JPH0613182A - Manufacture of light emitting element - Google Patents

Manufacture of light emitting element

Info

Publication number
JPH0613182A
JPH0613182A JP4169272A JP16927292A JPH0613182A JP H0613182 A JPH0613182 A JP H0613182A JP 4169272 A JP4169272 A JP 4169272A JP 16927292 A JP16927292 A JP 16927292A JP H0613182 A JPH0613182 A JP H0613182A
Authority
JP
Japan
Prior art keywords
insulating layer
substrate
film
layer
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4169272A
Other languages
Japanese (ja)
Inventor
Akihiro Kitahata
顕弘 北畠
Saburo Tabata
三郎 田畑
Fujio Kajikawa
不二雄 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Shinku Kogyo KK
Original Assignee
Sanyo Shinku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Shinku Kogyo KK filed Critical Sanyo Shinku Kogyo KK
Priority to JP4169272A priority Critical patent/JPH0613182A/en
Publication of JPH0613182A publication Critical patent/JPH0613182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To simplify manufacturing processes, shorten manufacturing time, and provide a improved characteristic complex film by forming the first insulating layer, an emission layer and the second insulating layer continuously in the same chamber, and dispensing with cleaning of a substrate between these processes. CONSTITUTION:An emission element is composed of a back electrode formed by laminating the first insulating layer 212a, an emission layer 23, the second insulating layer 212b, an Al layer 24 of a reflecting surface and an Ni layer 25 on a substrate S in which a transparent electrode is formed. When it is manufactured, after the first insulating layer 212a composed of an SiO2 film 21a and an Si3N4 film 22a is formed on the substrate S by sputtering, the emission layer 23 composed of a ZnSiMn film is formed on it by EB evaporation. Afterward, the second insulating layer 212b composed of an Sift film 21b and an Si3N4 film 22b is formed on the emission layer 23 by the sputtering, and these first insulating layer 212a, emission layer 23 and second insulating layer 212b are formed continuously in the same vacuum chamber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発光素子を製造する方
法に関し、更に詳しくは、一つの装置でスパッタリング
とEB蒸着により複合膜を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a light emitting device, and more particularly to a method for manufacturing a composite film by sputtering and EB vapor deposition in one apparatus.

【0002】[0002]

【従来の技術】従来における発光素子の製造工程を説明
する。まず、洗浄したガラス基板上に透明導電膜を作成
する。次に、この基板を洗浄し、パターニングした後、
真空チャンバ内の排気、および、基板の加熱を行った
後、真空チャンバ内でスパッタリングにより絶縁層を形
成する。その後、真空チャンバ内を大気圧にして基板を
取り出した後、基板を洗浄し、その後、再びこの基板を
真空チャンバ内に導入し、チャンバ内の排気、基板の加
熱を行った後、EB蒸着により先に形成した絶縁層上に
発光層を形成する。その後、真空チャンバ内を大気圧に
して基板を取り出した後、基板を洗浄し、550〜60
0℃で10〜60分のアニールを行う。その後、再びこ
の基板を真空チャンバ内に導入し、チャンバ内の排気、
基板の加熱を行った後、スパッタリングによりこの発光
層上に再び絶縁層を形成する。その後、真空チャンバ内
を大気圧にして基板を取り出した後、基板を洗浄し、次
いでこの基板を真空チャンバ内に導入し、チャンバ内の
排気、基板の加熱を行った後、背面電極を蒸着あるいは
スパッタリングにより形成する。その後、真空チャンバ
内を大気圧にして基板を取り出した後、基板を洗浄し、
次に、パターニングを行うことにより、発光素子は完成
する。
2. Description of the Related Art A conventional process for manufacturing a light emitting device will be described. First, a transparent conductive film is formed on the washed glass substrate. Next, after cleaning and patterning this substrate,
After exhausting the vacuum chamber and heating the substrate, an insulating layer is formed by sputtering in the vacuum chamber. After that, the inside of the vacuum chamber is set to atmospheric pressure, the substrate is taken out, the substrate is washed, and then the substrate is again introduced into the vacuum chamber, the chamber is evacuated, the substrate is heated, and then EB evaporation is performed. A light emitting layer is formed over the insulating layer formed earlier. After that, the inside of the vacuum chamber is set to atmospheric pressure, the substrate is taken out, and then the substrate is washed.
Anneal at 10C for 10-60 minutes. After that, this substrate is again introduced into the vacuum chamber, and the chamber is evacuated.
After heating the substrate, an insulating layer is formed again on the light emitting layer by sputtering. After that, the inside of the vacuum chamber is brought to atmospheric pressure, the substrate is taken out, the substrate is washed, then this substrate is introduced into the vacuum chamber, the inside of the chamber is evacuated, and the substrate is heated. It is formed by sputtering. After that, the inside of the vacuum chamber is set to atmospheric pressure, the substrate is taken out, and then the substrate is washed,
Next, patterning is performed to complete the light emitting device.

