JPH06130248A - Method for connecting optical waveguide and optical fiber array - Google Patents

Method for connecting optical waveguide and optical fiber array

Info

Publication number
JPH06130248A
JPH06130248A JP3101811A JP10181191A JPH06130248A JP H06130248 A JPH06130248 A JP H06130248A JP 3101811 A JP3101811 A JP 3101811A JP 10181191 A JP10181191 A JP 10181191A JP H06130248 A JPH06130248 A JP H06130248A
Authority
JP
Japan
Prior art keywords
optical fiber
waveguide
fiber array
optical
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3101811A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Ota
一義 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP3101811A priority Critical patent/JPH06130248A/en
Publication of JPH06130248A publication Critical patent/JPH06130248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To easily connect an optical waveguide and an optical fiber array by observing a connecting part by means of a long focus stereoscopic microscope from diagonally above the optical fiber array and connecting the waveguide and the array upon confirmation that the visible rays on an incident side and exit side exist on a concentrical circle. CONSTITUTION:The waveguide 1 formed by providing an SiO2 clad layer on an Si substrate, constituting an 8-branch optical waveguide of TiO2-doped SiO2 and covering the upper part thereof with SiO2. An He-Ne laser output is made incident from the incident side of the waveguide and two pieces of optical fibers 5 at both ends of the optical fiber array 2 and the juncture is observed via quartz glass in the upper part of the optical fiber array 2 diagonally from above the optical fiber array 2 by the stereoscopic microscope 3. The respective axes of a fine adjustment base are finely adjusted while the rays emitted from two pieces of the optical fibers 5 at both ends of the optical fiber array 2 align to the spot in the waveguide part on the exit end face of the waveguide corresponding thereto on the concentrical circle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導波路型光分岐器の製
造方法に関するものである。特に、1.3μm,1.5
μmの不可視光線を用いる光導波路と光ファイバ−アレ
−との簡易な接続法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a waveguide type optical branching device. Especially 1.3 μm, 1.5
The present invention relates to a simple connection method between an optical waveguide using an invisible ray of μm and an optical fiber array.

【0002】[0002]

【従来技術】従来の接続方法は、単に導波路入射側より
光を入射し、光ファイバ−アレ−を介して透過してきた
光量が最大となるよう、導波路及び光ファイバ−アレ−
の位置関係を微調整していた。しかしながらこの方法で
は、調整する軸が、X,Y,Z方向の並進軸とその各々
の回転方向の軸とを合わせて6軸もあるため、かなりの
労力と時間を必要としていた。
2. Description of the Related Art In the conventional connection method, the waveguide and the optical fiber array are arranged so that the light quantity is simply incident from the waveguide entrance side and the amount of light transmitted through the optical fiber array is maximized.
I was fine-tuning the positional relationship. However, this method requires a considerable amount of labor and time because there are six axes to be adjusted, including translational axes in the X, Y, and Z directions and axes in the respective rotation directions.

【0003】[0003]

【問題点を解決するための手段】[Means for solving problems]

【0004】[0004]

【発明の構成】本発明は、上記の問題点を解決するもの
である。即ち、光導波路と光ファイバ−アレ−の接続に
際し、光導波路の入射側及び光ファイバ−アレ−出射側
から、それぞれ可視光線を入射し、接続部となる部分を
光ファイバ−アレ−上斜め上方から光ファイバ−アレ−
上半分を構成するガラス板を介して長焦点実体顕微鏡に
より、観察し、前記両者の可視光線が同心円上に位置す
ることを確認することにより接続を行なう事を特徴とす
る光導波路と光ファイバ−アレ−の接続方法に関する。
The present invention solves the above problems. That is, when connecting the optical waveguide and the optical fiber array, visible light is made incident respectively from the incident side of the optical waveguide and the emitting side of the optical fiber array, and the connecting portion is obliquely above the optical fiber array. From optical fiber
An optical waveguide and an optical fiber characterized by making a connection by observing with a long-focus stereomicroscope through a glass plate constituting the upper half and confirming that the visible rays of the both are located on a concentric circle. Regarding connection method of array.

