Specifically, in addition to a container made of a non-wetting smooth surface material, a container having a non-wetting smooth surface material coated on the inner surface in contact with a liquid, the inside of the container or a container made of a normal material Examples thereof include a container filled with a filling material having a non-wetting smooth surface material. Here, as the filling material, a tubular material, a plate-shaped material, a granular material, or the like can be used. The shape of the container is not particularly limited, and examples thereof include a tubular shape and a box shape. The surface material must be smooth. Here, "smooth" means that fine unevenness treatment, porosity treatment and the like have not been performed. By using a smooth material, it is possible to prevent the generation of pollutants and their adhesion to the surface, and to facilitate the maintenance and management of the device.

【0009】通液容器の具体例として、鉛直に設置した
塔状の容器であって、その内面は不湿潤性の材質からな
り、容器の上部及び下部に液の出入口を有し、上端付近
に気相を除去するための通気弁を有する容器をあげるこ
とができる。なお、容器の内部に前記の充填物を充填し
てもよい。
A specific example of the liquid passage container is a vertically installed tower-like container, the inner surface of which is made of a non-wetting material, and liquid inlets and outlets are provided at the upper and lower parts of the container and near the upper end. A container having a vent valve for removing the gas phase can be mentioned. The inside of the container may be filled with the above-mentioned filling material.

【0010】通液容器の他の具体例として、箱状の容器
であって、その内面は不湿潤性の材質又は通常の材質か
らなり、容器の内部に不湿潤性の材質表面を有する複数
の堰が設置され、液入口から供給された液は堰に沿って
上下しながら容器内を進行し、液出口から排出される形
式のものをあげることができる。
Another specific example of the liquid passage container is a box-shaped container, the inner surface of which is made of a non-wetting material or a normal material, and a plurality of non-wetting material surfaces are provided inside the container. An example is a type in which a weir is installed, and the liquid supplied from the liquid inlet advances in the container while moving up and down along the weir and is discharged from the liquid outlet.

【0011】通液容器のもうひとつの具体例として、鉛
直に設置された複数のU字管であって、その内面は不湿
潤性の材質からなり、各U字管の上端付近に気相を除去
するための通気弁を有する容器をあげることができる。
Another specific example of the liquid passage container is a plurality of U-shaped pipes installed vertically, the inner surface of which is made of a non-wetting material, and a gas phase is formed near the upper end of each U-shaped pipe. A container having a vent valve for removal can be mentioned.

【0012】なお、いずれの場合も、容器の上端付近の
気相形成部分について、気相の形成状況が観測できる透
明窓部を設けることが好ましい。
In any case, it is preferable to provide a transparent window portion for observing the formation state of the vapor phase in the vapor phase formation portion near the upper end of the container.

【0013】本発明においては、通液容器内の液の線速
度を0.5〜800cm/分、好ましくは1.0〜15
0cm/分、最も好ましくは10〜100cm/分の範
囲に調整する必要がある。該線速度が遅過ぎると本発明
の処理速度が遅く、非効率である。一方、該線速度が速
過ぎると、液中の気泡が十分に除去されない。なお、通
液容器中の液は、概ね上下方向に流通させることによ
り、気泡の除去が効率的に行われる。ここで、上下方向
に流通させるとは、上から下へ又は下から上へ流通させ
ることをいう。
In the present invention, the linear velocity of the liquid in the liquid passage container is 0.5 to 800 cm / min, preferably 1.0 to 15
It should be adjusted to 0 cm / min, most preferably 10 to 100 cm / min. If the linear velocity is too slow, the processing speed of the present invention is slow and inefficient. On the other hand, if the linear velocity is too high, the bubbles in the liquid will not be sufficiently removed. It should be noted that the liquid in the liquid passage container is circulated substantially in the vertical direction to effectively remove the bubbles. Here, circulating in the vertical direction means circulating from the top to the bottom or from the bottom to the top.

【0014】通液容器中での液の滞留時間は、液中の気
泡の含有量にも依存するが、通常1〜20分程度であ
る。操作温度は、通常−18〜50℃であり、操作圧力
は、通常0〜10kg/cm2 Gである。
The residence time of the liquid in the liquid passage container is usually about 1 to 20 minutes, although it depends on the content of bubbles in the liquid. The operating temperature is usually −18 to 50 ° C., and the operating pressure is usually 0 to 10 kg / cm 2 G.

