JPH06132124A - Current lead for superconducting device - Google Patents

Current lead for superconducting device

Info

Publication number
JPH06132124A
JPH06132124A JP4283330A JP28333092A JPH06132124A JP H06132124 A JPH06132124 A JP H06132124A JP 4283330 A JP4283330 A JP 4283330A JP 28333092 A JP28333092 A JP 28333092A JP H06132124 A JPH06132124 A JP H06132124A
Authority
JP
Japan
Prior art keywords
hollow tube
pressure
helium gas
low temperature
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4283330A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takita
清 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP4283330A priority Critical patent/JPH06132124A/en
Publication of JPH06132124A publication Critical patent/JPH06132124A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To make a hollow tube resist quench without enlarging a diameter and a plate thickness thereof by restraining gas pressure inside the hollow tube from rising which is caused by quench caused by an oxide superconductor passing through an inside of the hollow tube of a low temperature side lead of a current lead. CONSTITUTION:A bursting mechanism 7 is provided to a hollow tube of a low temperature side lead 5A. It operates to discharge helium gas 12 inside a hollow tube to the outside when a pressure of the helium gas 12 inside the hollow tube exceeds a specified value, and stops discharge when the pressure is the specified value or less; thereby, the pressure inside the hollow tube can be restrained from rising not to exceed the specified value. Furthermore, when the pressure stops rising, the mechanism returns to a normal state and the operation of a superconducting device can be continued. Since just mechanical strength which is high enough to resist the specified value is required for the hollow tube, it is possible to reduce a diameter and a plate thickness thereof and to reduce the penetration of heat transmitted through a current lead.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低温容器の内部に収
納されている超電導コイルと、低温容器の外部に設けら
れている励磁用の電源との間を接続して電力を供給する
超電導装置用電流リードに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting device for supplying electric power by connecting a superconducting coil housed inside a cryocontainer and an exciting power source provided outside the cryocontainer. For current lead.

【0002】[0002]

【従来の技術】超電導装置の超電導コイルは液体ヘリウ
ムガスなどの極低温冷媒により冷却されて超電導状態が
保持されるので、液体窒素を用いたふく射シールドや多
層断熱層を有する真空断熱容器内に収納した低温容器に
封入した液体ヘリウムに浸漬した状態で収納される。ま
た、超電導装置の外部に設けられる超電導コイル励磁用
の電源と超電導コイルとの間を電気的に接続する電流リ
ードは液体ヘリウムが気化した低温のヘリウムガスによ
り冷却され、常温側からの伝導熱及び電流リードで発生
するジュール熱(合わせて侵入熱と呼ぶ)が低温容器内
に侵入するのを阻止するよう構成される。
2. Description of the Related Art Since a superconducting coil of a superconducting device is cooled by a cryogenic refrigerant such as liquid helium gas to maintain a superconducting state, it is housed in a vacuum heat insulation container having a radiation shield using liquid nitrogen and a multilayer heat insulation layer. It is stored in a state in which it is immersed in liquid helium sealed in a cryogenic container. Further, the current lead electrically connecting between the superconducting coil excitation power supply provided outside the superconducting device and the superconducting coil is cooled by the low temperature helium gas in which liquid helium is vaporized, and the conduction heat from the normal temperature side and It is configured to prevent Joule heat (collectively referred to as penetration heat) generated in the current lead from entering the cryogenic container.

