JPH06133784A - Method for introducing biosubstance to cell using magnetic fine particle and selective concentration and separation of cell by magnetism - Google Patents

Method for introducing biosubstance to cell using magnetic fine particle and selective concentration and separation of cell by magnetism

Info

Publication number
JPH06133784A
JPH06133784A JP28629092A JP28629092A JPH06133784A JP H06133784 A JPH06133784 A JP H06133784A JP 28629092 A JP28629092 A JP 28629092A JP 28629092 A JP28629092 A JP 28629092A JP H06133784 A JPH06133784 A JP H06133784A
Authority
JP
Japan
Prior art keywords
cell
cells
magnetic
fine particles
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28629092A
Other languages
Japanese (ja)
Other versions
JP2642025B2 (en
Inventor
Hideo Tsunoda
英男 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP28629092A priority Critical patent/JP2642025B2/en
Publication of JPH06133784A publication Critical patent/JPH06133784A/en
Application granted granted Critical
Publication of JP2642025B2 publication Critical patent/JP2642025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/06Magnetic means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M35/00Means for application of stress for stimulating the growth of microorganisms or the generation of fermentation or metabolic products; Means for electroporation or cell fusion
    • C12M35/04Mechanical means, e.g. sonic waves, stretching forces, pressure or shear stimuli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To enable magnetic concentration and separation of a cell containing a biosubstance such as gene introduced into the cell by shooting fine magnetic particles supporting immobilized biosubstance into a cell at a high speed. CONSTITUTION:A biosubstance is immobilized on fine magnetic particles and the particles are shot into a cell at a high speed. The cell containing the introduced fine magnetic particles can be selectively and specifically concentrated or separated by a magnetic means. The method is useful for the screening of a drug resistant cell, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁性微粒子により細胞
へ遺伝子、酵素等の生体物質を導入する方法及び該方法
により導入された細胞を磁気により選択的に濃縮又は分
離する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for introducing biological substances such as genes and enzymes into cells by magnetic fine particles and a method for selectively concentrating or separating the cells introduced by the method by magnetism. .

【0002】[0002]

【従来の技術】磁性微粒子について、P.J.Robinsonら(B
iotechnol. Bioeng., 15, 603-606(1973))は、バイオリ
アクター用の酵素の固定化担体として、その回収操作が
容易な点に着目して、磁性微粒子を酵素の固定化担体と
して用いる研究報告を行っている。この報告では、酸化
鉄微粒子又はセルロース−酸化鉄複合体にα−キモトリ
プシン又はβ−ガラクトシダーゼを固定化し、完全混合
型バイオリアクターに用いて、その磁性担体を磁気的に
容易に凝集、分離できることが示されている。
2. Description of the Related Art PJ Robinson et al.
iotechnol. Bioeng., 15 , 603-606 (1973)) is a study on the use of magnetic microparticles as an enzyme immobilization carrier as an immobilization carrier for enzymes for bioreactors, focusing on its easy recovery operation. I am making a report. In this report, it was demonstrated that α-chymotrypsin or β-galactosidase was immobilized on iron oxide fine particles or cellulose-iron oxide complex and used in a complete mixed bioreactor to easily magnetically aggregate and separate the magnetic carrier. Has been done.

【0003】また、磁性を有する鉄の超微粒子(短径約
30nm、長径約500nm)を合成高分子でカプセル化し、抗体
や酵素をその外部表面に固定化することにより磁気で誘
導可能な酵素などを固定化した超微粒子状の担体が作ら
れている(「超微粒子 創造科学技術」林主税他編、三
田出版会発行、231-235 頁)。ここでは、モデル酵素と
してグルコースオキシダーゼを固定化した磁性超微粒子
担体を用い小型のバイオリアクターにより反応を行わせ
た結果、単位体積当りの反応速度が高く、また超微粒子
の担体を磁気で容易に濃縮、回収できることが示されて
いる。
Further, ultrafine particles of iron having magnetism (minor axis diameter: approx.
By encapsulating 30 nm, long diameter of about 500 nm) with a synthetic polymer and immobilizing antibodies and enzymes on the outer surface of the polymer, an ultrafine particle-shaped carrier on which magnetically inducible enzymes and the like are immobilized (“ Ultrafine particle creation science and technology "Hayashi Taku et al., Published by Mita Publishing Co., pp. 231-235). Here, as a result of carrying out the reaction in a small bioreactor using a magnetic ultrafine particle carrier on which glucose oxidase was immobilized as a model enzyme, the reaction rate per unit volume was high, and the ultrafine particle carrier was easily magnetically concentrated. , Has been shown to be recoverable.