【0005】[0005]

【発明の具体的説明】本発明で用いる光導波路は、S
i,ガラス等の基板上にSiO2クラッド層を設け、そ
の上部にTiO2ド−プのSiO2を、6μmから12μm
までの正方形状の光導波路として設け、その上部に再度
SiO2で、光導波路部分をカバ−するようにクラッド
層を設けた構成のものである。
DETAILED DESCRIPTION OF THE INVENTION The optical waveguide used in the present invention is S
i, the SiO 2 cladding layer provided on a substrate such as glass, TiO 2 de thereon - the SiO 2 of the flop, from 6 [mu] m 12 [mu] m
Up to a square-shaped optical waveguide, and a cladding layer is again provided on top of it by SiO 2 so as to cover the optical waveguide portion.

【0006】光ファイバ−アレ−は、Si、セラミクス
及びガラス基板上にダイシングソ−または、エッチング
で、シングルモ−ド、マルチモ−ド用光ファイバ−設置
用の溝を設け光ファイバ−を設置し、その上部を透明な
ガラス等で押さえ紫外線硬化樹脂で接着し、端面を光学
研磨したものである。可視光線としては、HeNeレ−
ザ−、LED等であり、出力としては、1mW以上であ
る。
The optical fiber array is a dicing saw or etching on Si, ceramics and glass substrates, and the optical fiber for single mode and multimode is provided with a groove for installation, and the optical fiber is installed. The upper part is pressed with transparent glass or the like and adhered with an ultraviolet curable resin, and the end faces are optically polished. The visible light is HeNe ray.
The output is 1 mW or more.

【0007】長焦点実体顕微鏡としては、接続状態確認
のために接続面上に1cm四方程度の視野が必要で、そ
のためある程度の大きさの開口径を持つ対物レンズが必
要となり、そのため必然的に焦点距離が長くなる事と、
接続作業時の作業性確保のため焦点距離5cm以上と
し、目視又はモニタ−カメラで接続状態を確認する事が
必要なため倍率20以上とする。図1に示す配置に於い
て、(1)光導波路、(2)光ファイバ−アレ−、
(3)実体顕微鏡、(4)可視光源、(5)接続用光フ
ァイバ−とし、導波路端面上の上記可視光線出射部のス
ポットと、それと対向する光ファイバ−アレ−の両端の
光ファイバ−から出射される可視光線が同心円上に一致
することを確認する。
As a long-focus stereomicroscope, a field of view of about 1 cm square is required on the connection surface to confirm the connection state. Therefore, an objective lens having an aperture diameter of a certain size is required, and therefore the focus is inevitably focused. The longer the distance,
The focal length is set to 5 cm or more to ensure workability during connection work, and the magnification is set to 20 or more because it is necessary to check the connection state visually or with a monitor-camera. In the arrangement shown in FIG. 1, (1) an optical waveguide, (2) an optical fiber array,
(3) Stereomicroscope, (4) visible light source, (5) optical fiber for connection, spot of the visible light emitting portion on the end face of the waveguide, and optical fiber facing it-optical fibers at both ends of array- Make sure that the visible light emitted from is coincident with the concentric circles.

【0008】以下、本発明の実施例について説明する。Hereinafter, examples of the present invention will be described.

【実施例1】Si基板上にSiO2クラッド層を設けそ
の上に、断面形状が8μmの方形で入射側1ヵ所、出射
側250μmピッチ8ヵ所の8分岐光導波路をTiO2
ド−プのSiO2により構成し、その上部をSiO2にて
カバ−した導波路(1)を用いた。
Example 1 A SiO 2 clad layer was provided on a Si substrate, and an 8-branched optical waveguide having a rectangular cross-section of 8 μm at one location on the incident side and eight locations on the exit side with a 250 μm pitch was formed on the TiO 2 cladding layer.
A waveguide (1) composed of doped SiO 2 and having an upper portion covered with SiO 2 was used.