【0003】図3は従来の超電導装置を簡略化して示す
断面図である。この図において、超電導コイル10は真
空断熱容器2内の低温容器1内に液体ヘリウム11に浸
漬した状態で収納され、液体ヘリウム11の蒸発温度
(4.2K)に冷却されることにより超電導状態が保持
される。また、低温容器1と真空断熱容器2との間の空
間は高真空に保たれ、この高真空空間内には低温容器1
を包囲する形で図示しない液体窒素シールド、ふく射シ
ールド又は多層断熱層などが設けられ、外部からの侵入
熱を遮断することにより高価な液体ヘリウム11の消費
を低減している。
FIG. 3 is a simplified sectional view of a conventional superconducting device. In this figure, a superconducting coil 10 is stored in a low temperature container 1 inside a vacuum heat insulating container 2 in a state of being immersed in liquid helium 11 and cooled to the evaporation temperature (4.2 K) of liquid helium 11 so that the superconducting state is changed. Retained. The space between the cryogenic container 1 and the vacuum heat insulating container 2 is maintained in a high vacuum, and the cryogenic container 1 is placed in this high vacuum space.
A liquid nitrogen shield (not shown), a radiation shield, or a multilayer heat insulating layer (not shown) is provided in a manner surrounding the above, and the consumption of expensive liquid helium 11 is reduced by blocking the heat entering from the outside.

【0004】低温容器1に挿入された電流リード3は高
温側リード4と低温側リード5とが直列接続されてなっ
ている。液体ヘリウム11が気化して生成されたヘリウ
ムガス12は、電流リード3と超電導コイル10とを接
続する引き出しリード6が接続される低温端子50に設
けられた図示しない貫通孔を通って電流リード3の内部
に入りその中を上昇して常温端子40から排出される。
ヘリウムガス12が電流リード3の中を通る間に中を貫
通している導体を冷却する。
The current lead 3 inserted in the low temperature container 1 has a high temperature side lead 4 and a low temperature side lead 5 connected in series. The helium gas 12 generated by vaporization of the liquid helium 11 passes through the through hole (not shown) provided in the low temperature terminal 50 to which the extraction lead 6 connecting the current lead 3 and the superconducting coil 10 is connected, and the current lead 3 Enters the inside of the chamber, rises therein, and is discharged from the room temperature terminal 40.
While the helium gas 12 passes through the current leads 3, it cools the conductors that pass therethrough.

【0005】図4は図3のA−A断面図であり、高温側
リード4の断面図である。高温側リード4は中空管41
とその中を通る電気良導体42からなっていて、電気良
導体42の隙間をヘリウムガス12が通って電気良導体
42を冷却する構成になっており、電気良導体42は銅
又は銅合金製で表面積を増大させてヘリウムガス12に
よる冷却効果を向上するために細導体をより合わせたも
のが使用される。この図では1本の導体の断面積を実際
のものよりも太く描いてある。
FIG. 4 is a sectional view taken along line AA of FIG. 3, and is a sectional view of the high temperature side lead 4. The high temperature side lead 4 is a hollow tube 41.
And a good electric conductor 42 passing through it. The helium gas 12 passes through the gap between the good electric conductors 42 to cool the good electric conductors 42. The good electric conductors 42 are made of copper or copper alloy to increase the surface area. In order to improve the cooling effect of the helium gas 12, a combination of fine conductors is used. In this figure, the cross-sectional area of one conductor is drawn thicker than the actual one.

【0006】図5は図3のB−B断面図であり、低温側
リード5の断面図である。この図において、低温側リー
ド5は中空管51とその中を通る酸化物超電導体52か
らなっていて、この場合も酸化物超電導体52は中空管
51内を流れるヘリウムガス12によって冷却される。
酸化物超電導体52はイットリウム系、ビスマス系又は
タリウム系などの酸化物超電導体からなっている。酸化
物超電導体52は液体窒素の蒸発温度(約77K)でも
超電導状態を維持する高温超電導体であるので、この温
度よりも低いヘリウムガス12で冷却することによって
酸化物超電導体52は超電導状態が維持される。したが
って、低温側リード5では抵抗損が零になって低温端子
50への侵入熱が軽減され、その結果、液体ヘリウム1
1の消費量が低減されている。
FIG. 5 is a sectional view taken along line BB of FIG. 3, and is a sectional view of the low temperature side lead 5. In this figure, the low temperature side lead 5 comprises a hollow tube 51 and an oxide superconductor 52 passing through the hollow tube 51. In this case also, the oxide superconductor 52 is cooled by the helium gas 12 flowing in the hollow tube 51. It
The oxide superconductor 52 is made of an yttrium-based, bismuth-based or thallium-based oxide superconductor. Since the oxide superconductor 52 is a high-temperature superconductor that maintains the superconducting state even at the evaporation temperature of liquid nitrogen (about 77 K), the oxide superconductor 52 is kept in the superconducting state by cooling with the helium gas 12 lower than this temperature. Maintained. Therefore, the resistance loss in the low temperature side lead 5 becomes zero, and the heat entering the low temperature terminal 50 is reduced. As a result, the liquid helium 1
The consumption of 1 is reduced.