【0003】このように、従来の製造方法では薄膜を形
成する毎に、その基板を大気中で洗浄する工程を有す
る。
As described above, the conventional manufacturing method has a step of cleaning the substrate in the atmosphere each time a thin film is formed.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述した従
来の方法では、複合膜を形成する場合、各工程毎に真空
チャンバ内を排気し、基板を加熱した後、スパッタリン
グあるいはEB蒸着を行った後、チャンバ内を大気圧に
戻し基板を取り出して洗浄するという一連の処理を行わ
なければならない。このように、従来の方法では、工程
の大部分が真空を利用した薄膜作成であるため、排気時
間および特性の安定化の為の基板の加熱時間そしてチャ
ンバ内を大気圧に戻すためのリーク時間等の時間ロスが
生じる。また、各工程間の基板洗浄回数が多く、基板を
大気に晒すことにより形成した薄膜が汚染され、膜特性
は低下し、この為歩留りが低下し、コスト高となる。さ
らに、各工程および各工程間に行われる洗浄のための治
具の取り付け・取り外しが多くなり、このことからも歩
留りの低下が生じる。
By the way, in the above-mentioned conventional method, when forming a composite film, the inside of the vacuum chamber is evacuated in each step, the substrate is heated, and then sputtering or EB vapor deposition is performed. It is necessary to return the inside of the chamber to atmospheric pressure, take out the substrate, and clean the substrate. As described above, in the conventional method, most of the steps are thin film formation using vacuum. Therefore, the evacuation time, the heating time of the substrate for stabilizing the characteristics, and the leak time for returning the chamber to atmospheric pressure. Etc. time loss occurs. In addition, the number of times the substrate is cleaned between each step is large, the thin film formed by exposing the substrate to the atmosphere is contaminated, and the film characteristics are degraded. Therefore, the yield is reduced and the cost is increased. Further, the number of jigs for mounting and dismounting for cleaning performed in each step and between each step increases, which also causes a decrease in yield.

【0005】本発明はこれらの問題を解決するためにな
されたもので、製造工程の簡略化を図り、製造時間を短
縮するとともに、特性の向上した複合膜を得ることがで
きる発光素子の製造方法を提供することを目的とする。
The present invention has been made to solve these problems, and a method for manufacturing a light emitting device capable of simplifying the manufacturing process, shortening the manufacturing time, and obtaining a composite film with improved characteristics. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明の目的を達成する
ために、本発明の発光素子の製造方法は、透明電極が形
成された基板上に第1の絶縁層、発光層、第2の絶縁層
が順に形成され、その第2の絶縁層上に背面電極が形成
されてなる発光素子を形成する方法において、スパッタ
リングにより上記第1の絶縁層を形成した後、EB蒸着
によりその第1の絶縁層上に上記発光層を形成し、その
後、スパッタリングによりその発光層上に上記第2の絶
縁層を形成するとともに、これらの第1の絶縁層、発光
層および第2の絶縁層の形成を、同一真空チャンバ内で
連続的に行うことによって特徴付けられる。
In order to achieve the object of the present invention, a method of manufacturing a light emitting device according to the present invention comprises a first insulating layer, a light emitting layer and a second light emitting layer on a substrate on which a transparent electrode is formed. In a method of forming a light emitting device in which an insulating layer is sequentially formed and a back electrode is formed on the second insulating layer, the first insulating layer is formed by sputtering, and then the first insulating layer is formed by EB vapor deposition. The light emitting layer is formed on the insulating layer, and then the second insulating layer is formed on the light emitting layer by sputtering, and the first insulating layer, the light emitting layer and the second insulating layer are formed. , Continuously performed in the same vacuum chamber.