【0004】更に、磁性粒子を分散させた高分子の微粒
子として DYNABEADS(登録商標)が日本ダイナル(株)
より輸入販売されている。この製品は、抗体その他の蛋
白質や核酸などの磁気的分離を目的として酸化第二鉄
(フェライト、Fe2O3)をポリスチレンビーズに分散さ
せた微粒子(直径2.8 及び4.5 μm )であり、この表面
に抗体をコートしたり、ある種の蛋白質又はヌクレオチ
ドなどを結合したビーズは磁石を併用することにより細
胞の分離や精製を簡便な操作で速やかに行うことができ
る。
Further, DYNABEADS (registered trademark) is a fine particle of a polymer in which magnetic particles are dispersed, which is manufactured by Nippon Dynal Co., Ltd.
More imported and sold. This product is fine particles (diameter 2.8 and 4.5 μm) in which ferric oxide (ferrite, Fe 2 O 3 ) is dispersed in polystyrene beads for the purpose of magnetic separation of antibodies and other proteins and nucleic acids. For the beads coated with an antibody or bound to a certain protein or nucleotide, a magnet can be used in combination to rapidly separate cells and purify them by a simple operation.

【0005】しかし、上述した生体物質固定化磁性微粒
子のうち、担体として磁性微粒子と高分子の複合体を用
いるものは、撃ち込み用の微粒子としては密度が低く、
衝突の衝撃力が弱いため不適当である。また、粒径が標
的の細胞の大きさに比べて充分小さくない。従って、細
胞壁を有する植物細胞内への導入は不可能であり、事実
その前例はない。また、ガラスの細管を用いるマイクロ
インジェクション法では原理的に可能かもしれないが、
1回で多数の細胞に導入することは困難である。
However, among the above-mentioned biological substance-immobilized magnetic fine particles, those using a composite of magnetic fine particles and a polymer as a carrier have a low density as fine particles for shooting,
Improper because the impact force of the collision is weak. Also, the particle size is not sufficiently small compared to the size of the target cells. Therefore, it cannot be introduced into a plant cell having a cell wall, and in fact, there is no precedent. In addition, although it may be possible in principle with the microinjection method using a glass thin tube,
It is difficult to introduce into many cells at one time.

【0006】また、J.C. Sanfordらによる米国特許第5,
100,792 号明細書には遺伝子を微粒子担体に付着させ、
高速で細胞内に導入し、その機能を発現させる方法(パ
ーティクルガン法)が記載されており、ここでは微粒子
の持つ衝突エネルギーを大きくするために、主に金やタ
ングステンを用いている。この米国特許第5,100,792号
明細書において、実施例で具体的に用いているのは直径
4μm のタングステン微粒子であり、発明の詳細な説明
中には、微粒子の粒径について約10nmないし数μm と記
載され、高密度(約10〜20g/cm3 )のフェライトクリ
スタル、金、タングステン、その他の金属粒子、低密度
(1〜2g/cm3 )のガラス、ポリスチレン、ラテック
スビーズが記載されている。
Also, US Pat.
No. 100,792 describes attaching a gene to a fine particle carrier,
A method of introducing it into cells at high speed and expressing its function (particle gun method) is described. Here, gold or tungsten is mainly used to increase the collision energy of the fine particles. In this U.S. Pat. No. 5,100,792, specifically used in the examples are tungsten fine particles having a diameter of 4 .mu.m, and in the detailed description of the invention, the particle size of the fine particles is about 10 nm to several .mu.m. And high density (about 10 to 20 g / cm 3 ) ferrite crystals, gold, tungsten and other metal particles, low density (1 to 2 g / cm 3 ) glass, polystyrene and latex beads.

【0007】[0007]

【発明が解決しようとする課題】本発明は、物理的な性
質の磁性を有する微粒子を用いて遺伝子などの生体物質
の細胞内への導入とその機能発現を行わせることを目的
とする。また、本発明は、細胞内に導入された磁性微粒
子が磁気的に誘導可能である点を利用し、例えば遺伝子
が発現したり生理機能が発現した細胞や細胞塊、器官だ
けを選択的、特異的に濃縮、分離することを目的とす
る。
SUMMARY OF THE INVENTION It is an object of the present invention to introduce a biological substance such as a gene into a cell and to express its function by using a magnetic fine particle having a physical property. Further, the present invention utilizes the fact that magnetic fine particles introduced into cells can be magnetically induced, and for example, only cells or cell clusters or organs in which a gene is expressed or physiological functions are expressed are selective and specific. The purpose is to physically concentrate and separate.

【0008】従来の磁性粒子や磁性粒子を含むプラスチ
ックビーズ (複合された磁性ミクロスフェアー) の応用
例などの場合は全て細胞外に磁性粒子があり、特に植物
などのように硬い細胞壁を有する細胞の内側に磁性微粒
子を入れることは現在まで不可能であり、本発明まで世
界的に実証されていなかった。
In the case of conventional application examples of magnetic particles or plastic beads containing magnetic particles (composite magnetic microspheres), there are all magnetic particles outside the cell, and especially in cells having a hard cell wall such as plants. It has not been possible to put magnetic particles inside, and the present invention has not been demonstrated worldwide.

【0009】[0009]

【課題を解決するための手段】本願第一の発明は、生体
物質を固定化した磁性微粒子を細胞内に高速で撃ち込む
ことを特徴とする生体物質の細胞内への導入方法であ
り、本願第二の発明は、該導入方法により磁性微粒子が
導入された細胞を磁気により選択的に濃縮又は分離する
ことを特徴とする細胞の選択的濃縮・分離法である。
The first invention of the present application is a method for introducing a biological substance into a cell, wherein the magnetic fine particles having the biological substance immobilized thereon are shot into the cell at a high speed. The second invention is a selective concentration / separation method of cells, which is characterized by selectively concentrating or separating magnetically the cells into which magnetic particles have been introduced by the introduction method.