【0007】[0007]

【この発明が解決しようとする課題】酸化物超電導体5
2は周知のように、通電当初から安定した超電導状態が
得られることはまれであり、殆どの場合、始めて通電す
るときには局部的に超電導状態が壊れて常電導状態に移
行するいわゆるクエンチが発生し、このようなクエンチ
を幾度か繰り返すことによって通電可能の電流値が増大
していってついに所定の電流を安定して通電できるよう
になるのが普通である。また、安定した超電導状態が保
持されていても冷却系の故障などの予期しない要因によ
ってクエンチが発生することも考えられる。
[Problems to be Solved by the Invention] Oxide superconductor 5
As is well known, it is rare that a stable superconducting state is obtained from the beginning of energization, and in most cases, a so-called quench occurs in which the superconducting state is locally broken and the state changes to the normal conducting state when energizing for the first time. By repeating such quenching several times, the current value at which current can be supplied increases, and finally it becomes possible to stably supply a predetermined current. Further, even if the stable superconducting state is maintained, it is considered that the quench occurs due to an unexpected factor such as a failure of the cooling system.

【0008】酸化物超電導体52にクエンチが発生する
と、熱伝導率が小さいために酸化物超電導体52が局部
的に加熱して中空管51内のヘリウムガス12の温度が
急激に上昇しこれに伴ってガス圧も上昇するという現象
が生ずる。この圧力上昇を低減するために中空管51の
径を大きくしたり中空管51の板厚を大きくして機械的
強度を大きくする必要があるが、そのために侵入熱が増
大するという問題が生ずる。
When quenching occurs in the oxide superconductor 52, the oxide superconductor 52 is locally heated due to its small thermal conductivity, and the temperature of the helium gas 12 in the hollow tube 51 rapidly rises. As a result, the phenomenon that the gas pressure also rises occurs. In order to reduce this pressure increase, it is necessary to increase the diameter of the hollow tube 51 or increase the plate thickness of the hollow tube 51 to increase the mechanical strength. However, this causes a problem that intrusion heat increases. Occurs.

