JPH06130678A - Position detecting device - Google Patents

Position detecting device

Info

Publication number
JPH06130678A
JPH06130678A JP4306203A JP30620392A JPH06130678A JP H06130678 A JPH06130678 A JP H06130678A JP 4306203 A JP4306203 A JP 4306203A JP 30620392 A JP30620392 A JP 30620392A JP H06130678 A JPH06130678 A JP H06130678A
Authority
JP
Japan
Prior art keywords
light
optical system
projection
detection positions
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4306203A
Other languages
Japanese (ja)
Inventor
Gen Uchida
玄 内田
Masanori Kato
正紀 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4306203A priority Critical patent/JPH06130678A/en
Publication of JPH06130678A publication Critical patent/JPH06130678A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide the position detecting device which can accurately detect the position and tilt of a partial area on a surface to be inspected in the optical axis direction of an objective optical system and can be arranged compactly in a limited space. CONSTITUTION:Projection lights from light sources 11a1 and 11a2 are passed through a condenser lens 12 and a projection slit 13 and are bent by a mirror 14, and further passed through an optical transmission side objective 15 and split by a half-prism 16. The split lights form images of the slit 13 at mutually different detection positions a1-a4 on the surface to be inspected. Reflected lights from respective detection positions are passed through a mirror 14a and a photodetection side objective 15 and photodetected by photodetecting elements 17a1-17a4. Shifts in the detection positions from a reference surfaces are detected on the basis of the output signals of the photodetecting elements 17a1-17a4 and the tilt of the mean plane of the partial area containing the detection positions is found.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は投影露光装置等の対物レ
ンズの光軸に対してウエハ面等の被検面の部分領域を垂
直位置に正確に設置するために用いられる位置検出装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a position detecting device used for accurately setting a partial area of a surface to be inspected such as a wafer surface in a vertical position with respect to an optical axis of an objective lens of a projection exposure apparatus.

【0002】[0002]

【従来の技術】一般に、集積回路製造用の投影型露光装
置には大きな開口数を有する投影対物レンズが用いられ
ているため、許容焦点範囲が非常に小さい。このため、
ウエハの露光領域を投影対物レンズの光軸に対して正確
な垂直位置に維持しない限り、露光領域全体にわたって
鮮明なパターンの露光を行なうことができない。
2. Description of the Related Art Generally, a projection type exposure apparatus for manufacturing an integrated circuit uses a projection objective lens having a large numerical aperture, so that an allowable focus range is very small. For this reason,
Unless the exposure area of the wafer is kept at a position perpendicular to the optical axis of the projection objective lens, a clear pattern cannot be exposed over the entire exposure area.

【0003】ウエハ全体は別途に設けられたオートフォ
ーカス機構によりウエハ面上の検出によって対物レンズ
の光軸に対してほぼ垂直に位置合わせされ得るが、ウエ
ハの大型化やシリコンに変わるガリウム・ヒ素等の新材
料ではウエハ自体の平面性が不安定になるため、ウエハ
の部分的な垂直位置検出が必要になる。同様に液晶表示
素子などの作成の際にも投影露光装置を用いるが、近
年、液晶表示素子の大型化に伴いガラス基板等の大型化
のため、基板自体の平面度の検出が必要になる。そし
て、各回の露光と化学処理によりさらにウエハやガラス
基板等(以下、総称して単に基板という)の変形が増大
されるため、露光領域の正確な水平検出が不可欠となっ
てきている。
The entire wafer can be aligned almost perpendicularly to the optical axis of the objective lens by detection on the wafer surface by a separately provided autofocus mechanism, but the size of the wafer is increased and gallium arsenide, etc. which is replaced by silicon, etc. With the new material, the flatness of the wafer itself becomes unstable, so it is necessary to partially detect the vertical position of the wafer. Similarly, a projection exposure apparatus is also used when manufacturing a liquid crystal display element or the like. In recent years, however, the flatness of the substrate itself needs to be detected because the size of a glass substrate or the like increases as the size of the liquid crystal display element increases. Further, since the deformation of the wafer, glass substrate, etc. (hereinafter collectively referred to simply as "substrate") is further increased by each exposure and chemical treatment, accurate horizontal detection of the exposure area has become indispensable.

【0004】このために露光される各領域ごとに最も良
好な状態に維持できるように、各領域ごとにその領域内
の平面の傾斜状態を検出する必要があり、露光毎に領域
内全体に平行光束を当ててこの時の反射光を受光素子に
集光したり、露光領域内に複数の検出位置を設定し、各
検出位置の基準面からのズレ量に基づいて基板表面の傾
きを補正していた。
For this reason, it is necessary to detect the inclination state of the plane in each area so that the optimum state can be maintained for each area to be exposed. A light flux is applied to collect the reflected light at this time on the light receiving element, or multiple detection positions are set in the exposure area, and the tilt of the substrate surface is corrected based on the amount of deviation from the reference plane at each detection position. Was there.