【0015】次に、本発明の作用について説明する。気
泡を含有する液体が液に対して不湿潤性の材質表面と接
触することにより、気泡は液中に存在するよりも自由エ
ネルギーが低い該材質表面に移動し、そこに付着する。
付着した小粒径の気泡は次第に数を増し、遂に合一して
大粒径の気泡を形成する。大粒径の気泡は浮力により液
中を上昇し、通液容器の上面部に集合し、気相を形成す
る。該気相は、たとえば通気弁を通して適宜通液容器か
ら排出される。かくして、液中の気泡は除去される。
Next, the operation of the present invention will be described. When the liquid containing bubbles comes into contact with the surface of the material that is impermeable to the liquid, the bubbles move to the surface of the material that has lower free energy than that in the liquid and adhere to the surface.
The bubbles of small particle size attached gradually increase in number and finally coalesce to form bubbles of large particle size. The bubbles of large particle size rise in the liquid due to the buoyancy, collect on the upper surface of the liquid passage container, and form a gas phase. The gas phase is appropriately discharged from the liquid passage container through a ventilation valve, for example. Thus, air bubbles in the liquid are removed.

【0016】本発明の液中の気泡の除去方法の適用分野
のひとつとして、液中の光散乱式微細粒子の測定システ
ムとしての利用をあげることができる。以下、説明す
る。
One of the fields of application of the method for removing bubbles in a liquid of the present invention is its use as a measurement system for light scattering type fine particles in a liquid. This will be described below.

【0017】近年、電子工業用液体薬品の品質に対する
要求はますます高度化しつつある。そして、該品質のひ
とつとして、薬品中の微細粒子の濃度がある。薬品中の
微細粒子の濃度を測定する方法としては、光散乱式微細
粒子測定装置を用いる方法が知られている。ところが、
この方法においては、薬品中に含まれる気泡を微細粒子
と誤検出し、そのため正確な微細粒子の濃度を知ること
が困難であるといった問題がある。しかしながら、本発
明の液中の微細粒子の測定システム、すなわち液に対し
て不湿潤性の平滑な表面材質を含む通液容器内に、気泡
を含有する液体を該表面と接触させながら線速度0.5
〜800cm/分の速度で概ね上下方向に流通させるこ
とにより液中の気泡を該表面に付着させ、該付着した気
泡が合一して形成する大粒径の気泡を通液容器の上面部
に集合させて除去する液中の気泡の除去する手段、及び
該手段の後に置かれた光散乱式微細粒子測定装置からな
る液中の微細粒子の測定システムを用いることにより、
上記の問題は解消し、極めて効率的に、かつ正確に、液
体薬品中の微細粒子の濃度を測定することができるので
ある。なお、ここで用いる光散乱式微細粒子測定装置と
しては、市販のものが使用できる。
In recent years, the requirements for the quality of liquid chemicals for the electronic industry have become more and more sophisticated. And, as one of the qualities, there is the concentration of fine particles in the medicine. As a method for measuring the concentration of fine particles in a chemical, a method using a light scattering type fine particle measuring device is known. However,
This method has a problem that air bubbles contained in the drug are erroneously detected as fine particles, and thus it is difficult to know the exact concentration of the fine particles. However, in the system for measuring fine particles in a liquid according to the present invention, that is, in a liquid passage container containing a smooth surface material that is not wettable with respect to the liquid, a linear velocity of 0 is obtained while bringing the liquid containing bubbles into contact with the surface. .5
The bubbles in the liquid are adhered to the surface by circulating the liquid in the vertical direction at a speed of about 800 cm / min, and the large-sized bubbles formed by the coalescence of the adhered bubbles are passed through the upper surface of the liquid container. By using a measuring system for fine particles in liquid, which comprises a means for removing bubbles in the liquid to be collected and removed, and a light scattering type fine particle measuring device placed after the means,
The above problems can be solved, and the concentration of fine particles in a liquid chemical can be measured very efficiently and accurately. As the light scattering type fine particle measuring device used here, a commercially available device can be used.

【0018】[0018]