【0007】[0007]

【作用】真空雰囲気下で行われる第1の絶縁層、発光
層、第2の絶縁層の形成は、同一チャンバ内で連続的に
行われ、これらの工程間では基板を洗浄する工程を必要
としない。従って、その間、基板は大気中に晒されるこ
とがない。
The formation of the first insulating layer, the light emitting layer, and the second insulating layer in a vacuum atmosphere is continuously performed in the same chamber, and a step of cleaning the substrate is required between these steps. do not do. Therefore, during that time, the substrate is not exposed to the atmosphere.

【0008】[0008]

【実施例】図3(b)は本発明実施例によって形成され
た発光素子の模式的断面図である。本発明実施例では、
第1の絶縁層212a、発光層23、第2の絶縁層21
2bを同一チャンバ内で連続的に形成する点が、また連
続的に形成するために使用する成膜装置に特徴がある。
EXAMPLE FIG. 3 (b) is a schematic sectional view of a light emitting device formed according to an example of the present invention. In the embodiment of the present invention,
First insulating layer 212a, light emitting layer 23, second insulating layer 21
The point that 2b is continuously formed in the same chamber is characterized by the film forming apparatus used for continuous formation.

【0009】まず、図4および図5は、それぞれ本発明
実施例で用いる成膜装置の模式的平面図および斜視図で
ある。真空チャンバ1の側壁には、スパッタリングター
ゲット3a,3b、EBガン2a,2b、および基板S
を加熱するヒータ4が設けられている。また、真空チャ
ンバ1にはスパッタリング用のガスを導入するガス供給
系Gおよび真空排気する排気系Vが備えられている。真
空チャンバ1内には、回転載置台(図示せず)が設けら
れ、真空チャンバ1近傍にその回転機構(図示せず)が
備えられている。この回転載置台上には基板Sを取り付
ける基板取り付け用治具(図示せず)が設けられてい
る。
First, FIGS. 4 and 5 are a schematic plan view and a perspective view, respectively, of a film forming apparatus used in the embodiment of the present invention. On the side wall of the vacuum chamber 1, the sputtering targets 3a and 3b, the EB guns 2a and 2b, and the substrate S.
Is provided with a heater 4 for heating. Further, the vacuum chamber 1 is provided with a gas supply system G for introducing a gas for sputtering and an exhaust system V for evacuating. A rotary mounting table (not shown) is provided in the vacuum chamber 1, and a rotating mechanism (not shown) is provided near the vacuum chamber 1. A substrate mounting jig (not shown) for mounting the substrate S is provided on the rotary mounting table.