【0010】本発明に用いる磁性微粒子における磁気的
性質としては、磁性体なら如何なるものでもよく、例え
ば強磁性、常磁性、超常磁性物質が用いられる。該磁性
微粒子の材質としては、例えば金属、金属酸化物、非金
属−金属複合体、セラミック複合体、上記物質との天
然、合成有機化合物を含む有機磁性体、及びその複合
体、蛍光性物質、光応答性物質、光磁気的機能性物質、
電子伝達物質及び電気化学的機能性物質、量子力学的機
能性物質、半導体物質が挙げられるが、磁気的な誘導分
離や濃縮を行う際にその微粒子を含む細胞等の磁気によ
る移動速度が大きいことから、特に強磁性化合物、例え
ばマグネタイト、その他鉄、コバルト、ニッケル等の強
磁性元素の化合物微粒子、またクロム、マンガン、アル
ミニウム、イットリウム、テルル、タングステン、チタ
ン等を含む磁性体微粒子が好ましい。かかる強磁性化合
物のうち、マグネタイトは生体に対して毒性を示さず、
かつ安定である点において特に好ましいものである。
Any magnetic substance may be used as the magnetic property of the magnetic fine particles used in the present invention. For example, a ferromagnetic substance, a paramagnetic substance or a superparamagnetic substance is used. Examples of the material of the magnetic fine particles include metals, metal oxides, non-metal-metal composites, ceramic composites, organic magnetic materials containing natural and synthetic organic compounds with the above substances, and composites thereof, fluorescent substances, Photo-responsive substance, magneto-optical functional substance,
Examples include electron mediators, electrochemically functional substances, quantum mechanically functional substances, and semiconductor substances, but when magnetically inducing separation or concentration, the magnetic transfer speed of cells containing fine particles is high. Therefore, a ferromagnetic compound, for example, magnetite, other compound fine particles of a ferromagnetic element such as iron, cobalt and nickel, and magnetic fine particles containing chromium, manganese, aluminum, yttrium, tellurium, tungsten, titanium and the like are preferable. Among such ferromagnetic compounds, magnetite does not show toxicity to living organisms,
It is particularly preferable in that it is stable.

【0011】該磁性微粒子の粒径としては、最大粒径が
対象細胞の1/5 位から超微粒子のサイズまで可能であ
り、平均粒径5nm〜100nm の超微粒子又はその凝集粒子
を用いることができ、好ましくは平均粒径10nm〜数μm
の磁性微粒子が用いられる。該磁性微粒子の密度は、通
常1〜21g/cm3 、好ましくは3〜8g/cm3 である。
従って、マグネタイト(密度:約5g/cm3 )、ヘマタ
イト(密度:約5g/cm3 )、コバルト鉄酸化物(密
度:約3g/cm3 )、バリウムフェライト(密度:約5
g/cm3 )、その他密度が8g/cm3 程度の炭素鋼、タ
ングステン鋼、KS鋼や、密度が4〜5g/cm3 程度の
酸化鉄と亜鉛、マグネシウム、マンガン又はニッケルと
の鉄化合物(Ferroxcube)材料の微粒子や希土類コバルト
磁石(密度:約8g/cm3 )の微粒子を用いることが好
ましい。
With respect to the particle size of the magnetic particles, the maximum particle size can be from 1/5 of the target cell to the size of the ultrafine particles, and it is preferable to use ultrafine particles having an average particle size of 5 nm to 100 nm or aggregated particles thereof. Yes, preferably with an average particle size of 10 nm to several μm
Magnetic fine particles are used. The density of the magnetic fine particles is usually 1 to 21 g / cm 3 , preferably 3 to 8 g / cm 3 .
Therefore, magnetite (density: about 5 g / cm 3 ), hematite (density: about 5 g / cm 3 ), cobalt iron oxide (density: about 3 g / cm 3 ), barium ferrite (density: about 5
g / cm 3 ), carbon steel, tungsten steel, KS steel having a density of about 8 g / cm 3 , and iron compounds of iron oxide and zinc, magnesium, manganese, or nickel having a density of about 4 to 5 g / cm 3 ( It is preferable to use fine particles of a Ferrox cube material or fine particles of a rare earth cobalt magnet (density: about 8 g / cm 3 ).

【0012】該磁性微粒子の形態は、細胞壁や細胞膜に
貫入、突破しやすくするため、非球形で角のあるものが
好ましく、また同一断面積で比べると球状の微粒子より
も慣性モーメントが大きく細胞壁や細胞膜に貫入、突破
しやすいため、針状で断面が棒状のものが好ましい。本
発明において、上記磁性微粒子に固定化させる生体物質
とは、動物、植物、原生動物、微生物等の生理活性物
質、細胞内器官、生物微粒子等をいい、例えば遺伝子、
酵素、抗体、蛋白質、フェロモン、アロモン、ミトコン
ドリア、ウィルス等が挙げられる。
The shape of the magnetic fine particles is preferably non-spherical and has an angle in order to easily penetrate and break through the cell wall or cell membrane, and when compared with the same cross-sectional area, the moment of inertia is larger than that of spherical fine particles, and the cell wall or Needle-shaped and rod-shaped cross-sections are preferred because they easily penetrate and break through the cell membrane. In the present invention, the biological substance to be immobilized on the magnetic fine particles refers to animals, plants, protozoa, physiologically active substances such as microorganisms, intracellular organs, biological fine particles, etc., for example, genes,
Enzymes, antibodies, proteins, pheromones, allomones, mitochondria, viruses and the like can be mentioned.