【0005】図4は従来の位置検出装置を縮小投影型露
光装置に採用した構成を示した概略光路図である。図に
おいて、投影対物レンズ1に関してレチクルもしくはマ
スク(以下総称してマスクという)2と基板3とが共役
に配置され、図示なき照明光学系によって照明されたマ
スク2上のパターンが基板3上に縮小、等倍または拡大
投影される。このような基板3の焼き付け露光はステッ
プ・アンド・リピートと呼ばれるように基板3を所定量
だけ移動させて繰り返され、異なるパターンを有するマ
スクに交換するごとに同様の操作が繰り返される。
FIG. 4 is a schematic optical path diagram showing a configuration in which a conventional position detecting device is adopted in a reduction projection type exposure device. In the figure, a reticle or mask (collectively referred to as a mask hereinafter) 2 and a substrate 3 are arranged in a conjugate manner with respect to a projection objective lens 1, and a pattern on the mask 2 illuminated by an illumination optical system (not shown) is reduced on the substrate 3. , Projected in the same size or enlarged. Such baking exposure of the substrate 3 is repeated by moving the substrate 3 by a predetermined amount, which is called step-and-repeat, and the same operation is repeated every time a mask having a different pattern is exchanged.

【0006】投射光学系50は光源61、コンデンサー
レンズ62、微小円形開口を有する絞り63、投射対物
レンズ64からなり、コンデンサーレンズ62は光源6
1の像を絞り63上に形成し、絞り63上に焦点を有す
る投射対物レンズ64により平行光束が基板3上に供給
される。投射光学系50から供給する光は基板3上のレ
ジストを感光させないために、露光光と異なる波長の光
である。
The projection optical system 50 comprises a light source 61, a condenser lens 62, a diaphragm 63 having a minute circular aperture, and a projection objective lens 64. The condenser lens 62 is the light source 6.
The image of No. 1 is formed on the diaphragm 63, and the parallel light flux is supplied onto the substrate 3 by the projection objective lens 64 having a focus on the diaphragm 63. The light supplied from the projection optical system 50 has a wavelength different from that of the exposure light because the resist on the substrate 3 is not exposed.

【0007】また受光光学系50aは受光対物レンズ6
5と4分割受光素子66とからなり、投射光学系50か
ら供給され基板3で反射された光束は受光対物レンズ6
5により受光対物レンズ65の焦点位置に設けられた4
分割受光素子66上に受光される。ここで投影対物レン
ズ1の光軸1aに関して、投射光学系50の光軸と受光
光学系50aの光軸とは対称である。従って、投影対物
レンズ1の光軸1aに対して基板3の露光領域が垂直を
保っているならば、投射光学系50からの光束は4分割
受光素子66の中心位置に受光される。また基板3の露
光領域が垂直からθだけ傾いているならば、基板3で反
射される投射光学系50からの平行光束は受光光学系5
0aの光軸に対して2θ傾くため、4分割受光素子66
上で中心から外れた位置に受光される。4分割受光素子
66上での受光点の位置から基板3の露光領域の傾き方
向が検出され、制御手段は4分割受光素子66上の受光
点の変位方向及び変位量に対応する制御信号を発生し、
駆動手段により支持装置3bを移動させ、基板3が載置
されたステージ3aが基板3の露光領域表面の傾きを補
正するように移動される。
The light receiving optical system 50a is a light receiving objective lens 6
The light beam, which is composed of five and four split light receiving elements 66, is supplied from the projection optical system 50 and reflected by the substrate 3 is a light receiving objective lens 6
4 provided at the focal position of the light receiving objective lens 65 by
The light is received on the divided light receiving element 66. Here, with respect to the optical axis 1a of the projection objective lens 1, the optical axis of the projection optical system 50 and the optical axis of the light receiving optical system 50a are symmetrical. Therefore, if the exposure area of the substrate 3 is kept perpendicular to the optical axis 1a of the projection objective lens 1, the light flux from the projection optical system 50 is received at the center position of the four-division light receiving element 66. If the exposure area of the substrate 3 is tilted by θ from the vertical, the parallel light flux from the projection optical system 50 reflected by the substrate 3 is received by the light receiving optical system 5.
Since it is inclined by 2θ with respect to the optical axis of 0a, the 4-division light receiving element 66
The light is received at a position off the center above. The tilt direction of the exposure area of the substrate 3 is detected from the position of the light receiving point on the four-division light receiving element 66, and the control means generates a control signal corresponding to the displacement direction and the displacement amount of the light receiving point on the four-division light receiving element 66. Then
The supporting device 3b is moved by the driving means, and the stage 3a on which the substrate 3 is placed is moved so as to correct the inclination of the exposure area surface of the substrate 3.

【0008】このような構成によると、投射光学系50
によって投射される範囲の基板面について部分的な傾き
検出がなされ、基板3上への投射領域を投影対物レンズ
1による露光領域とほぼ同じ大きさとすることによっ
て、露光領域を投影対物レンズ1の光軸1aに対して平
均的に正確な垂直位置に自動的に設定することができる
(公開特許公報昭和64年46606号に詳しい)。
According to such a configuration, the projection optical system 50
The tilt of the substrate surface in the range projected by is detected, and the projection area on the substrate 3 is made substantially the same size as the exposure area by the projection objective lens 1, so that the exposure area is the light of the projection objective lens 1. The position can be automatically set to an accurate vertical position on average with respect to the axis 1a (see Japanese Patent Laid-Open Publication No. 46606/1988).