【0009】この発明の目的は、このような問題を解決
し、低温側リードの酸化物超電導体がクエンチを起こす
ことによって生ずる中空管内のガス圧の上昇を抑制し
て、中空管の径と板厚を大きくすることなしにクエンチ
に耐える超電導装置用電流リードを提供することにあ
る。
An object of the present invention is to solve such a problem and to suppress an increase in gas pressure in the hollow tube caused by quenching of the oxide superconductor of the low temperature side lead, thereby reducing the diameter of the hollow tube. An object of the present invention is to provide a current lead for a superconducting device that can withstand quenching without increasing the plate thickness.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、中空管とこの中を通る酸化物超
電導体からなり、この中空管内を流れる低温のヘリウム
ガスによって酸化物超電導体が冷却される低温側リード
と、中空管とこの中を通る電気良導体からなり、この中
空管内を流れるヘリウムガスによっこの電気良導体が冷
却される高温側リードとが直列接続されてなる超電導装
置用電流リードにおいて、前記低温側リードの中空管
に、この中空管内の圧力が所定値を越えたときに動作し
て中空管内のヘリウムガスを外部に放出し、所定値以下
になったときにヘリウムガスの放出を停止する放圧機構
を設けてなるものとし、また、放圧機構が、中空管に設
けた貫通孔を塞ぐフレーム、このフレームの中央部を仕
切る壁に設けた弁孔、この弁孔を塞ぐ弁、この弁を所定
の圧力で前記壁に押し付けるばね及び前記弁孔から排出
されるガスを外部に放出する放出孔からなるものとし、
また、放圧機構によるガスの放出先が低温容器内である
もの、又は、放出孔から放出されたガスを真空断熱容器
の外に導く放出管を設けてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a hollow tube and an oxide superconductor passing through the hollow tube are used, and an oxide is formed by a low temperature helium gas flowing in the hollow tube. The low temperature side lead for cooling the superconductor, the hollow tube and the good electric conductor passing through the hollow pipe, and the high temperature side lead for cooling the good electric conductor by the helium gas flowing in the hollow pipe are connected in series. In the current lead for the superconducting device, the hollow tube of the low temperature side lead is operated when the pressure in the hollow tube exceeds a predetermined value to release the helium gas in the hollow tube to the outside, which is below a predetermined value. Sometimes a pressure release mechanism is provided to stop the release of helium gas, and the pressure release mechanism is a frame that closes the through hole provided in the hollow tube, and a valve that is provided on the wall that partitions the center of this frame. Hole Valves for closing the valve hole, consisted of discharge holes for releasing gas discharged from the spring and the valve hole is pressed against the said wall of the valve at a predetermined pressure to the outside,
Further, it is assumed that the gas release destination of the gas by the pressure release mechanism is in the low temperature container, or the release pipe for guiding the gas released from the release hole to the outside of the vacuum heat insulating container is provided.

【0011】[0011]

【作用】この発明の構成において、低温側リードの中空
管に放圧機構を設け、中空管のヘリウムガスの圧力が所
定値を越えると動作して中空管内のヘリウムガスを外部
に放出して圧力上昇を抑制し、圧力が所定値以下になっ
たら放出を停止することによって正常状態に復帰して超
電導装置の運転を継続することができる。
In the structure of the present invention, a pressure releasing mechanism is provided in the hollow tube of the low temperature side lead and operates when the pressure of the helium gas in the hollow tube exceeds a predetermined value to release the helium gas in the hollow tube to the outside. Thus, the pressure rise is suppressed, and when the pressure becomes equal to or lower than a predetermined value, the discharge is stopped, so that the normal state is restored and the operation of the superconducting device can be continued.

【0012】また、中空管に貫通孔を設けてこの貫通孔
を放圧機構のフレームで塞ぎ、このフレームの中央部を
仕切る壁に弁孔を設け、この弁孔をばねで壁に押し付け
た弁で塞ぐ構成とすることによって、正常時には弁孔が
閉じていて中空管を流れるヘリウムガスが外部に漏れ出
すことはなく、中空管内の圧力がばねの弁を押す力以上
に上昇したら弁が弁孔から離れるので、弁孔を通り放出
孔からヘリウムガスが放出する。中空管内の圧力が低下
したらばねの力で弁が弁孔を閉じるので元の正常な状態
に戻る。
Further, a through hole is provided in the hollow tube, the through hole is closed by a frame of a pressure release mechanism, a valve hole is provided in a wall partitioning the central portion of the frame, and the valve hole is pressed against the wall by a spring. By closing the valve with a valve, the valve hole is normally closed so that the helium gas flowing in the hollow tube does not leak to the outside, and if the pressure inside the hollow tube rises above the force that pushes the valve of the spring, the valve will be closed. Since it separates from the valve hole, helium gas is discharged through the discharge hole through the valve hole. When the pressure in the hollow tube drops, the valve closes the valve hole with the force of the spring, and the valve returns to its normal state.

【0013】また、放圧機構によるガスの放出先を放圧
機構が設けられている低温容器内にしてもよいし、放出
孔から放出されたガスを導く放出管を設けて真空断熱容
器の外に放出してもよい。低温容器内に放出しても低温
容器自身が超電導コイルのクエンチの際の放圧機構を持
っているので支障はない。
The destination of the gas released by the pressure release mechanism may be inside the cryogenic container provided with the pressure release mechanism, or a release pipe for guiding the gas released from the release hole may be provided outside the vacuum heat insulating container. May be released to Even if released into the cryogenic container, there is no problem because the cryogenic container itself has a pressure release mechanism for quenching the superconducting coil.