【0013】本発明において、固定化とは、生体物質を
磁性微粒子に、主に物理的吸着やその他生物化学的親和
力等によりその粒子に保持することをいう。上記生体物
質の上記磁性微粒子への固定化は、例えば、該磁性微粒
子の溶液と生体物質の緩衝溶液とを混合し、弾丸の先端
に載せて風乾することにより行うことができる。
In the present invention, the term "immobilization" means to hold a biological substance on magnetic fine particles, mainly by physical adsorption or other biochemical affinity. Immobilization of the biological substance on the magnetic fine particles can be performed, for example, by mixing a solution of the magnetic fine particles and a buffer solution of the biological substance, placing the mixture on the tip of a bullet, and air-drying.

【0014】本発明において対象となる細胞としては、
動物細胞 (ヒト細胞を含む) 、植物細胞、その他の生物
細胞、器官、組織等が挙げられる。本発明において、
「高速で撃ち込む」とは、微粒子の初速が毎秒50〜400m
程度であることをいい、例えば、米国特許第5,100,792
号明細書、特願平4-25626 号明細書等に記載のパーティ
クルガン法により行うことができる。
The target cells in the present invention are:
Examples include animal cells (including human cells), plant cells, other biological cells, organs, tissues and the like. In the present invention,
"Shoot at high speed" means that the initial velocity of particles is 50 to 400 m / s.
Is about, for example, U.S. Patent No. 5,100,792
It can be carried out by the particle gun method described in Japanese Patent No. 4-25626 and Japanese Patent Application No. 4-25626.

【0015】上述のようにして磁性微粒子が導入された
細胞は磁気により選択的に濃縮又は分離することができ
る。この濃縮又は分離は、例えば、次のようにして行う
ことができる。例えば、細胞を分散させた溶液を試験管
等の透明容器に移し、その側壁に磁石を密着させて、細
胞を濃縮する。その後、他の溶液部分をピペット等で除
くことにより磁性微粒子が入っている細胞のみが分離さ
れる。必要に応じて、この操作を数回繰り返す。
The cells introduced with the magnetic fine particles as described above can be selectively concentrated or separated by magnetism. This concentration or separation can be performed as follows, for example. For example, the solution in which the cells are dispersed is transferred to a transparent container such as a test tube, and a magnet is brought into close contact with the side wall of the transparent container to concentrate the cells. After that, the other solution portion is removed with a pipette or the like to separate only the cells containing the magnetic fine particles. If necessary, repeat this operation several times.

【0016】本発明は、遺伝子導入、組換え、組換え体
の育成の効率化;生理効果 (植物、動物) のある物質の
導入と磁気誘導、選択分離;抗癌剤等の薬剤;遺伝子組
換え細胞を用いるバイオリアクター (分析用−工業生産
用) ;磁気的遺伝子組換えのセンシング;細胞内の情報
を磁気的手段とその他のあらゆる化学的、生化学的、物
理的性質、方法を媒介として組み合わせた方法により外
部から認識する手法等に応用することができる。
The present invention is to improve the efficiency of gene introduction, recombination, and breeding of recombinants; introduction and magnetic induction of substances having physiological effects (plants, animals), selective separation; drugs such as anticancer agents; genetically modified cells. Bioreactor (for analysis-industrial production); Magnetic recombination sensing; Intracellular information combined with magnetic means and all other chemical, biochemical, physical properties, methods It can be applied to a method of recognizing from the outside depending on the method.

【0017】[0017]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明の範囲は以下の実施例に限定されるも
のではない。 (実施例1) マグネタイトによる遺伝子の導入、発現 磁性微粒子としてマグネタイト (平均粒径 0.3μm 、密
度 5.2g/cm3 ) ( 図1参照) を用い、パーティクルガ
ン法により微粒子発射装置(特願平4-25626 号明細書記
載の装置を使用)を用いて遺伝子の導入とその発現を行
った。
The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to the following examples. (Example 1) Gene introduction and expression by magnetite Magnetite (average particle size 0.3 μm, density 5.2 g / cm 3 ) (see FIG. 1) was used as the magnetic particles, and a particle gun method was used to discharge particles (Japanese Patent Application No. -25626 was used) to introduce and express the gene.