【0009】一方、斜入射型の位置検出装置を多数ケ所
に設置する方式も提案されている(例えば公開特許公報
平成2年50418号)。この方式について図5及び図
6を参照して説明する。図において、投射光学系51〜
54からは所定形状の光束51a〜54aが基板3上の
露光領域内の異なる位置それぞれ投射され、各検出位置
からの反射光51a’〜54a’は受光器51’〜5
4’で受光される。そして受光器51’〜54’の出力
信号に基づいて露光領域の仮想平面が求められ、仮想平
面と投影対物レンズ1の焦点面が平行となるようにステ
ージ3aによって基板3の露光領域表面の傾きが補正さ
れる。
On the other hand, a system in which a large number of grazing incidence type position detection devices are installed has also been proposed (for example, Japanese Patent Laid-Open Publication No. 50418 of 1990). This method will be described with reference to FIGS. In the figure, projection optical systems 51 to
Light beams 51a to 54a having a predetermined shape are projected from 54 at different positions in the exposure area on the substrate 3, and reflected lights 51a 'to 54a' from the respective detection positions are received by the light receivers 51 'to 5'.
It is received at 4 '. Then, a virtual plane of the exposure area is obtained based on the output signals of the light receivers 51 ′ to 54 ′, and the stage 3a tilts the exposure area surface of the substrate 3 so that the virtual plane and the focal plane of the projection objective lens 1 are parallel to each other. Is corrected.

【0010】[0010]

【発明が解決しようとする課題】上記の如き従来の技術
に於いては、露光される各領域ごとに最も良好な状態に
維持できるように、各領域ごとにその領域内の平面の傾
斜状態を検出する必要があるが、傾きばかりではなく対
物レンズの光軸上での位置を正確に合わせるための焦点
検出装置も設ける必要がある。しかしながら、対物レン
ズと基板との間の限られた空間内に、種々の測定のため
の光学装置を介挿することは極めて難しかった。
In the prior art as described above, in order to maintain the best condition for each area to be exposed, the inclination state of the plane in each area is maintained. It is necessary to detect, but it is necessary to provide not only the tilt but also a focus detection device for accurately adjusting the position of the objective lens on the optical axis. However, it was extremely difficult to insert an optical device for various measurements in the limited space between the objective lens and the substrate.

【0011】特に、一つの露光領域内に複数の検出位置
を設定してそれぞれの検出位置からの反射光を検出する
ことによって傾きを補正する方式(図5、図6)では、
部材の数が増えて光学系の配置が一層困難となる上、各
検出位置に対応する投射光学系の光源の強度等が一定も
しくはそれに近い状態でないと、そのばらつきが誤差要
因となってしまうという問題がある。
Particularly, in the method of correcting the inclination by setting a plurality of detection positions in one exposure area and detecting the reflected light from each detection position (FIGS. 5 and 6),
The number of members increases and the arrangement of the optical system becomes more difficult. In addition, if the intensity of the light source of the projection optical system corresponding to each detection position is not constant or close to that, the variation will cause an error. There's a problem.

【0012】一方、最近の半導体素子の傾向として、パ
ターンの微細化にも拘らず、高集積化の要求から素子の
チップサイズは益々大きくなっている。特に、4Mビッ
トDRAM以上の超LSI等では20mm角以上、液晶
表示素子においては100mm角以上が主流となってい
る。このような100mm角以上にも及ぶ大きな露光領
域全体に亘って平行光束を入射させることは非常に困難
であり、実現できたとしても非常に複雑な構成となって
しまう。従って、露光領域全体に平行光束を入射させて
露光領域の傾きを補正する方式(図4)では、露光領域
の拡大傾向に対応することができない。
On the other hand, as a recent tendency of semiconductor elements, the chip size of the elements is increasing more and more due to the demand for high integration despite the miniaturization of patterns. In particular, the size of 20 mm square or more for VLSIs of 4 Mbit DRAM or more and 100 mm square or more for liquid crystal display devices is the mainstream. It is very difficult to make a parallel light beam incident over the entire large exposure area as large as 100 mm square or more, and even if it can be realized, it will be a very complicated configuration. Therefore, the method of making the parallel light flux incident on the entire exposure region to correct the inclination of the exposure region (FIG. 4) cannot cope with the tendency of the exposure region to expand.

【0013】本発明は係る点に鑑みてなされたものであ
り、露光領域(被検面の部分領域)の対物光学系の光軸
方向の位置及び光軸に対する傾斜を、精度良く、かつ簡
単な構成で検出でき、露光領域の拡大傾向にも対応でき
る位置検出装置を提供することを目的とするものであ
る。
The present invention has been made in view of the above point, and the position of the exposure area (partial area of the surface to be inspected) in the optical axis direction of the objective optical system and the inclination with respect to the optical axis can be accurately and easily. It is an object of the present invention to provide a position detection device that can detect a position and can cope with an expansion tendency of an exposure area.

【0014】[0014]

【課題を解決するための手段】本発明の位置検出装置
は、対物光学系の略結像面に配置された被検面上の所定
の検出位置に前記対物光学系の光軸に対して傾きをもつ
方向から光を投光する投射光学系と、前記被検面と実質
的に共役関係にある受光面をもち、前記被検面からの反
射光を受光する受光光学系とを有し、該受光光学系から
の信号に基づいて前記被検面の前記対物光学系の光軸方
向の位置及び前記光軸に対する傾きを検出する位置検出
装置において、上記の課題を達成するために、前記被検
面上の互いに異なる検出位置に前記光を投光する第1及
び第2の投射光学系と、該第1及び第2の投射光学系か
らの投射光の光路をそれぞれ分割して、前記第1投射光
学系からの投射光を第1及び第2の検出位置に、前記第
2投射光学系からの投射光を第3及び第4の検出位置に
それぞれ導く分割手段と、前記被検面上の第1、第2第
3及び第4の検出位置からの反射光をそれぞれ独立に受
光する第1、第2、第3及び第4の受光光学系とを備え
たものである。
A position detecting device according to the present invention tilts with respect to an optical axis of the objective optical system at a predetermined detection position on a surface to be inspected which is arranged on a substantially image plane of the objective optical system. A projection optical system that projects light from a direction having, and a light receiving optical system that has a light receiving surface that is substantially in a conjugate relationship with the test surface, and that receives reflected light from the test surface, In order to achieve the above object, in the position detecting device that detects the position of the surface to be inspected in the optical axis direction of the objective optical system and the tilt with respect to the optical axis based on the signal from the light receiving optical system, The first and second projection optical systems that project the light at different detection positions on the inspection surface, and the optical paths of the projection light from the first and second projection optical systems are divided respectively to obtain the first and second projection optical systems. The projection light from the first projection optical system is moved to the first and second detection positions from the second projection optical system. Dividing means for guiding the emitted light to the third and fourth detection positions, respectively, and first and second receiving means for independently receiving the reflected light from the first, second and third detection positions on the surface to be detected. The second, third and fourth light receiving optical systems are provided.