【0014】[0014]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す超電導装置を簡略化して
示す断面図であり、図3と同じ部材については共通の符
号を付けて詳しい説明を省略する。この図の図3との違
いは、低温側リード5Aに放圧機構7を設けてある点で
ある。放圧機構7は後述するように、低温側リード5A
の内圧が上昇しあらかじめ設定してある一定値を越えた
ときに低温側リード5A内部のヘリウムガスを外部に放
出するものであり、また、ガス圧が低下するとガスの放
出が停止するようになっている。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a cross-sectional view showing a simplified superconducting device showing an embodiment of the present invention. The same members as those in FIG. 3 are designated by common reference numerals and their detailed description will be omitted. The difference from FIG. 3 in this figure is that the pressure release mechanism 7 is provided in the low temperature side lead 5A. The pressure release mechanism 7 is, as described later, a low temperature side lead 5A.
The helium gas inside the low temperature side lead 5A is released to the outside when the internal pressure of the battery rises and exceeds a preset constant value. Also, when the gas pressure drops, the gas release stops. ing.

【0015】図2は図1のC−C断面図であり放圧機構
7の詳細を示す断面図である。この図において、低温側
リード5Aの中空管51Aには貫通孔53を設けてあ
り、これにふたをするように放圧機構7を設けてある。
放圧機構7は中空管51Aに取付けた外枠としてのフレ
ーム70、このフレーム70内部を仕切る壁71に設け
た弁孔72、この弁孔72を塞ぐ弁73、この弁73を
壁71に押し付けるばね74及び弁孔72から排出され
たヘリウムガスを外部に放出する放出孔75からなって
いる。ばね74の力を調整することによって、弁73が
移動して弁孔72が開くガス圧を所定の値に設定するこ
とができる。
FIG. 2 is a sectional view taken along the line CC in FIG. 1, showing the details of the pressure release mechanism 7. In this figure, the hollow tube 51A of the low temperature side lead 5A is provided with a through hole 53, and the pressure release mechanism 7 is provided so as to cover the through hole 53.
The pressure release mechanism 7 includes a frame 70 as an outer frame attached to the hollow tube 51A, a valve hole 72 provided in a wall 71 partitioning the inside of the frame 70, a valve 73 for closing the valve hole 72, and a valve 73 for the wall 71. It comprises a pressing spring 74 and a discharge hole 75 for discharging the helium gas discharged from the valve hole 72 to the outside. By adjusting the force of the spring 74, the gas pressure at which the valve 73 moves and the valve hole 72 opens can be set to a predetermined value.

【0016】内圧が上昇して弁73が移動して弁孔72
が開きこれを介してヘリウムガスが外部に放出される状
態で、クエンチが解消されて再度酸化物超電導体52が
超電導状態を回復したとき、中空管51A内のガス圧も
また低下するが、前述の弁孔72が開いたときのガス圧
以下になると前述のようにこの弁孔72を弁73が塞い
で、クエンチ前の正常な状態に復帰するのでそのまま正
常運転を継続することができる。
The internal pressure rises, the valve 73 moves, and the valve hole 72
When the quench is eliminated and the oxide superconductor 52 is restored to the superconducting state again in a state in which the helium gas is released to the outside through the opening, the gas pressure in the hollow tube 51A also decreases, When the gas pressure at the time when the valve hole 72 is opened becomes equal to or lower than the gas pressure when the valve hole 72 is opened, the valve hole 72 is closed by the valve 73 as described above, and the normal state before the quench is restored, so that the normal operation can be continued as it is.