【0018】遺伝子にはプラスミドDNA, pBI22
1 (米国、クローンテック社製) を用いた。このプラス
ミドはβ−グルクロニダーゼ (GUS)遺伝子を有し、
これはカリフラワーモザイクウィルス (CaMV) 35
Sプロモーター(pCaMV35S)とノパリン合成酵
素遺伝子(NOS)ターミネーター (pAnos)との間に接
続されている。
For the gene, plasmid DNA, pBI22
1 (manufactured by Clonetech, USA) was used. This plasmid carries the β-glucuronidase (GUS) gene,
This is the Cauliflower Mosaic Virus (CaMV) 35
It is connected between the S promoter (pCaMV35S) and the nopaline synthase gene (NOS) terminator (pAnos).

【0019】プラスミドDNAのマグネタイト微粒子へ
のコーティングとプラスチック弾丸への付着操作は以下
のように行った。50mgのマグネタイト微粒子を 100%エ
タノール1mlに懸濁させてある溶液を作り、この溶液と
プラスミドDNAのTE緩衝溶液(DNA濃度 200〜50
0ng /μl の間)と適量混ぜ、軽く超音波を照射して暫
時静置した後、混合溶液を1〜2μl プラスチック弾丸
の先端に載せて風乾した。
The operation of coating the plasmid DNA on the magnetite fine particles and attaching it to the plastic bullet was carried out as follows. Prepare a solution of 50 mg of magnetite particles suspended in 1 ml of 100% ethanol, and use this solution and a TE buffer solution of plasmid DNA (DNA concentration of 200-50
(Between 0 ng / μl) and an appropriate amount of ultrasonic waves, the mixture was lightly irradiated with ultrasonic waves and left to stand for a while, and then the mixed solution was placed on the tip of a 1-2 μl plastic bullet and air dried.

【0020】遺伝子の導入処理は微粒子発射装置によ
り、タバコ懸濁培養細胞BY−2(北海道大学農学部よ
り入手)の移植4日目のものを無菌下で漉紙上に集め
て、それを装置内の試料台に載せ次の発射条件下で風乾
した弾丸を用いて行った。発射条件は試料までの距離を
10cmとし、試料を格納する容器内の真空度を 100mmHgに
調節し、ポリアセタール弾丸の加速に用いる窒素ガスの
供給圧力は約28kg/cm2 とした(初速毎秒 200〜250m程
度)。また、この際、対照実験として遺伝子がマグネタ
イト微粒子へ付着してないものもタバコ培養細胞と同じ
発射条件で撃ち込んだ。
The gene introduction treatment was carried out by aseptic collection of the tobacco suspension culture cells BY-2 (obtained from the Faculty of Agriculture, Hokkaido University) on the 4th day on a filter paper by means of a fine particle ejector. It was carried out using a bullet placed on a sample table and air-dried under the following firing conditions. The firing condition is the distance to the sample
The pressure was adjusted to 10 cm, the degree of vacuum in the container for storing the sample was adjusted to 100 mmHg, and the supply pressure of nitrogen gas used to accelerate the polyacetal bullet was set to about 28 kg / cm 2 (initial speed is about 200 to 250 m / sec). At this time, as a control experiment, those in which the gene was not attached to the magnetite microparticles were also shot under the same firing conditions as the tobacco cultured cells.

【0021】遺伝子がタバコ培養細胞に導入され、その
機能が発現していることを評価するため人工基質の5−
ブロモ−4−クロロ−3−インドリル−グルクロニド(X
-Gluc)を用いたアッセイを行った。マグネタイト微粒子
を撃ち込んだ後、25℃で24時間インキュベートしたタバ
コ培養細胞をX-Glucのリン酸緩衝液に漉紙ごと浸して37
℃で24時間インキュベートした。この結果、漉紙のうえ
に青いスポットが約10箇所程観察された。
In order to evaluate that the gene is introduced into cultured tobacco cells and its function is expressed, the artificial substrate 5-
Bromo-4-chloro-3-indolyl-glucuronide (X
-Gluc) was performed. After bombarding magnetite microparticles, the cultured tobacco cells incubated at 25 ° C for 24 hours were immersed in X-Gluc's phosphate buffer solution together with the filter paper.
Incubated at 24 ° C for 24 hours. As a result, about 10 blue spots were observed on the filter paper.

【0022】このスポットの実体顕微鏡写真を図2に示
す。約 100以上の青いタバコ細胞(細胞塊)が確認され
た。これは、遺伝子が導入された結果、その働きにより
タバコ細胞中に酵素のβ−グルクロニダーゼが形成さ
れ、人工基質のX-Glucを酵素分解し、青色の色素のイン
ジゴチンが生成したためである。このタバコ細胞を少量
取り生物顕微鏡で観察した一例を図3に示す。遺伝子が
発現した細胞の色は発現していない細胞と比較して明ら
かに色が青く変化しているのが確認された。また、詳細
に観察すると、細胞内の核小体、核領域そして細胞質が
青色であることが観察された。この実験では全部で約10
00細胞以上に遺伝子の導入、発現が確認され、マグネタ
イトにより初めて生体物質の遺伝子の導入、発現に成功
した。
A stereoscopic micrograph of this spot is shown in FIG. About 100 or more blue tobacco cells (cell mass) were confirmed. This is because, as a result of the introduction of the gene, the action thereof forms the enzyme β-glucuronidase in tobacco cells, enzymatically decomposes the artificial substrate X-Gluc, and produces the blue pigment indigotin. An example of a small amount of this tobacco cell observed with a biological microscope is shown in FIG. It was confirmed that the color of the cells in which the gene was expressed was clearly changed to blue as compared to the cells in which the gene was not expressed. Further, upon detailed observation, it was observed that the intracellular nucleolus, nuclear region and cytoplasm were blue. In this experiment, about 10
The introduction and expression of the gene was confirmed in more than 00 cells, and the introduction and expression of the gene of the biological material was succeeded for the first time by magnetite.