【0010】また、図7は本発明実施例で用いられるE
Bガンの構成を示す図である。このEBガンは、熱電子
を発生するW線フィラメント9、その熱電子を加速する
電子加速電極11、電子線を偏向・集束するためのコイ
ル10およびハース7内に載置された蒸発源となる蒸発
物質5により構成されている。図6に示すようにこの蒸
発物質5は円柱形状をなし、この蒸発物質5を固定・保
持するペレット保持器6の内径は、蒸発物質5の径より
やや小さく、また、スリット8が形成されている。この
ペレット保持器6はMo,Ta,W等の高融点物質で作
成されている。このように蒸発物質5が固定されたペレ
ット保持器6は水冷ハース7に固定されて、蒸発物質5
の露出面が真空チャンバ1の底面に対し垂直になるよう
に設置された状態でEB蒸着が行われる。
FIG. 7 shows E used in the embodiment of the present invention.
It is a figure which shows the structure of B gun. This EB gun serves as a W-ray filament 9 for generating thermoelectrons, an electron accelerating electrode 11 for accelerating the thermoelectrons, a coil 10 for deflecting / focusing an electron beam, and an evaporation source placed in the hearth 7. It is composed of the evaporation material 5. As shown in FIG. 6, the vaporized substance 5 has a cylindrical shape, and the inner diameter of the pellet holder 6 for fixing and holding the vaporized substance 5 is slightly smaller than the diameter of the vaporized substance 5 and the slit 8 is formed. There is. The pellet holder 6 is made of a high melting point material such as Mo, Ta, W or the like. The pellet holder 6 to which the vaporized substance 5 is thus fixed is fixed to the water-cooled hearth 7 to
EB vapor deposition is performed in a state where the exposed surface of is placed perpendicular to the bottom surface of the vacuum chamber 1.

【0011】以上の構成よりなる装置を用いて本発明実
施例は実現される。以下に、本発明実施例を図1乃至図
3に示す模式断面図を参照しつつ説明する。まず、ガラ
スよりなる基板Sを洗浄した後、その基板S上にスパッ
タリングにより透明導電膜を作成する。その後、その基
板Sを洗浄した後、パターニングを行い、その後、その
基板Sを洗浄し、ITO20が形成される〔図1
(a)〕。
The embodiment of the present invention is realized by using the apparatus having the above-mentioned configuration. Embodiments of the present invention will be described below with reference to schematic cross-sectional views shown in FIGS. First, after cleaning the substrate S made of glass, a transparent conductive film is formed on the substrate S by sputtering. Then, the substrate S is washed and then patterned, and then the substrate S is washed to form the ITO 20 [FIG.
(A)].

【0012】次に、基板Sを加熱した後、真空チャンバ
1内を10-5〜10-6Torrに真空排気し、ガス供給系か
らArおよびO2 の混合ガスを真空チャンバ1内に導入
し、Siをターゲットとしてスパッタリングすることに
より、ITO20が形成された基板S上にSiO2膜21a
を200〜800Åの厚さに形成する〔図1(b)〕。
Next, after heating the substrate S, the vacuum chamber 1 is evacuated to 10 -5 to 10 -6 Torr, and a mixed gas of Ar and O 2 is introduced into the vacuum chamber 1 from a gas supply system. , Si is sputtered on the substrate S on which the ITO 20 is formed to form the SiO 2 film 21a.
To a thickness of 200 to 800 Å [Fig. 1 (b)].

【0013】次いで、ガス供給系からN2 ガスを真空チ
ャンバ1内に導入し、Siをターゲットとしてスパッタ
リングすることにより、SiO2膜21a上にSi3N4 膜22
aを1300〜3000Åの厚さに形成する。このSiO2
膜21aおよびSi3N4 膜22aよりなる絶縁膜を第1の
絶縁層212aとする〔図1(c)〕。
Next, N 2 gas is introduced into the vacuum chamber 1 from the gas supply system, and sputtering is performed with Si as a target, so that the Si 3 N 4 film 22 is formed on the SiO 2 film 21a.
a is formed to a thickness of 1300 to 3000Å. This SiO 2
An insulating film composed of the film 21a and the Si 3 N 4 film 22a is used as a first insulating layer 212a [FIG. 1 (c)].