【実施例】次に、本発明を実施例により説明する。 実施例1 長さ600mmの鉛直部6本を長さ100mmの水平部
で順次連結した逆U字管からなる気泡除去装置を準備し
た。管は透明のテトラフルオロエチレンパーフルオロア
ルキルビニルエーテル共重合体樹脂からなる内径15.
9mmのものを用いた。また、逆U字管の各最上部には
通気弁を設けた。この気泡除去装置に、空気で飽和され
た気泡含有純水を0.1リッター/分で通し、純水中の
気泡を除去した。そのときの純水の温度は20℃とし、
圧力は0.05kg/cm2 Gとした。なお、気泡除去
装置内における純水の線速度は50.5cm/分であ
り、滞留時間は8.5分であった。純水を通過させるに
伴い、管の内壁に気泡が付着し、気泡は相互に合体して
大きな気泡となり、遂に管の内壁から離脱して管内を上
昇し、逆U字管の天井部に集合するのが観測された。逆
U字管の天井部に形成された気相は、適宜通気弁から排
出した。更に、気泡除去装置を通過した純水を光散乱式
微細粒子測定装置に導入し、純水中の微細粒子濃度を測
定した。測定結果を図1に示した。
EXAMPLES The present invention will now be described with reference to examples. Example 1 An air bubble removing device including an inverted U-shaped tube in which six vertical portions having a length of 600 mm were sequentially connected by a horizontal portion having a length of 100 mm was prepared. The tube has an inner diameter of transparent tetrafluoroethylene perfluoroalkyl vinyl ether copolymer resin 15.
A 9 mm one was used. In addition, a ventilation valve was provided at the top of each inverted U-shaped tube. Bubble-containing pure water saturated with air was passed through the bubble removing device at a rate of 0.1 liter / min to remove bubbles in the pure water. At that time, the temperature of pure water is 20 ° C.,
The pressure was 0.05 kg / cm 2 G. The linear velocity of pure water in the bubble removing device was 50.5 cm / min, and the residence time was 8.5 minutes. As pure water passes through, bubbles adhere to the inner wall of the pipe, and the bubbles coalesce into each other to form a large bubble that finally separates from the inner wall of the pipe and rises in the pipe, and gathers on the ceiling of the inverted U-shaped pipe. It was observed to do. The gas phase formed on the ceiling of the inverted U-shaped tube was appropriately discharged from the ventilation valve. Further, the pure water that passed through the bubble removing device was introduced into a light scattering type fine particle measuring device, and the fine particle concentration in the pure water was measured. The measurement results are shown in FIG.

【0019】比較例1 気泡除去装置を用いることなく、気泡含有純水をそのま
ま光散乱式微細粒子測定装置に導入し、純水中の微細粒
子濃度を測定した。測定結果を図2に示した。図2は図
1に比較して測定値が極端に大きく(チャートの最大目
盛りを振り切っている。)、気泡に起因する測定誤差が
発生していることがわかる。
Comparative Example 1 Bubble-containing pure water was directly introduced into a light-scattering type fine particle measuring device without using a bubble removing device, and the fine particle concentration in pure water was measured. The measurement results are shown in FIG. In FIG. 2, the measured value is extremely larger than that in FIG. 1 (the maximum scale of the chart is shaken off), and it can be seen that a measurement error due to bubbles has occurred.

【0020】[0020]

【発明の効果】以上説明したとおり、本発明により、比
較的簡単な装置を用い、保守管理も容易であり、汚染の
問題を伴わず、極めて効率的に液中の気泡を除去できる
方法を提供し、更に該方法の特徴を生かした液中の微細
粒子の測定システムを提供することができた。
As described above, according to the present invention, there is provided a method which uses a relatively simple device, is easy to maintain and manage, and is capable of extremely efficiently removing bubbles in a liquid without causing a problem of contamination. In addition, it was possible to provide a measuring system for fine particles in a liquid, which utilizes the characteristics of the method.

【0021】[0021]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1の微細粒子測定結果を示すチ
ャート図である。
FIG. 1 is a chart showing the measurement results of fine particles of Example 1.

【図2】図2は、比較例1の微細粒子測定結果を示すチ
ャート図である。
FIG. 2 is a chart showing the measurement results of fine particles of Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 液に対して不湿潤性の平滑な表面材質を
含む通液容器内に、気泡を含有する液体を該表面と接触
させながら線速度0.5〜800cm/分の速度で概ね
上下方向に流通させることにより液中の気泡を該表面に
付着させ、該付着した気泡が合一して形成する大粒径の
気泡を通液容器の上面部に集合させて除去する液中の気
泡の除去方法。
1. A liquid container containing a smooth surface material that is non-wetting with respect to a liquid, and a liquid containing bubbles is brought into contact with the surface at a linear velocity of 0.5 to 800 cm / min. By allowing air bubbles in the liquid to adhere to the surface by circulating in the up-down direction, the large-sized air bubbles formed by coalescence of the adhered air bubbles are collected on the upper surface of the liquid container and removed. How to remove bubbles.
【請求項2】 液が水、硫酸、硝酸、リン酸、フッ酸、
アンモニア水、フッ化アンモニウム、過酸化水素水又は
半導体製造用レジストポジ型現像液であり、不湿潤性の
材質がポリフッ化エチレン系樹脂である請求項1記載の
方法。
2. The liquid is water, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid,
The method according to claim 1, wherein the method is ammonia water, ammonium fluoride, hydrogen peroxide solution or a resist positive developing solution for semiconductor production, and the non-wetting material is a polyfluoroethylene-based resin.
【請求項3】 液に対して不湿潤性の平滑な表面材質を
含む通液容器内に、気泡を含有する液体を該表面と接触
させながら線速度0.5〜800cm/分の速度で概ね
上下方向に流通させることにより液中の気泡を該表面に
付着させ、該付着した気泡が合一して形成する大粒径の
気泡を通液容器の上面部に集合させて除去する液中の気
泡の除去する手段、及び該手段の後に置かれた光散乱式
微細粒子測定装置からなる液中の微細粒子の測定システ
ム。
3. A liquid container containing a smooth surface material that is non-wetting with respect to the liquid is generally contacted with a liquid containing bubbles at a linear velocity of 0.5 to 800 cm / min while the liquid containing bubbles is brought into contact with the surface. By allowing air bubbles in the liquid to adhere to the surface by circulating in the up-down direction, the large-sized air bubbles formed by coalescence of the adhered air bubbles are collected on the upper surface of the liquid container and removed. A system for measuring fine particles in a liquid, comprising a means for removing bubbles and a light scattering type fine particle measuring device placed after the means.
JP4288308A 1992-10-27 1992-10-27 Removing method for foam in liquid and measuring system for fine particle in liquid Pending JPH06134211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4288308A JPH06134211A (en) 1992-10-27 1992-10-27 Removing method for foam in liquid and measuring system for fine particle in liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4288308A JPH06134211A (en) 1992-10-27 1992-10-27 Removing method for foam in liquid and measuring system for fine particle in liquid