【0015】[0015]

【作用】本発明の装置においては、第1及び第2の投射
光学系からの光が分割手段によって分割され、それぞれ
異なる検出位置(第1〜第4の検出位置)に導かれる。
そして、各検出位置からの反射光はそれぞれ独立に第1
〜第4の受光光学系で受光される。即ち、本発明では、
光路の分割によって基板上に投射する光束の数を増し、
異なる検出位置からの反射光をそれぞれ専用の受光光学
系で検出する構成をとっており、投射光学系を2組設け
ることで少なくとも4つの任意の検出位置を設定するこ
とができると共に、少なくとも4つの検出位置からの反
射光を同時に検出することができる。従って、本発明で
は、被検面上の広い領域について対物光学系の光軸に対
する平均的な傾きを検出することが可能であり、1回の
露光ごとに露光される領域の最適な角度補正を効率よく
行うことができる。
In the apparatus of the present invention, the light from the first and second projection optical systems is split by the splitting means and guided to different detection positions (first to fourth detection positions).
Then, the reflected light from each detection position is independent of the first
~ Received by the fourth light receiving optical system. That is, in the present invention,
Increase the number of light beams projected on the substrate by dividing the optical path,
The structure is such that the reflected light from different detection positions is detected by dedicated light receiving optical systems, respectively. By providing two sets of projection optical systems, at least four arbitrary detection positions can be set, and at least four detection positions can be set. The reflected light from the detection position can be detected at the same time. Therefore, according to the present invention, it is possible to detect the average inclination of the objective optical system with respect to the optical axis in a wide area on the surface to be inspected, and to perform the optimum angle correction of the area exposed for each exposure. It can be done efficiently.

【0016】又、本発明の装置は、上述のように異なる
検出位置について投射光学系を兼用しているため、検出
位置の数より投射光学系の数が少なく、構成が簡単であ
る。集積回路製造用の縮小投影型露光装置では、基板等
の全体的位置合わせのための複数本の顕微鏡や、基板等
の自動搬送機構が投影対物レンズの周囲に設けられてい
るため、空間的な大きな制約を受けるが、本発明の位置
検出装置は限られた空間内にコンパクトに配置すること
が可能である。
Since the apparatus of the present invention also serves as the projection optical system for different detection positions as described above, the number of projection optical systems is smaller than the number of detection positions, and the structure is simple. In a reduction projection type exposure apparatus for manufacturing an integrated circuit, a plurality of microscopes for the overall alignment of the substrate and the like, and an automatic transport mechanism for the substrate and the like are provided around the projection objective lens. Although subject to great restrictions, the position detecting device of the present invention can be compactly arranged in a limited space.

【0017】更に、本発明の装置は、光学系の数が少な
い分、組み立て調整が容易である上、光源強度のばらつ
きによる誤検出も低減することが可能である。即ち、本
発明では、同じ光源からの光が分割されて異なる検出位
置に投射され、それぞれ別々の受光光学系で検出される
ので、ある検出位置からの反射光強度が極端に低い(又
は高い)場合、同じ光源からの光が投射される別の検出
位置の反射光強度と比較することによって、両者とも同
様な異常がある場合には光源強度に問題があると判断で
き、一方の検出位置だけ異常がある場合にはその部分の
レジストの塗布状態等に問題があると判断される。この
ように本発明では、光学系の特性のばらつきや基板表面
状態の異常を的確に検知することができ、誤検出を防止
するうえで有利である。
Furthermore, since the apparatus of the present invention has a small number of optical systems, it is easy to assemble and adjust, and erroneous detection due to variations in light source intensity can be reduced. That is, in the present invention, the light from the same light source is split, projected onto different detection positions, and detected by different light receiving optical systems, so the intensity of reflected light from a certain detection position is extremely low (or high). In this case, by comparing with the reflected light intensity of another detection position where the light from the same light source is projected, it can be judged that there is a problem in the light source intensity when both have similar anomalies, and only one detection position If there is an abnormality, it is determined that there is a problem in the coating state of the resist in that portion. As described above, according to the present invention, it is possible to accurately detect variations in the characteristics of the optical system and abnormalities in the substrate surface state, which is advantageous in preventing erroneous detection.