【0014】次に、ガスを止め、真空チャンバ1内を1
-5〜10-6に真空排気し、EB蒸着によりZnS;Mn膜2
3を6000〜10000Åの厚さに形成する。上述し
たように、EB蒸着に用いる蒸発物質を固定した水冷ハ
ースを蒸発物質の露出面が真空チャンバ1の底面に垂直
になるように設置した状態でEB蒸着を行うので、蒸発
分子流はほぼ真空チャンバ1の底面に水平となり、蒸発
分子は効率良くSi3N4膜22a上に蒸着する〔図1
(d)〕。
Next, the gas is stopped and the inside of the vacuum chamber 1 is set to 1
Vacuum evacuation to 0 -5 to 10 -6 and ZnS; Mn film 2 by EB vapor deposition
3 is formed to a thickness of 6000 to 10000Å. As described above, since the EB evaporation is performed in a state where the water-cooled hearth used for the EB evaporation is fixed so that the exposed surface of the evaporation material is perpendicular to the bottom surface of the vacuum chamber 1, the evaporation molecular flow is almost vacuum. It is horizontal to the bottom of the chamber 1 and the evaporated molecules are efficiently deposited on the Si 3 N 4 film 22a [Fig.
(D)].

【0015】次いで、ガス供給系からN2 ガスを真空チ
ャンバ1内に導入し、Siをターゲットとしてスパッタ
リングすることにより、ZnS;Mn膜23上にSi3N4 膜22
bを1000〜2000Åの厚さに形成する〔図2
(a)〕。
Next, N 2 gas is introduced into the vacuum chamber 1 from the gas supply system, and sputtering is performed with Si as a target, whereby the Si 3 N 4 film 22 is formed on the ZnS; Mn film 23.
b is formed to a thickness of 1000 to 2000Å [Fig. 2
(A)].

【0016】次に、ガス供給系からArおよびO2 の混
合ガスを真空チャンバ1内に導入し、Siをターゲット
としてスパッタリングすることにより、Si3N4 膜22b
上にSiO2膜21bを200〜800Åの厚さに形成す
る。このSiO2膜21bおよびSi3N4 膜22bよりなる絶
縁膜を第2の絶縁層212bとする。そして、真空チャ
ンバ1内を大気圧にして基板Sを取り出した後、洗浄
し、その後アニーリングした後、再び洗浄する〔図2
(b)〕。
Next, a mixed gas of Ar and O 2 is introduced from the gas supply system into the vacuum chamber 1 and is sputtered by using Si as a target to thereby form the Si 3 N 4 film 22b.
An SiO 2 film 21b is formed on the upper surface of the film to a thickness of 200 to 800 Å. The insulating film composed of the SiO 2 film 21b and the Si 3 N 4 film 22b is referred to as a second insulating layer 212b. Then, the inside of the vacuum chamber 1 is set to atmospheric pressure, the substrate S is taken out, washed, then annealed, and then washed again [FIG.
(B)].

【0017】次に、SiO2膜21b上に蒸着によりAl層
24を2000〜5000Åの厚さに形成する。このよ
うに、発光素子の反射面をAl層24によって形成する
ことにより、反射率を高くすることができる〔図3
(a)〕。
Next, an Al layer 24 is formed on the SiO 2 film 21b by vapor deposition to a thickness of 2000 to 5000Å. Thus, by forming the reflective surface of the light emitting element with the Al layer 24, the reflectance can be increased [FIG.
(A)].

【0018】次いで、このAl層24上にNi層25を
2000〜5000Åの厚さに形成する。この最上層を
Ni層とすることにより半田付けが良好となり、高電流
に十分対応できる装置となる。以上のように背面電極を
形成した後、基板Sを洗浄し、その後、パターニングす
ることにより、所望の発光素子が完成する〔図3
(b)〕。
Next, a Ni layer 25 is formed on the Al layer 24 to a thickness of 2000 to 5000Å. By using the Ni layer as the uppermost layer, soldering becomes good, and the device can sufficiently cope with high current. After forming the back electrode as described above, the substrate S is washed and then patterned to complete a desired light emitting device [FIG.
(B)].