【0017】放出されたヘリウムガスは低温容器1の圧
力を上昇させることになるが、低温容器1の容積は大き
いので問題になるような圧力値になる可能性は少なく、
また、超電導コイル10のクエンチによる液体ヘリウム
11の急激な蒸発とこれに伴う圧力上昇が考慮されて図
示しない放圧装置が設けられているので実際上問題にな
ることはない。
The released helium gas raises the pressure of the cryocontainer 1, but since the volume of the cryocontainer 1 is large, it is unlikely that the pressure value will cause a problem.
Moreover, since a pressure release device (not shown) is provided in consideration of the rapid evaporation of the liquid helium 11 due to the quenching of the superconducting coil 10 and the accompanying pressure rise, there is no practical problem.

【0018】前述のように、圧力上昇したヘリウムガス
の放出先を低温容器1内としたが、放圧機構7の先端を
長くして真空断熱容器2の外部にまで放出ガスを導く管
を設け外気に直接放圧する構成を採用することも可能で
ある。なお、図2に示した放圧機構7は単なる一例であ
って、放圧機構としては種々の構成のものが市販され使
用されているので、これらの中から適当なもの選択すれ
ばよく、図2の構成によってこの発明の内容が限定され
るのもではない。
As described above, the release destination of the helium gas whose pressure is increased is in the cryogenic container 1. However, the tip of the pressure release mechanism 7 is lengthened to provide a pipe for guiding the released gas to the outside of the vacuum heat insulating container 2. It is also possible to adopt a configuration in which the pressure is released directly to the outside air. It should be noted that the pressure release mechanism 7 shown in FIG. 2 is merely an example, and various configurations of the pressure release mechanism are commercially available and used. Therefore, an appropriate one may be selected from these. The contents of the present invention are not limited by the configuration of 2.

【0019】[0019]

【発明の効果】この発明は前述のように、低温側リード
の中空管に放圧機構を設け、中空管のヘリウムガスの圧
力が所定値を越えると動作して中空管内のヘリウムガス
を外部に放出し、圧力が所定値以下になったら放出を停
止することによって、中空管内の圧力上昇を前述の所定
値以下に抑制することができるとともに、圧力上昇が停
止したら正常に復帰して超電導装置の運転を継続するこ
とができる。中空管の機械的強度は前述の所定値に耐え
るものでよいので中空管の径を小さくすることができる
とともにその板厚も小さくすることができるので、電流
リードを通る侵入熱を低減することができ,その結果、
高価な液体ヘリウムの消費を減らし運転コストを低減す
ることができるという効果が得られる。
As described above, the present invention is provided with a pressure release mechanism in the hollow tube of the low temperature side lead, and operates when the pressure of the helium gas in the hollow tube exceeds a predetermined value to remove the helium gas in the hollow tube. By releasing to the outside and stopping the release when the pressure falls below a predetermined value, the pressure rise inside the hollow tube can be suppressed below the above-mentioned predetermined value, and when the pressure rise stops, it returns to normal and the superconductivity increases. The operation of the device can be continued. Since the mechanical strength of the hollow tube can withstand the above-mentioned predetermined value, the diameter of the hollow tube can be made small and the plate thickness thereof can be made small, so that the heat entering through the current leads is reduced. And as a result,
The effect of reducing the consumption of expensive liquid helium and the operating cost can be obtained.

【0020】また、中空管に貫通孔を設けてこの貫通孔
を放圧機構のフレームで塞ぎ、このフレームの中央部を
仕切る壁に弁孔設け、これをばねで壁に押し付けた弁で
塞ぐことによって、正常時には弁孔が閉じていて中空管
を流れるヘリウムガスが外部に漏れ出すことはない。ば
ねの弁を押す力以上の中空管内の圧力が上昇した弁が弁
孔から離れて弁孔を通り放出孔からヘリウムガスが放出
する。中空管の内の圧力が低下したら弁が弁孔を閉じる
ので元の正常な状態に戻るという、必要とする機能を持
った放圧機構を構成することができるという効果が得ら
れる。
Further, a through hole is provided in the hollow tube, the through hole is closed by a frame of the pressure release mechanism, a valve hole is provided in a wall partitioning the central part of the frame, and this is closed by a valve pressed against the wall by a spring. As a result, the valve hole is normally closed and the helium gas flowing through the hollow tube does not leak outside. The valve in which the pressure in the hollow pipe has risen above the force pushing the valve of the spring separates from the valve hole, passes through the valve hole, and helium gas is discharged from the discharge hole. When the pressure in the hollow pipe is lowered, the valve closes the valve hole, so that the original normal state is restored, which is an effect that a pressure release mechanism having a required function can be configured.