【0018】なお、少ない光学系で多数の検出位置から
の反射光を検出するという点では、本願と同一出願人に
よる特願平4−32949号に提案されているように、
異なる検出位置に対して受光光学系も兼用とする構成も
考えられる。しかし、この場合、異なる検出位置からの
反射光の光路を合成して兼用の受光光学系に導くための
合成手段(ハーフプリズム等)が必要となり、当然なが
ら、受光光学系を兼用している異なる検出位置からの反
射光の検出は時系列的に行うことになる。これに対し、
本発明は、合成手段が不要であると共に、多点同時検出
が可能であり、スループットの点で有利である。
Incidentally, in terms of detecting reflected light from a large number of detection positions with a small number of optical systems, as proposed in Japanese Patent Application No. 4-32949 filed by the same applicant as the present application,
A configuration in which the light receiving optical system is also used for different detection positions is also conceivable. However, in this case, a synthesizing means (half prism or the like) for synthesizing the optical paths of the reflected light from different detection positions and guiding it to the dual-purpose light-receiving optical system is required. The reflected light from the detection position is detected in time series. In contrast,
INDUSTRIAL APPLICABILITY The present invention requires no synthesizing means and is capable of simultaneous multipoint detection, which is advantageous in terms of throughput.

【0019】[0019]

【実施例】図1は本発明の第1の実施例による位置検出
装置の光学系の概略構成示す斜視図である。また図2は
図1を上方より見たときの配置を示す図である。図1、
図2において、発光ダイオード(LED)やハロゲンラ
ンプ等の光源11a1 ,11a2 (光源11a1 を含む
光学系を第1投射光学系、光源11a2を含む光学系を
第2投射光学系とする)からの投射光はコンデンサーレ
ンズ12を介して投光スリット13を照射する。投光ス
リット13は矩形の細長いスリット開口を有し、このス
リット開口を通して投射される投射光はミラー14によ
りウエハ、ガラス基板等の被検面3とほぼ平行となるよ
うに曲げられる。次いで、投射光は送光側対物レンズ1
5を介してハーフプリズム16(分割手段)に入射し、
ここで2方向に分割され、第1投射光学系からの投射光
は被検面3上の検出位置a1 とa2 に、第2投射光学系
からの投射光は検出位置a3 とa4 に投光スリット13
のスリット像を結ぶ。
1 is a perspective view showing a schematic configuration of an optical system of a position detecting device according to a first embodiment of the present invention. 2 is a view showing the arrangement when FIG. 1 is viewed from above. Figure 1,
In FIG. 2, light sources 11a 1 and 11a 2 such as light emitting diodes (LEDs) and halogen lamps (an optical system including the light source 11a 1 is a first projection optical system, and an optical system including the light source 11a 2 is a second projection optical system). The projection light from (1) illuminates the projection slit 13 via the condenser lens 12. The light projecting slit 13 has a rectangular elongated slit opening, and the projection light projected through this slit opening is bent by a mirror 14 so as to be substantially parallel to the surface 3 to be inspected such as a wafer or a glass substrate. Next, the projection light is transmitted to the light-transmitting side objective lens 1.
5 enters the half prism 16 (splitting means),
Here, the light is divided into two directions, the projection light from the first projection optical system is at detection positions a 1 and a 2 on the surface to be inspected 3, and the projection light from the second projection optical system is at the detection positions a 3 and a 4. Light projection slit 13
Connect the slit images of.

【0020】被検面3の各検出位置a1 ,a2 ,a3
4 の表面で反射した反射光は、それぞれミラー14a
で上方に折り曲げられ、更に受光側対物レンズ15aに
よりそれぞれ集束されて、受光素子17a1 ,17a
2 ,17a3 ,17a4 (受光素子17a1 ,17a
2 ,17a3 ,17a4 を含む光学系をそれぞれ第1、
第2、第3、第4受光光学系とする)の受光面にスリッ
ト像を再結像する。
Each detection position a 1 , a 2 , a 3 , on the surface 3 to be inspected,
The reflected light reflected on the surface of a 4 is reflected by the mirror 14a.
Is bent upward by the light receiving elements 17a 1 and 17a.
2 , 17a 3 , 17a 4 (light receiving elements 17a 1 , 17a
An optical system including 2 , 17a 3 and 17a 4 is first,
The slit image is re-formed on the light receiving surfaces of the second, third, and fourth light receiving optical systems).

【0021】本実施例における受光素子17a1 〜17
4 は入射光の位置を計測するポジションセンサーであ
り、被検面と実質的に共役な受光面上でのスリット像の
結像位置を検出する。受光面上でのスリット像の基準位
置からのずれは各検出位置a1 〜a4 の基準平面(図に
は露光装置は示されていないが、被検面上にパターン像
を投影する投影対物レンズの結像面)からのずれに相当
する。
Light receiving elements 17a 1 to 17 in this embodiment
Reference numeral a 4 is a position sensor that measures the position of incident light, and detects the image formation position of the slit image on the light receiving surface that is substantially conjugate with the surface to be inspected. The deviation of the slit image from the reference position on the light receiving surface is the reference plane of each of the detection positions a 1 to a 4 (the exposure apparatus is not shown in the figure, but the projection objective for projecting the pattern image on the surface to be inspected. It corresponds to the deviation from the image plane of the lens).

【0022】そして、上記のようにして検出された各検
出位置a1 〜a4 におけるずれ量に基づいて、各検出位
置a1 〜a4 を含む面が基準面と平行になるように角度
補正すれば、被検面3上の部分領域(露光領域)の平均
的表面を基準面に合致させることができる。露光領域が
広い場合でも、光学系の位置や角度の調節によって検出
点が露光領域内にほぼ均等に位置するように設定するこ
とで、露光領域の平均的面の傾きを検出できる。
[0022] Then, on the basis of the shift amount at each detection position a 1 ~a 4 which is detected as described above, the angle correction as a plane including the respective detection positions a 1 ~a 4 is parallel to the reference plane Then, the average surface of the partial area (exposure area) on the surface 3 to be inspected can be matched with the reference surface. Even if the exposure area is large, the average surface inclination of the exposure area can be detected by setting the detection points so that they are located substantially evenly within the exposure area by adjusting the position and angle of the optical system.