【0009】光ファイバ−アレ−は、図2(5)で示す
Si基板上にダイシングソ−により250μmピッチ深
さ150μmの正三角形断面を持つ溝を設け、図2
(6)で示す1.3μm、1.5μm用シングルモ−ド
ファイバ−8本設置しその上部に、図2(7)で示す2
mm厚の石英ガラス板を紫外線硬化樹脂にて接着した。
導波路入射側及び光ファイバ−アレ−両端の2本のファ
イバ−からHe−Neレ−ザ−出力2mwを入射し、焦
点距離10cm,倍率20倍の実体顕微鏡にて光ファイ
バ−アレ−上方から斜めに光ファイバ−アレ−上部の石
英ガラスを介して接続部を観察し、光ファイバ−アレ−
の両端の2本のファイバ−から射出される光線がそれに
対応する導波路出射端面上の導波部分のスポトと同心円
上に一致するように図1(3)の実体顕微鏡で確認しな
がら図3(9)に示す各々の微調整台の各軸を微調整し
た。 以上の処理が10分程度で容易に接続できた。
In the optical fiber array, grooves having an equilateral triangular cross section with a pitch of 250 μm and a depth of 150 μm are provided on a Si substrate shown in FIG.
Eight single mode fibers for 1.3 μm and 1.5 μm shown in (6) are installed, and the two shown in FIG.
A quartz glass plate having a thickness of mm was adhered with an ultraviolet curable resin.
A He-Ne laser output of 2 mw is made incident from the waveguide entrance side and the optical fiber-two fibers at both ends of the optical fiber array from above with a stereo microscope with a focal length of 10 cm and a magnification of 20 times. Observe the connection part obliquely through the silica glass on the top of the optical fiber array.
While confirming with the stereomicroscope of FIG. 1 (3) so that the light rays emitted from the two fibers at the both ends of the optical axis coincide with the spots of the waveguide portion on the exit end face of the waveguide corresponding thereto, FIG. Each axis of each fine adjustment table shown in (9) was finely adjusted. The above process could be easily connected in about 10 minutes.

【0010】[0010]

【比較例1】上記と同じ条件で、片側のみHe−Neレ
−ザ−を入射した場合、接続する相手側の位置がわから
ず短時間での接続はできなかった。
[Comparative Example 1] Under the same conditions as above, when the He-Ne laser was incident on only one side, the position of the other side to be connected was not known and connection could not be made in a short time.

【0011】[0011]

【比較例2】可視光線を用いない場合の接続においては
微調整すべき可調軸が図3で示されるように6軸あるた
め接続するのに1時間必要であった。
[Comparative Example 2] In the connection without using visible light, one hour was required for connection because there are six adjustable axes to be finely adjusted as shown in FIG.

【0012】[0012]

【発明の効果】以上説明したように、(1)本発明によ
ると極めて簡易に光導波路と光ファイバ−アレ−の接続
を行なうことが可能となる。
As described above, (1) According to the present invention, the optical waveguide and the optical fiber array can be connected very easily.

【0013】(2)さらに、赤外線のような不可視光線
を用いる光導波路と光ファイバ−アレ−の接続において
も可視光線を用いて行なうことができるので作業性の向
上等の経済性に利点がある。
(2) Further, since the visible light can be used for the connection between the optical waveguide and the optical fiber array using the invisible light such as infrared rays, there is an advantage in economical efficiency such as improvement in workability. .

【0014】[0014]

【図面の簡単な説明】[Brief description of drawings]