【0019】本発明実施例の方法では、蒸発材料5をペ
レット保持器6で保持した状態で水冷ハース7に取り付
け、蒸発物質5の露出面が真空チャンバ1の底面に垂直
になるように設置した状態でEB蒸着を行うと、蒸発物
質5は飛散せず、基板S上にほぼ垂直に、効率良く蒸着
される。しかも、スパッタリングやEB蒸着を同一のチ
ャンバで連続的に行うようにしたので、ターゲットや蒸
発物質を適宜設けることにより、所望の複合膜を作成で
きる。
In the method of the embodiment of the present invention, the evaporation material 5 is attached to the water-cooled hearth 7 while being held by the pellet holder 6, and the evaporation material 5 is installed so that the exposed surface of the evaporation material 5 is perpendicular to the bottom surface of the vacuum chamber 1. When EB vapor deposition is performed in this state, the vaporized substance 5 does not scatter, and is vapor-deposited on the substrate S substantially vertically and efficiently. Moreover, since the sputtering and the EB vapor deposition are continuously performed in the same chamber, a desired composite film can be formed by appropriately providing a target and an evaporation substance.

【0020】[0020]

【発明の効果】以上説明したように、本発明の発光素子
の製造方法によれば、スパッタリングターゲットと、E
Bガンとが、真空チャンバ側壁に沿ってそれぞれ1個あ
るいは複数個設けられ、EBガンに用いられる蒸発物質
の露出面が上記チャンバの底面に垂直になるよう設置
し、基板を回転走行させながらスパッタあるいはEB蒸
着を行うようにしたから、同一チャンバ内で連続的にス
パッタ膜あるいはEB蒸着膜を形成することにより複合
膜を形成することができる。従って、薄膜形成工程間の
洗浄の工程を省くことができ、それに伴う基板の取り外
し・取り付け作業や排気および基板の加熱等も省くこと
ができ、大幅な時間短縮が実現できる。しかも、従来に
比べ、形成された薄膜を大気に晒すことも少なく、性能
の良い複合膜を得ることができる。この結果、歩留りの
向上、およびコストの低減が実現できる。
As described above, according to the method for manufacturing a light emitting device of the present invention, the sputtering target and the E
One B gun and one or more B guns are provided along the side wall of the vacuum chamber, and the exposed surface of the evaporation material used for the EB gun is installed to be perpendicular to the bottom of the chamber. Alternatively, since EB vapor deposition is performed, a composite film can be formed by continuously forming a sputtered film or an EB vapor deposited film in the same chamber. Therefore, the cleaning process between the thin film forming processes can be omitted, and the work of removing / attaching the substrate, exhausting the gas, heating the substrate, etc. can be omitted, and a significant reduction in time can be realized. Moreover, the formed thin film is less likely to be exposed to the air as compared with the conventional one, and a composite film having good performance can be obtained. As a result, yield improvement and cost reduction can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例を経時的に示す模式断面図FIG. 1 is a schematic sectional view showing an embodiment of the present invention over time.

【図2】本発明実施例を経時的に示す模式断面図FIG. 2 is a schematic sectional view showing an embodiment of the present invention over time.

【図3】本発明実施例を経時的に示す模式断面図FIG. 3 is a schematic sectional view showing an embodiment of the present invention over time.

【図4】本発明実施例を示す模式的平面図FIG. 4 is a schematic plan view showing an embodiment of the present invention.

【図5】本発明実施例を示す斜視図FIG. 5 is a perspective view showing an embodiment of the present invention.

【図6】本発明実施例に用いられる蒸発物質がペレット
保持器に保持された状態の斜視図
FIG. 6 is a perspective view showing a state in which an evaporated substance used in an embodiment of the present invention is held by a pellet holder.