【0023】(実施例2) 遺伝子を付着させたマグネ
タイト微粒子の導入処理をした細胞の選択的濃縮、分離 上記の、プラスミドpBI221をコートしたマグネタ
イト微粒子を撃ち込み遺伝子の導入処理を行いインキュ
ベートしたタバコ培養細胞を適量取り、リン酸緩衝液に
懸濁し、ガラス製小型試料容器に移してこの細胞の磁気
誘導の実験を行った。容器を振り、タバコ細胞を一様に
分散させた(図4)。その後、磁石 (文房具用磁石付紙
クリップ) を容器右上部に密着させた2分後の写真を図
5に示す。図5から明らかなように容器内の大部分のタ
バコ細胞が容器の右側面上部に濃集しており、磁性を有
するマグネタイト微粒子を含む細胞だけが磁気により選
択的に分離、濃縮された。また、対照実験として単にマ
グネタイト微粒子とタバコ培養細胞を混合させた場合に
ついて同じ条件で実験を行ってみた。この場合、まずマ
グネタイト微粒子だけが速やかに磁石の近くに集まり、
粗大粒子を形成した。最初に一部のタバコ細胞が粒子の
動きに影響されて移動するのが認められたが、磁石によ
る濃縮操作を3回ほど行うと磁性のマグネタイト微粒子
だけが移動、凝集してタバコ細胞は全く磁気に感応して
動かなくなった。
Example 2 Selective Concentration and Separation of Cells Introduced with Gene-Adhered Magnetite Microparticles and Separated and Incubated with Introduced Genes by Injecting Magnetite Microparticles Coated with Plasmid pBI221 Was taken in an appropriate amount, suspended in phosphate buffer, transferred to a small glass sample container, and an experiment of magnetic induction of the cells was performed. The container was shaken to evenly disperse the tobacco cells (Fig. 4). Then, a magnet (paper clip with a magnet for stationery) was brought into close contact with the upper right part of the container, and a photograph after 2 minutes is shown in FIG. As is clear from FIG. 5, most of the tobacco cells in the container were concentrated on the upper right side of the container, and only cells containing magnetite fine particles having magnetism were selectively separated and concentrated by magnetism. As a control experiment, the experiment was conducted under the same conditions when magnetite fine particles and tobacco cultured cells were simply mixed. In this case, first, only the magnetite particles quickly gather near the magnet,
Coarse particles were formed. At first, it was observed that some tobacco cells moved by being affected by the movement of particles, but when the concentration operation with a magnet was carried out about 3 times, only magnetic magnetite fine particles moved and aggregated, and the tobacco cells were completely magnetic. I stopped responding to.

【0024】このように、細胞内にマグネタイトを有す
るタバコ細胞だけを選択的に磁気により濃縮、分離でき
ることが確認された。 (実施例3) タバコ培養細胞形質転換体の育成 前記実施例と同様の条件下で、プラスミドDNAだけを
pBI121としてマグネタイト微粒子にコートして同
様にタバコ培養細胞に導入した。今回実験に用いたプラ
スミドDNAは植物の染色体内への組換えを起こさせ
る。
Thus, it was confirmed that only tobacco cells having magnetite in their cells could be selectively concentrated and separated by magnetism. (Example 3) Growth of Tobacco Cultured Cell Transformant Under the same conditions as in the above Example, only plasmid DNA was coated as pBI121 on magnetite fine particles and similarly introduced into tobacco cultured cells. The plasmid DNA used in this experiment causes recombination into the plant chromosome.

【0025】バイナリーベクターpBI121を図6に
示す。プラスミドDNA、pBI121にはレポーター
遺伝子として、発現部位を染色により観察できるβ−グ
ルクロニダーゼ (GUS)遺伝子をもつ。この遺伝子は
植物での発現を可能にするため植物で働くプロモーター
(promoter, P)とターミネーター (ポリアデニル化部
位、poly-adenylation, pA) に囲まれている。NPTII
は、ノパリン合成酵素遺伝子のプロモーター (Pnos) と
同遺伝子のターミネーター (pAnos)に、GUSはカリフ
ラワーモザイクウイルス (CaMV) の35Sプロモー
ター (pCaMV 35S)とpAnos に囲まれている。また、マー
カー遺伝子としてカナマイシン耐性遺伝子を持ってい
る。
The binary vector pBI121 is shown in FIG. The plasmid DNA, pBI121, has a β-glucuronidase (GUS) gene as a reporter gene whose expression site can be observed by staining. This gene is a promoter that works in plants to allow expression in plants
It is surrounded by (promoter, P) and terminator (poly-adenylation site, pA). NPTII
Is surrounded by the nopaline synthase gene promoter (Pnos) and the same gene terminator (pAnos), and GUS is surrounded by the cauliflower mosaic virus (CaMV) 35S promoter (pCaMV 35S) and pAnos. It also has a kanamycin resistance gene as a marker gene.