図1は、本発明の光導波路と光ファイバ−アレ−の接続
方法を示す。 図2は、光ファイバ−アレ−の接続面側正面図である。 図3は、従来の接続方法を示す。 1は、光導波路である。2は、光ファイバ−アレ−であ
る。3は、長焦点実体顕微鏡である。4は、可視光源で
ある。5は、接続用光ファイバ−である。6は、Si基
板である。7は、光ファイバ−である。8は、ガラス板
である。9は、1.3μm又は、1.5μmの光源であ
る。10は、微調整用可動台である。11は、透過光量
測定用パワ−メ−タ−である。
FIG. 1 shows a method of connecting an optical waveguide and an optical fiber array according to the present invention. FIG. 2 is a front view of the connection surface side of the optical fiber array. FIG. 3 shows a conventional connection method. Reference numeral 1 is an optical waveguide. 2 is an optical fiber array. 3 is a long focus stereo microscope. 4 is a visible light source. Reference numeral 5 is an optical fiber for connection. 6 is a Si substrate. 7 is an optical fiber. 8 is a glass plate. Reference numeral 9 is a light source of 1.3 μm or 1.5 μm. Reference numeral 10 is a movable table for fine adjustment. Reference numeral 11 is a transmitted light amount measuring power meter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光導波路と光ファイバ−アレ−の接続に
際し、光導波路の入射側及び光ファイバ−アレ−出射側
から、それぞれ可視光線を入射し、接続部となる部分を
光ファイバ−アレ−上斜め上方から長焦点実体顕微鏡に
より、光ファイバ−アレ−上半分を構成するガラス板を
介して観察し、前記両者の可視光線が同心円上に位置す
ることにより接続を確認することを特徴とする光導波路
と光ファイバ−アレ−の接続方法。
1. When connecting an optical waveguide and an optical fiber array, visible light is made incident respectively from an incident side of the optical waveguide and an optical fiber-emitting side of the optical waveguide, and a portion to be a connecting portion is an optical fiber array. It is characterized in that the connection is confirmed by observing from a diagonally upper direction with a long focus stereomicroscope through a glass plate constituting the optical fiber-array upper half and locating the visible rays of the both on a concentric circle. How to connect optical waveguide and optical fiber.
JP3101811A 1991-04-08 1991-04-08 Method for connecting optical waveguide and optical fiber array Pending JPH06130248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3101811A JPH06130248A (en) 1991-04-08 1991-04-08 Method for connecting optical waveguide and optical fiber array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3101811A JPH06130248A (en) 1991-04-08 1991-04-08 Method for connecting optical waveguide and optical fiber array

Publications (1)

Publication Number Publication Date
JPH06130248A true JPH06130248A (en) 1994-05-13

Family

ID=14310519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3101811A Pending JPH06130248A (en) 1991-04-08 1991-04-08 Method for connecting optical waveguide and optical fiber array

Country Status (1)

Country Link
JP (1) JPH06130248A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091759A (en) * 2004-09-27 2006-04-06 Internatl Business Mach Corp <Ibm> Apparatus and method for controlling optical connection and method for manufacturing optical wiring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091759A (en) * 2004-09-27 2006-04-06 Internatl Business Mach Corp <Ibm> Apparatus and method for controlling optical connection and method for manufacturing optical wiring

Similar Documents

Publication Publication Date Title
KR100478800B1 (en) Optical package substrate, and optical device and module using this optical package substrate
US5703973A (en) Optical integrated circuit having passively aligned fibers and method using same
WO1992021047A1 (en) Method of connecting optical waveguide to optical fiber
JPH0138664B2 (en)
JPH1184277A (en) Self-aligning mechanical mxn optical switch
JPH06289259A (en) Optical connection device
US4830453A (en) Device for optically coupling a radiation source to an optical transmission fiber
JP2926664B2 (en) Optical module
JP4361024B2 (en) Optical circuit
CA2467400A1 (en) Focusing fiber optic
JP2004279618A (en) Optical collimator structure
GB2139377A (en) Optical connectors
JPH10123356A (en) Method for measuring position of optical transmission member and method for manufacturing optical device
JPS63291012A (en) Multiterminal light emission module
KR100430945B1 (en) Use of a laser to fusion-splice optical components of substantially different cross-sectional areas
JPH06130248A (en) Method for connecting optical waveguide and optical fiber array
JP4340210B2 (en) Optical component and manufacturing method thereof
JPH11194237A (en) Optical waveguide and its manufacture, and coupling structure between optical waveguide and photodetector
WO2021149589A1 (en) Optical component
JPH0836119A (en) Manufacture of low-loss collimator couple
JP2006235245A (en) Ferrule-type optical component and optical module using the same
JPH04288507A (en) Optical fiber two-dimensional array module
US6694076B2 (en) Method for centering a core of a waveguide amplifier
JP2007271676A (en) Fiber type optical path, fiber type component and optical module
JP2817611B2 (en) Optical coupler