Publications (1)

Publication Number Publication Date
JPH06134211A true JPH06134211A (en) 1994-05-17

Family

ID=17728496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4288308A Pending JPH06134211A (en) 1992-10-27 1992-10-27 Removing method for foam in liquid and measuring system for fine particle in liquid

Country Status (1)

Country Link
JP (1) JPH06134211A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716869A2 (en) 1994-10-27 1996-06-19 Mikuni Kikai Ltd. Gas-liquid separator and particle monitor provided with the gasliquid separator
JP2014157036A (en) * 2013-02-14 2014-08-28 Kurita Water Ind Ltd Underwater particulate number measurement method and warm pure water supply system
JP2017156124A (en) * 2016-02-29 2017-09-07 株式会社インテクノス・ジャパン In-liquid particles measuring device and in-liquid particles measuring method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0716869A2 (en) 1994-10-27 1996-06-19 Mikuni Kikai Ltd. Gas-liquid separator and particle monitor provided with the gasliquid separator
JP2014157036A (en) * 2013-02-14 2014-08-28 Kurita Water Ind Ltd Underwater particulate number measurement method and warm pure water supply system
JP2017156124A (en) * 2016-02-29 2017-09-07 株式会社インテクノス・ジャパン In-liquid particles measuring device and in-liquid particles measuring method
WO2017150236A1 (en) * 2016-02-29 2017-09-08 株式会社インテクノス・ジャパン Device for measuring particles in solution and method for measuring particles in solution

Similar Documents

Publication Publication Date Title
Kreulen et al. Determination of mass transfer rates in wetted and non-wetted microporous membranes
US3739551A (en) Method of gas absorption and apparatus therefor
JP4317223B2 (en) Denuder assembly for the collection and extraction of atmospheric soluble gases.
US20220252489A1 (en) Gas-Liquid Falling Film Equilibration System and Methods of Use
CN102335524B (en) Method and device for separating volatile matters from liquid and application thereof
JPH06134211A (en) Removing method for foam in liquid and measuring system for fine particle in liquid
CA1155638A (en) Process and apparatus for gassing liquids
CN100431674C (en) Method and apparatus for treating fluids
Min et al. A note on fluoride removal by reverse osmosis
JP2521494B2 (en) Degassing mechanism
JP3130867B2 (en) Measuring device for fine particles in liquid
US5318706A (en) Method of supplying dilute hydrofluoric acid and apparatus for use in this method for supplying the acid
HU228000B1 (en) Method and apparatus for removing sulfuric acid mist from gases
JPS61283311A (en) Process of defoaming
Hashim et al. Particle-bubble attachment in yeast flotation by colloidal gas aphrons
CN201119126Y (en) Bulb elimination and solution recycling device
Suzuki et al. Application of nonfoaming bubble separation to enrichment of dilute dye solution
JPH10273193A (en) Large-sized container for transport of high purity chemical
Schumpe et al. Comparison of the photographic and the sulfite oxidation method for interfacial area determination in bubble columns
JP2749880B2 (en) Device for removing gas from liquid
KR890005259B1 (en) Apparatus and method for membrane-permeation separations using segmented flow
Takesono et al. Relation between mechanical foam-breaking difficulty and the foaming characteristics of solutions
Pruden et al. Effect of a variation in perforation size on performance of sieve tray absorbers
SHIROTSUKA et al. Selective elimination of cadmium by bubble fractionation
JPH0246107B2 (en) SUISHITSUODAKUDOSOKUTEISOCHI