【0023】なお、上記の実施例では、4つの検出位置
1 〜a4 からの反射光を4つの受光素子17a1 〜1
7a4 で同時に検出する構成をとっているが、必ずしも
すべての検出位置からの反射光を同時に検出する必要は
なく、場合によっては、光源11a1 ,11a2 の電源
のON/OFF又はシャッター等を用いて、各検出位置
からの反射光を時系列的に検出しても良いものである。
In the above embodiment, the reflected light from the four detection positions a 1 to a 4 is converted into the four light receiving elements 17a 1 to 1a.
7a 4 is used to detect simultaneously, but it is not always necessary to detect the reflected light from all the detection positions at the same time, and in some cases, turning on / off the power of the light sources 11a 1 and 11a 2 or using a shutter or the like. The reflected light from each detection position may be detected in time series by using this.

【0024】次に図3は本発明の第2の実施例による位
置検出装置の概略構成を示す斜視図である。本実施例で
は受光素子としてポジションセンサー17a1 〜17a
4 の代わりに光電顕微鏡の如く光電変換素子からなる受
光素子27a1 〜27a4 を用い、振動ミラー24aと
の組み合わせによって各検出位置の基準面(対物レンズ
の結像面)からの光軸方向の変位量を検出する構成をと
っている。これ以外の構成は図1,2の装置と同様であ
る。
Next, FIG. 3 is a perspective view showing a schematic structure of a position detecting device according to a second embodiment of the present invention. In this embodiment, position sensors 17a 1 to 17a are used as light receiving elements.
Instead of 4 , light receiving elements 27a 1 to 27a 4 made of photoelectric conversion elements such as a photoelectric microscope are used, and in combination with the oscillating mirror 24a, the optical axis direction from the reference plane (image plane of the objective lens) at each detection position is measured. It is configured to detect the amount of displacement. The configuration other than this is the same as that of the apparatus of FIGS.

【0025】図において、光源11a1 ,11a2 から
の投射光は投光スリット13を照射し、スリット13の
像は送光側対物レンズ15、ハーフプリズム16を介し
て被検面3上の各検出位置a1 〜a4 に結像される。検
出位置a1 〜a4 で夫々反射された光は振動ミラー24
aで反射され、受光側対物レンズ15aによって受光ス
リット20上に再結像される。受光スリット20に設け
られたスリット開口を通過した光は集光レンズ21によ
り集光されて受光素子27a1 〜27a4 でそれぞれ受
光される。即ち、振動ミラー24aを振動させることで
送光側スリット13の像は受光側スリット20の開口に
て走査され、受光素子27a1 〜27a4 の検出信号が
最大となったときのスリット20の開口の基準位置から
の変位量から被検面3の基準面からの変位が検出され
る。もちろん集光レンズ21がなくとも受光素子27a
1 〜27a4 で受光することは可能である。
In the figure, the projection light from the light sources 11a 1 and 11a 2 illuminates the light projecting slit 13, and the image of the slit 13 passes through the light-transmitting-side objective lens 15 and the half prism 16 on each surface 3 to be examined. An image is formed at the detection positions a 1 to a 4 . The lights reflected at the detection positions a 1 to a 4 are reflected by the vibrating mirror 24.
It is reflected by a and is re-imaged on the light receiving slit 20 by the light receiving side objective lens 15a. The light passing through the slit opening provided in the light receiving slit 20 is condensed by the condenser lens 21 and received by the light receiving elements 27a 1 to 27a 4 , respectively. That is, by vibrating the vibrating mirror 24a, the image of the light-transmitting side slit 13 is scanned by the opening of the light-receiving side slit 20, and the opening of the slit 20 when the detection signals of the light-receiving elements 27a 1 to 27a 4 become maximum. The displacement of the surface 3 to be detected from the reference surface is detected from the amount of displacement from the reference position. Of course, even without the condenser lens 21, the light receiving element 27a
It is possible to receive light at 1 to 27a 4 .

【0026】以下、本実施例における検出位置の基準面
からの変位の検出についてより具体的に説明する。図3
において、検出位置が基準面に合致しているとき(即ち
合焦状態)、送光側スリット13の像の中心と受光側ス
リット20の開口中心が一致するように構成されてお
り、このとき受光される光量は最大となる。この状態で
振動ミラー24aを一定の角周波数及び一定の振幅で単
振動させると、スリット像は受光側スリット20上を往
復移動し、スリット像の中心がスリット開口の中心から
離れるに従って光量は低下し、再びスリット像とスリッ
ト開口の中心が合致したとき光量が最大となる。
The detection of the displacement of the detection position from the reference plane in this embodiment will be described more specifically below. Figure 3
When the detection position coincides with the reference plane (that is, the in-focus state), the center of the image of the light-transmitting side slit 13 and the opening center of the light-receiving side slit 20 coincide with each other. The amount of light emitted is maximum. When the oscillating mirror 24a is simply oscillated with a constant angular frequency and a constant amplitude in this state, the slit image reciprocates on the light-receiving side slit 20, and the light amount decreases as the center of the slit image moves away from the center of the slit opening. , When the center of the slit image and the slit aperture center again, the amount of light becomes maximum.