【0026】マグネタイトを撃ち込んだ細胞を上記の実
施例のように磁気で選択的に分離回収するスクリーニン
グを行い、その後ジェネティシン等の抗生物質を含む培
地で薬剤耐性細胞のスクリーニングを行った。この際、
磁気的スクリーニングを行った実験と行わなかった実験
の両者を行ってスクリーニング効率を比較した。この結
果、磁気的なスクリーニングを行わない実験例と比較し
て、例えば少なくとも約10〜20倍位耐性カルスの選抜効
率が高いことが見積もられた。なお、PCR法により導
入遺伝子の確認を行ったところ、導入遺伝子の存在が認
められた。また、サザンハイブリダイゼーション分析を
行った結果も導入遺伝子特有のバンドが確認され、これ
らの細胞は形質転換体であると考えられた。
The cells bombarded with magnetite were screened by magnetically selectively separating and collecting the cells as in the above-mentioned examples, and then the drug-resistant cells were screened in a medium containing an antibiotic such as geneticin. On this occasion,
Both screening with and without magnetic screening were performed to compare screening efficiency. As a result, it was estimated that, for example, the selection efficiency of resistant callus at least about 10 to 20 times higher was higher than that of the experimental example in which magnetic screening was not performed. When the transgene was confirmed by the PCR method, the presence of the transgene was confirmed. In addition, the results of Southern hybridization analysis also confirmed bands specific to the transgene, and these cells were considered to be transformants.

【0027】以上のように、新しい磁気的スクリーニン
グ法は、形質転換体を育成する時に時間と手間がかかる
薬剤耐性細胞のスクリーニングのプロセスが大幅に効率
的に行えることが示された。
As described above, it was shown that the new magnetic screening method can significantly efficiently perform the process of screening drug-resistant cells, which requires time and labor when growing transformants.

【0028】[0028]

【発明の効果】本発明によれば、磁性を有する微粒子を
用いて遺伝子等の生体物質の細胞内への導入とその機能
発現が可能となり、また遺伝子が発現したり生理機能が
発現した細胞や細胞塊、器官だけを選択的、特異的に濃
縮、分離することことができる。
INDUSTRIAL APPLICABILITY According to the present invention, it becomes possible to introduce a biological substance such as a gene into a cell and to express its function by using magnetic fine particles, and to express a gene or a cell having a physiological function. Only cell clusters and organs can be selectively and specifically concentrated and separated.

【図面の簡単な説明】[Brief description of drawings]

【図1】マグネタイト微粒子の粒子構造を示す写真であ
る。
FIG. 1 is a photograph showing the particle structure of magnetite fine particles.

【図2】タバコ細胞(細胞塊)についての生物の形態を
示す写真である。
FIG. 2 is a photograph showing the morphology of organisms for tobacco cells (cell mass).

【図3】図2に示すタバコ細胞を少量取り生物顕微鏡で
観察した場合の生物の形態を示す写真である。
FIG. 3 is a photograph showing the morphology of an organism when a small amount of the tobacco cells shown in FIG. 2 is taken and observed under a biological microscope.

【図4】タバコ細胞を一様に分散させた状態を表す生物
の形態を示す写真である。
FIG. 4 is a photograph showing the morphology of an organism showing a state in which tobacco cells are uniformly dispersed.

【図5】タバコ細胞を一様に分散させた後、磁石を容器
右上部に密着させた2分後における生物の形態を示す写
真である。
FIG. 5 is a photograph showing the morphology of organisms 2 minutes after the tobacco cells were uniformly dispersed and a magnet was brought into close contact with the upper right part of the container.

【図6】バイナリーベクターpBI121を示す図であ
る。
FIG. 6 shows the binary vector pBI121.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生体物質を固定化した磁性微粒子を細胞
内に高速で撃ち込むことを特徴とする生体物質の細胞内
への導入方法。
1. A method for introducing a biological substance into a cell, wherein magnetic fine particles having a biological substance immobilized thereon are shot into the cell at a high speed.
【請求項2】 請求項1記載の導入方法により磁性微粒
子が導入された細胞を磁気により選択的に濃縮又は分離
することを特徴とする細胞の選択的濃縮・分離法。
2. A method for selectively concentrating / separating cells by magnetically selectively concentrating or separating cells into which magnetic microparticles have been introduced by the method according to claim 1.
JP28629092A 1992-10-23 1992-10-23 Method for introducing biological substances into cells using magnetic particles and method for selectively enriching and separating cells using magnetism Expired - Fee Related JP2642025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28629092A JP2642025B2 (en) 1992-10-23 1992-10-23 Method for introducing biological substances into cells using magnetic particles and method for selectively enriching and separating cells using magnetism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28629092A JP2642025B2 (en) 1992-10-23 1992-10-23 Method for introducing biological substances into cells using magnetic particles and method for selectively enriching and separating cells using magnetism

Publications (2)