【0021】また、超電導コイルを収納する低温容器に
はこの超電導コイルがクエンチを起こして内圧が上昇し
たときの放圧機構を備えているので電流リードの放圧機
構によるガスの放出先を低温容器内にしても支障はな
い。また、放出孔から放出されたガスを導く放出管を設
けて真空断熱容器の外に放出してもよい。
Further, since the cryogenic container accommodating the superconducting coil is equipped with a pressure releasing mechanism when the superconducting coil is quenched and the internal pressure rises, the gas release destination of the current lead is directed to the cryogenic container. There is no problem even if it is inside. Further, a gas discharge pipe for guiding the gas discharged from the discharge hole may be provided to discharge the gas outside the vacuum heat insulating container.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す超電導装置を簡略化し
て示す断面図
FIG. 1 is a sectional view showing a simplified superconducting device showing an embodiment of the present invention.

【図2】図1のC−C断面図FIG. 2 is a sectional view taken along line CC of FIG.

【図3】従来の超電導装置を簡略化して示す断面図FIG. 3 is a simplified cross-sectional view showing a conventional superconducting device.

【図4】図3のA−A断面図4 is a sectional view taken along line AA of FIG.

【図5】図3のB−B断面図5 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1 低温容器 10 超電導コイル 11 液体ヘリウム 12 ヘリウムガス 3 電流リード 4 高温側リード 5A 低温側リード 51A 中空管 52 酸化物超電導体 53 貫通孔 7 放圧機構 71 壁 72 弁孔 73 弁 74 ばね 75 放出孔 1 Low Temperature Container 10 Superconducting Coil 11 Liquid Helium 12 Helium Gas 3 Current Lead 4 High Temperature Side Lead 5A Low Temperature Side Lead 51A Hollow Tube 52 Oxide Superconductor 53 Through Hole 7 Pressure Release Mechanism 71 Wall 72 Valve Hole 73 Valve 74 Spring 75 75 Release Hole

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】中空管とこの中を通る酸化物超電導体から
なり、この中空管内を流れる低温のヘリウムガスによっ
て酸化物超電導体が冷却される低温側リードと、中空管
とこの中を通る電気良導体からなり、この中空管内を流
れるヘリウムガスによっこの電気良導体が冷却される高
温側リードとが直列接続されてなる超電導装置用電流リ
ードにおいて、前記低温側リードの中空管に、この中空
管内の圧力が所定値を越えたときに動作して中空管内の
ヘリウムガスを外部に放出し、所定値以下になったとき
にヘリウムガスの放出を停止する放圧機構を設けてなる
ことを特徴とする超電導装置用電流リード。
1. A low temperature side lead comprising a hollow tube and an oxide superconductor passing through the hollow tube, wherein the low temperature helium gas flowing in the hollow tube cools the oxide superconductor, and the hollow tube and the inside thereof. In a current conductor for a superconducting device, which is made of a good electric conductor that passes through, and is connected in series with a high temperature side lead in which the good electric conductor is cooled by helium gas flowing in the hollow tube, in the hollow tube of the low temperature side lead, A pressure release mechanism that operates when the pressure in the hollow tube exceeds a predetermined value to release the helium gas in the hollow tube to the outside and stops the release of the helium gas when the pressure falls below the predetermined value is provided. Characteristic current lead for superconducting device.
【請求項2】放圧機構が、中空管に設けた貫通孔を塞ぐ
フレーム、このフレームの中央部を仕切る壁に設けた弁
孔、この弁孔を塞ぐ弁、この弁を所定の圧力で前記壁に
押し付けるばね及び前記弁孔から排出されるガスを外部
に放出する放出孔からなることを特徴とする請求項1記
載の超電導装置用電流リード。
2. A pressure relief mechanism, a frame for closing a through hole provided in a hollow pipe, a valve hole provided in a wall for partitioning a central portion of the frame, a valve for closing the valve hole, and a predetermined pressure for the valve. The current lead for a superconducting device according to claim 1, comprising a spring that is pressed against the wall and a discharge hole that discharges gas discharged from the valve hole to the outside.
【請求項3】放圧機構によるガスの放出先が低温容器内
であることを特徴とする請求項1又は2記載の超電導装
置用電流リード。
3. The current lead for a superconducting device according to claim 1 or 2, wherein the gas is released by the pressure releasing mechanism into a cryogenic container.
【請求項4】放出孔から放出されたガスを真空断熱容器
の外に導く放出管を設けてなることを特徴とする請求項
1又は2記載の超電導装置用電流リード。
4. The current lead for a superconducting device according to claim 1, further comprising a discharge pipe for guiding the gas discharged from the discharge hole to the outside of the vacuum heat insulating container.
JP4283330A 1992-10-22 1992-10-22 Current lead for superconducting device Pending JPH06132124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4283330A JPH06132124A (en) 1992-10-22 1992-10-22 Current lead for superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4283330A JPH06132124A (en) 1992-10-22 1992-10-22 Current lead for superconducting device