【0027】即ち、受光素子27a1 〜27a4 の検出
信号は振動ミラー24aの振動周期の1/2の周期のサ
インカーブを描く。この際、検出位置が基準面からずれ
ていると、それに応じて、スリット像の振動中心が受光
側スリット20の開口中心から変位して、受光素子27
1 〜27a4 検出信号のサインカーブが崩れ、検出位
置のずれが検出される。スリット開口に対するスリット
像の変位の方向は検出位置が基準面より上方に位置する
(前ピン状態)か、基準面より下方に位置する(後ピン
状態)かに対応する。
That is, the detection signals of the light receiving elements 27a 1 to 27a 4 draw a sine curve having a half cycle of the vibration cycle of the vibrating mirror 24a. At this time, if the detection position deviates from the reference plane, the vibration center of the slit image is displaced from the center of the opening of the light-receiving side slit 20 accordingly, and the light receiving element 27
sine curve of a 1 through 27a 4 detection signal is lost, the deviation of the detection position is detected. The direction of displacement of the slit image with respect to the slit aperture corresponds to whether the detection position is above the reference plane (front pinned state) or below the reference plane (rear pinned state).

【0028】このようにして、本実施例では被検面3の
各検出位置における投影対物レンズ(図示せず)光軸方
向の位置が検出される。角度補正を行なうにあたっては
各検出位置でのずれ量の和が最も小さくなるように、換
言すれば各検出位置を含む仮想平面と基準面との合致面
積が最大となるように基板を移動させれば良い。これに
より、凹凸のある広い領域についてもその平均的面を投
影対物レンズの結像面に合わせることができ、焦点ずれ
の領域を最小限に抑えることができる。
In this way, in this embodiment, the position of the projection objective lens (not shown) in the optical axis direction at each detection position on the surface 3 to be detected is detected. When performing the angle correction, move the substrate so that the sum of the deviation amounts at each detection position becomes the smallest, in other words, the matching area between the virtual plane including each detection position and the reference plane becomes maximum. Good. This makes it possible to match the average surface of a wide area having irregularities with the image plane of the projection objective lens, and to minimize the area of defocus.

【0029】なお、上述した第1及び第2の実施例では
偏光については特に限定していないが、本発明における
分割手段として偏光部材を用いることもできる。この
際、偏光状態を制御するための手段としては、波長板に
限らず、磁場を制御して偏光面を回転調整するファラデ
ー素子や旋光性のある他の光学素子を使用しても良い。
Although the polarization is not particularly limited in the above-mentioned first and second embodiments, a polarizing member may be used as the dividing means in the present invention. At this time, the means for controlling the polarization state is not limited to the wave plate, and a Faraday element that controls the magnetic field to rotate and adjust the polarization plane or another optical element having an optical rotatory property may be used.

【0030】又、本発明は上述した各実施例に限定され
るものではなく、本発明の要旨を逸脱しない範囲で、種
々変形して実施することができ、装置を組み込むでき空
間に応じて適宜選択されるものである。例えば、一つの
光源からの光を3以上に分割しても良いものである。更
に、本発明の位置検出装置は半導体集積回路製造用の露
光装置のみならず、顕微鏡等にも適用できることは言う
までもない。
The present invention is not limited to the above-described embodiments, but can be modified in various ways without departing from the scope of the present invention, and the device can be incorporated therein, depending on the space. It is the one that is selected. For example, the light from one light source may be divided into three or more. Further, it goes without saying that the position detecting device of the present invention can be applied not only to an exposure device for manufacturing a semiconductor integrated circuit, but also to a microscope or the like.

【0031】[0031]

【発明の効果】以上のごとく本発明によれば、対物光学
系の略結像面に配置された被検面の部分領域について、
対物光学系の光軸方向の位置及び光軸に対する傾きを非
接触で容易に検出することができる。又、本発明では、
異なる検出位置について投射光学系を兼用すると共に、
各検出位置からの反射光をそれぞれ専用の受光光学系で
検出することによって同時多点検出を実現しているの
で、構成が簡単で限られた空間内にコンパクトに配置す
ることができ、光学系の調整も容易である。本発明の装
置を用いれば、対象となる部分領域が広く表面に凹凸が
ある場合でも、部分領域の平均的平面が対物光学系の光
軸に対して垂直となるように設定することができ、対物
光学系の許容焦点範囲が非常に狭い場合でも部分領域全
体にわたって最良の像を得ることができる。
As described above, according to the present invention, with respect to the partial area of the surface to be inspected, which is arranged substantially on the image plane of the objective optical system,
The position of the objective optical system in the optical axis direction and the inclination with respect to the optical axis can be easily detected without contact. In the present invention,
The projection optical system is also used for different detection positions,
Simultaneous multi-point detection is realized by detecting the reflected light from each detection position with a dedicated light receiving optical system, so the configuration is simple and it can be compactly arranged in a limited space. Is easy to adjust. With the use of the device of the present invention, even if the target partial region is wide and the surface has irregularities, the average plane of the partial region can be set to be perpendicular to the optical axis of the objective optical system. The best image can be obtained over the entire partial area even if the allowable focus range of the objective optical system is very narrow.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例による位置検出装置の光学系
の概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of an optical system of a position detecting device according to a first embodiment of the present invention.

【図2】図1の装置の光学系の平面図である。2 is a plan view of an optical system of the apparatus of FIG.

【図3】本発明第2実施例による位置検出装置の光学系
の概略構成を示す斜視図である。
FIG. 3 is a perspective view showing a schematic configuration of an optical system of a position detecting device according to a second embodiment of the present invention.

【図4】従来の装置を説明するための概略的な光路図で
ある。
FIG. 4 is a schematic optical path diagram for explaining a conventional device.