Publication Number Publication Date
JPH06133784A true JPH06133784A (en) 1994-05-17
JP2642025B2 JP2642025B2 (en) 1997-08-20

Family

ID=17702470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28629092A Expired - Fee Related JP2642025B2 (en) 1992-10-23 1992-10-23 Method for introducing biological substances into cells using magnetic particles and method for selectively enriching and separating cells using magnetism

Country Status (1)

Country Link
JP (1) JP2642025B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509019A (en) * 1999-09-08 2003-03-11 ゲノビス・アーベー Device for introducing pores into biological material
WO2004035776A1 (en) * 2002-10-16 2004-04-29 Universal Bio Research Co., Ltd. Apparatus for introducing biological material, method of introducing biological material and magnetic support for introducing biological material
EP2182053A1 (en) 2003-06-30 2010-05-05 Eisai R&D Management Co., Ltd. A combination comprising a magnet and a magnetic cell
JP2015178470A (en) * 2014-03-19 2015-10-08 株式会社Ihi magnetic particulate control system
WO2018169060A1 (en) * 2017-03-16 2018-09-20 富士フイルム株式会社 Method for separating megakaryocytes from platelets, and platelet separation kit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006006223A (en) 2004-06-25 2006-01-12 Canon Inc Apparatus for introducing and recovering fine particles into or from cells and method for introducing fine particles and for recovering cells or target biomolecules in the cells

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509019A (en) * 1999-09-08 2003-03-11 ゲノビス・アーベー Device for introducing pores into biological material
JP4718074B2 (en) * 1999-09-08 2011-07-06 ゲノビス・アーベー Device for introducing pores into biological materials
WO2004035776A1 (en) * 2002-10-16 2004-04-29 Universal Bio Research Co., Ltd. Apparatus for introducing biological material, method of introducing biological material and magnetic support for introducing biological material
US8580544B2 (en) 2002-10-16 2013-11-12 Universal Bio Research Co. Ltd. Apparatus for introducing biological material, method of introducing biological material and magnetic support for introducing biological material
US9453229B2 (en) 2002-10-16 2016-09-27 Universal Bio Research Co. Ltd. Apparatus for introducing biological material, method of introducing biological material and magnetic support for introducing biological material
EP2182053A1 (en) 2003-06-30 2010-05-05 Eisai R&D Management Co., Ltd. A combination comprising a magnet and a magnetic cell
US7971592B2 (en) 2003-06-30 2011-07-05 Eisai R&D Management Co., Ltd. Magnetic cell and method of using the same
EP2360240A1 (en) 2003-06-30 2011-08-24 Eisai R&D Management Co., Ltd. A method for forming a chondroid tissue
US8701676B2 (en) 2003-06-30 2014-04-22 Eisai R&D Management Co. Ltd. Magnetic cell and method of using the same
JP2015178470A (en) * 2014-03-19 2015-10-08 株式会社Ihi magnetic particulate control system
WO2018169060A1 (en) * 2017-03-16 2018-09-20 富士フイルム株式会社 Method for separating megakaryocytes from platelets, and platelet separation kit

Also Published As

Publication number Publication date
JP2642025B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
Sanford et al. Delivery of substances into cells and tissues using a particle bombardment process
US6084154A (en) Method for genetic transformation
US5036006A (en) Method for transporting substances into living cells and tissues and apparatus therefor
JP2606856B2 (en) Apparatus for injecting carrier particles carrying genetic material into living cells
EP0301749B1 (en) Particle-mediated transformation of soybean plants and lines
US7132289B2 (en) Method for introducing foreign matters into living cells
Klein et al. Factors influencing gene delivery into Zea mays cells by high–velocity microprojectiles
JP5355286B2 (en) Plant artificial chromosome, its use and method for producing plant artificial chromosome
Liu et al. Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle
US5141131A (en) Method and apparatus for the acceleration of a propellable matter
US6706394B2 (en) Method and apparatus for manufacture of magnetizable microparticles
CN109182368A (en) A kind of mediated by agriculture bacillus using aspergillus flavus mycelia as the genetic transforming method of receptor
Lei et al. Construction of gold-siRNA NPR1 nanoparticles for effective and quick silencing of NPR1 in Arabidopsis thaliana
JP2642025B2 (en) Method for introducing biological substances into cells using magnetic particles and method for selectively enriching and separating cells using magnetism
JP2922261B2 (en) Method and apparatus for inserting a substance into a biological cell
Mohamed et al. Magnetic nanoparticles: a unique gene delivery system in plant science
Potrykus Gene transfer methods for plants and cell cultures
Horikawa et al. Transformants through pollination of mature maize (Zea mays L.) pollen delivered bar gene by particle gun
JP2004201648A (en) Gene-screening method
STEINBiss et al. Methods and mechanisms of gene uptake in protoplasts.
Rajkumari Silver nanoparticles for biolitics based gene delivery in plants
Kirihara Selection of stable transformants from Black Mexican Sweet maize suspension cultures
JP2003325176A (en) Composite fine particle for organism substance introduction and method for producing the same
US20220041977A1 (en) Matrix-mediated cell culture system
JP3053609B2 (en) Genetic transformation of orchids

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090502

LAPS Cancellation because of no payment of annual fees