Publications (1)

Publication Number Publication Date
JPH06132124A true JPH06132124A (en) 1994-05-13

Family

ID=17664083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4283330A Pending JPH06132124A (en) 1992-10-22 1992-10-22 Current lead for superconducting device

Country Status (1)

Country Link
JP (1) JPH06132124A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720031B1 (en) * 2005-12-14 2007-05-18 한국기초과학지원연구원 Current lead
GB2472589A (en) * 2009-08-11 2011-02-16 Siemens Magnet Technology Ltd Superconducting magnet cryogen quench path outlet assembly or method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100720031B1 (en) * 2005-12-14 2007-05-18 한국기초과학지원연구원 Current lead
GB2472589A (en) * 2009-08-11 2011-02-16 Siemens Magnet Technology Ltd Superconducting magnet cryogen quench path outlet assembly or method
GB2472589B (en) * 2009-08-11 2011-09-07 Siemens Magnet Technology Ltd Quench path for cryogen vessel for containing a superconducting magnet

Similar Documents

Publication Publication Date Title
JPS6276605A (en) Superconducting magnet device
US4692560A (en) Forced flow cooling-type superconducting coil apparatus
US7484372B2 (en) Multi-bath apparatus and method for cooling superconductors
US8650888B2 (en) Current lead quenching assembly
KR101046323B1 (en) Cryogenic cooling method and apparatus for high temperature superconductor devices
US4486800A (en) Thermal method for making a fast transition of a superconducting winding from the superconducting into the normal-conducting state, and apparatus for carrying out the method
US5598710A (en) Superconducting apparatus and method for operating said superconducting apparatus
JPH06132124A (en) Current lead for superconducting device
US5563369A (en) Current lead
JP3529437B2 (en) Superconducting magnet device
JP2952552B2 (en) Current leads for superconducting equipment
JP3034621B2 (en) Superconducting device and method for protecting superconducting coil
JP2004111581A (en) Superconducting magnet unit
JPS6233759B2 (en)
JP2000269022A (en) Superconducting magnet
JP2002208511A (en) Refrigerator cooling superconducting magnet unit
JPH06268266A (en) Superconducting device
JPH0927415A (en) Current lead for superconducting device
JP3316986B2 (en) Current leads for superconducting devices
JPH04332105A (en) Superconducting magnet device
JPH051048Y2 (en)
JPS632122B2 (en)
JP3339118B2 (en) Superconducting device current leads
JPS6161716B2 (en)
JPH0774018A (en) Current lead of superconducting apparatus