【図5】従来の装置を説明するための概略的な光路図で
ある。
FIG. 5 is a schematic optical path diagram for explaining a conventional device.

【図6】従来の装置を説明するための概略的な光路図で
ある。
FIG. 6 is a schematic optical path diagram for explaining a conventional device.

【符号の説明】[Explanation of symbols]

1 投影対物レンズ 1a 投影対物レンズ1の光軸 2 マスク 3 被検面 11a1 ,11a2 光源 12 コンデンサーレンズ 13 投光スリット 14 ミラー 14a ミラー 17a1 〜17a4 、27a1 〜27a4 受光素子 15,15a 対物レンズ 16 ハーフプリズム 20 受光スリット 21 集光レンズ 24a 振動ミラー a1 〜a4 検出位置1 projection objective 1a projection optical axis 2 mask 3 test surface 11a 1 of the objective lens 1, 11a 2 the light source 12 a condenser lens 13 light projecting slit 14 mirror 14a mirrors 17a 1 ~17a 4, 27a 1 ~27a 4 light receiving element 15, 15a the objective lens 16 half prism 20 receiving slit 21 a condenser lens 24a oscillating mirror a 1 ~a 4 detection position

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 対物光学系の略結像面に配置された被検
面上の所定の検出位置に前記対物光学系の光軸に対して
傾きをもつ方向から光を投光する投射光学系と、前記被
検面と実質的に共役関係にある受光面をもち、前記被検
面からの反射光を受光する受光光学系とを有し、該受光
光学系からの信号に基づいて前記被検面の前記対物光学
系の光軸方向の位置及び前記光軸に対する傾きを検出す
る位置検出装置において、 前記被検面上の互いに異なる検出位置に前記光を投光す
る第1及び第2の投射光学系と、該第1及び第2の投射
光学系からの投射光の光路をそれぞれ分割して、前記第
1投射光学系からの投射光を第1及び第2の検出位置
に、前記第2投射光学系からの投射光を第3及び第4の
検出位置にそれぞれ導く分割手段と、前記被検面上の第
1、第2、第3及び第4の検出位置からの反射光をそれ
ぞれ独立に受光する第1、第2、第3及び第4の受光光
学系とを備えたことを特徴とする位置検出装置。
1. A projection optical system for projecting light from a direction having an inclination with respect to an optical axis of the objective optical system to a predetermined detection position on a surface to be inspected arranged on a substantially image forming plane of the objective optical system. And a light receiving optical system that has a light receiving surface that is substantially in a conjugate relationship with the surface to be inspected and that receives reflected light from the surface to be inspected, and the object to be detected based on a signal from the light receiving optical system. A position detecting device for detecting a position of an inspection surface in an optical axis direction of the objective optical system and an inclination with respect to the optical axis, wherein first and second projections of the light are performed at different detection positions on the inspection surface. The projection optical system and the optical paths of the projection light from the first and second projection optical systems are respectively divided so that the projection light from the first projection optical system is located at the first and second detection positions and at the first detection position. Splitting means for guiding the projection light from the two projection optical systems to the third and fourth detection positions, respectively, and the surface to be inspected. The first, second, third and fourth detection positions are independently received, and the first, second, third and fourth light receiving optical systems are provided. Detection device.
JP4306203A 1992-10-20 1992-10-20 Position detecting device Pending JPH06130678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4306203A JPH06130678A (en) 1992-10-20 1992-10-20 Position detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4306203A JPH06130678A (en) 1992-10-20 1992-10-20 Position detecting device

Publications (1)

Publication Number Publication Date
JPH06130678A true JPH06130678A (en) 1994-05-13

Family

ID=17954240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4306203A Pending JPH06130678A (en) 1992-10-20 1992-10-20 Position detecting device

Country Status (1)

Country Link
JP (1) JPH06130678A (en)

Similar Documents

Publication Publication Date Title
US4962318A (en) Alignment system for exposure apparatus
US6297876B1 (en) Lithographic projection apparatus with an alignment system for aligning substrate on mask
US5661548A (en) Projection exposure method and apparatus including a changing system for changing the reference image-formation position used to generate a focus signal
WO1999039374A1 (en) Exposure method and device
JP3372728B2 (en) Surface position detection device
JP2000081320A (en) Face position detector and fabrication of device employing it
JPH0864496A (en) Aligning method
US5942357A (en) Method of measuring baseline amount in a projection exposure apparatus
JPH06310400A (en) Arranging system for aligning mask and wafer on axis
JPH1082611A (en) Apparatus for detecting position of face
JP3360321B2 (en) Surface position detecting apparatus and method, and exposure apparatus and method
JP3518826B2 (en) Surface position detecting method and apparatus, and exposure apparatus
US5726757A (en) Alignment method
JP2000012445A (en) Position detecting method and apparatus, and aligner equipped with the apparatus
US6539326B1 (en) Position detecting system for projection exposure apparatus
JP3003646B2 (en) Projection exposure equipment
JPH0799148A (en) Measuring method of accuracy of stepping
JPH06130678A (en) Position detecting device
JP3003694B2 (en) Projection exposure equipment
JPH097915A (en) Surface tilt detection system
JP3351051B2 (en) Horizontal detector and exposure apparatus using the same
JPH04348019A (en) Focus position detecting device
JPH05204166A (en) Position detector
JP3381740B2 (en) Exposure method and projection exposure apparatus
JP4258378B2 (en) Position detection apparatus, exposure apparatus, and exposure method