【図7】本発明実施例に用いられるEBガンの構成を示
す図
FIG. 7 is a diagram showing a configuration of an EB gun used in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・・真空チャンバ 2a,2b・・・・EBガン 3a,3b・・・・ターゲット 4・・・・ヒータ 5・・・・蒸発物質 6・・・・ペレット保持器 7・・・・水冷ハース 8・・・・スリット 9・・・・フィラメント 10・・・・偏向・集束用電極 20・・・・ITO 21a,21b・・・・SiO2膜 22a,22b・・・・Si3N4 膜 212a・・・・第1の絶縁層 212b・・・・第2の絶縁層 23・・・・ZnS;Mn S・・・・基板1 ... Vacuum chambers 2a, 2b ... EB guns 3a, 3b ... Target 4 ... Heater 5 ... Evaporated substance 6 ... Pellet holder 7 ... Water-cooling hearth 8 ... Slit 9 ... Filament 10 ... Deflection / focusing electrode 20 ... ITO 21a, 21b ... SiO 2 film 22a, 22b ... Si 3 N 4 films 212a ... First insulating layer 212b ... Second insulating layer 23 ... ZnS; Mn S .... Substrate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 透明電極が形成された基板上に第1の絶
縁層、発光層、第2の絶縁層が順に形成され、その第2
の絶縁層上に背面電極が形成されてなる発光素子を形成
する方法において、スパッタリングにより上記第1の絶
縁層を形成した後、EB蒸着によりその第1の絶縁層上
に上記発光層を形成し、その後、スパッタリングにより
その発光層上に上記第2の絶縁層を形成するとともに、
これらの第1の絶縁層、発光層および第2の絶縁層の形
成を、同一真空チャンバ内で連続的に行うことを特徴と
する発光素子の製造方法。
1. A first insulating layer, a light emitting layer, and a second insulating layer are sequentially formed on a substrate on which a transparent electrode is formed.
In the method for forming a light emitting device having a back electrode formed on an insulating layer, the first insulating layer is formed by sputtering, and then the light emitting layer is formed on the first insulating layer by EB vapor deposition. Then, while forming the second insulating layer on the light emitting layer by sputtering,
A method for manufacturing a light emitting device, characterized in that the first insulating layer, the light emitting layer and the second insulating layer are continuously formed in the same vacuum chamber.
JP4169272A 1992-06-26 1992-06-26 Manufacture of light emitting element Pending JPH0613182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4169272A JPH0613182A (en) 1992-06-26 1992-06-26 Manufacture of light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4169272A JPH0613182A (en) 1992-06-26 1992-06-26 Manufacture of light emitting element

Publications (1)

Publication Number Publication Date
JPH0613182A true JPH0613182A (en) 1994-01-21

Family

ID=15883437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4169272A Pending JPH0613182A (en) 1992-06-26 1992-06-26 Manufacture of light emitting element

Country Status (1)

Country Link
JP (1) JPH0613182A (en)

Similar Documents

Publication Publication Date Title
JP2845856B2 (en) Method for manufacturing organic electroluminescence device
US4310614A (en) Method and apparatus for pretreating and depositing thin films on substrates
US7678241B2 (en) Film forming apparatus, substrate for forming oxide thin film and production method thereof
JP2002505796A (en) Low temperature glass frit encapsulation for thin computer displays
US3934059A (en) Method of vapor deposition
JPH0613182A (en) Manufacture of light emitting element
JP2793532B2 (en) Method for manufacturing plasma display panel
US5074817A (en) Method for manufacturing an electroluminescence display
JPH0644893A (en) Cathode structure
JP3015093B2 (en) Plasma display panel and method of manufacturing the same
JPH05287520A (en) Film forming device
JP3044072B2 (en) Method for manufacturing plasma display panel
JP3152018B2 (en) Method of manufacturing field emission device
JPH09283063A (en) Field emission type display, manufacture thereof and manufacture of metal film for display
JP3056942B2 (en) Method of manufacturing image display device
US3195199A (en) Method of making targets for pickup tubes
JP2865902B2 (en) Method for manufacturing color cathode ray tube to minimize thermal deformation of shadow mask
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JP3126976B2 (en) Method for manufacturing plasma display panel
JPS6176662A (en) Method and device for forming thin film
JP2002115048A (en) Vacuum film deposition apparatus, and operating method thereof
JPH113654A (en) Manufacture of color cathode-ray tube
JPH09106770A (en) Image display device
JPH04249848A (en) Display vacuum tube
JP3169278B2 (en) Thin film forming method and thin film forming apparatus