JPH06130156A - Method and apparatus for searching embedded metal - Google Patents

Method and apparatus for searching embedded metal

Info

Publication number
JPH06130156A
JPH06130156A JP28007592A JP28007592A JPH06130156A JP H06130156 A JPH06130156 A JP H06130156A JP 28007592 A JP28007592 A JP 28007592A JP 28007592 A JP28007592 A JP 28007592A JP H06130156 A JPH06130156 A JP H06130156A
Authority
JP
Japan
Prior art keywords
buried object
detection
metal
detecting
metal buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28007592A
Other languages
Japanese (ja)
Inventor
Yutaka Hagiwara
裕 萩原
Hitoshi Kijima
均 木島
Masashi Sato
正志 佐藤
Tsutomu Nishimura
力 西村
Junichi Masuda
順一 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28007592A priority Critical patent/JPH06130156A/en
Publication of JPH06130156A publication Critical patent/JPH06130156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To provide a method and apparatus for searching a metal embedded in the ground which has relatively long search limit distance and can be constituted easily. CONSTITUTION:The apparatus alpha for searching a metal X embedded underground comprises electrodes 10a, 10b embedded in the vicinity of search starting and ending points, an AC power supply 9 having output terminals connected with the electrodes 10a, 10b and generating an AC current of predetermined frequency, a search sensor alpha' comprising an LCR resonance circuit alphaa' resonant with the output frequency of the AC power supply 9, and an operational amplifier section 11 for amplifying, shaping and operating voltage or current induced in the search sensor alpha'. A display section 12 for displaying presence or the shape of embedded metal X operated at the operational amplifier section 11 is also provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地下を掘削する地中掘
進機械の前方あるいは側方等の近傍地中に埋設された金
属埋設物の探知方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for detecting a metal buried object buried in the vicinity of a ground such as a front or side of an underground excavating machine for excavating underground.

【0002】[0002]

【従来の技術】従来、地中掘進機械は地中の埋設物等の
障害物を避けて掘削作業を行わねばならず、これらの埋
設物を探知する探知装置を具備していた。この探知装置
に用いられる探知方法としては、パルスレーダ法や電磁
誘導法等があった。
2. Description of the Related Art Conventionally, underground excavation machines have to perform excavation work while avoiding obstacles such as buried objects in the ground, and have been equipped with a detection device for detecting these buried objects. A pulse radar method, an electromagnetic induction method, and the like have been used as the detection method used in this detection apparatus.

【0003】従来例のパルスレーダ法を用いた埋設物探
知装置の構成を図5に、電磁誘導法を用いた埋設物探知
装置を図6に示す。図中、Xは埋設物、Aは地中掘進機
械、A’は地中掘進機械先端部、Bはレーダアンテナ
部、Cはサーチコイル部、1は送信アンテナ、2は受信
アンテナ、3はパルスレーダ本体、4は表示部、5は送
信コイル、6は受信コイル、7は演算増幅部、8は表示
部である。
FIG. 5 shows the structure of a buried object detecting apparatus using the conventional pulse radar method, and FIG. 6 shows the buried object detecting apparatus using the electromagnetic induction method. In the figure, X is a buried object, A is an underground excavation machine, A'is a tip of an underground excavation machine, B is a radar antenna section, C is a search coil section, 1 is a transmission antenna, 2 is a reception antenna, and 3 is a pulse. The radar main body, 4 is a display unit, 5 is a transmission coil, 6 is a reception coil, 7 is an operational amplification unit, and 8 is a display unit.

【0004】図5に示すパルスレーダ法を用いた埋設物
探知方法において、レーダアンテナ部Bは地中掘進機械
先端部A’に配設されており、当該レーダアンテナ部B
は電磁波パルスPを地中に放射する送信アンテナ1と、
地中の埋設物等に反射された電磁波パルスP’を受信す
る受信アンテナ2を並行配設してなる。送信アンテナ1
はパルスレーダ本体3の出力端子に、受信アンテナ2は
パルスレーダ本体3の入力端子にそれぞれ接続され、パ
ルスレーダ本体3の出力は表示部4に接続されている。
In the buried object detecting method using the pulse radar method shown in FIG. 5, the radar antenna section B is arranged at the tip A'of the underground excavation machine, and the radar antenna section B concerned.
Is a transmitting antenna 1 that radiates an electromagnetic wave pulse P into the ground,
The receiving antenna 2 for receiving the electromagnetic wave pulse P'reflected by the buried object in the ground is arranged in parallel. Transmitting antenna 1
Is connected to the output terminal of the pulse radar main body 3, the receiving antenna 2 is connected to the input terminal of the pulse radar main body 3, and the output of the pulse radar main body 3 is connected to the display unit 4.

【0005】パルスレーダ本体3から所定のパルス幅を
有する電磁波パルスPが一つあるいは複数個連続して出
力され、送信アンテナ1より地中に放射される。放射さ
れた電磁波パルスPは周辺土壌と比誘電率の異なる地中
の埋設物Xにて図中破線に示すように反射され、反射波
が受信アンテナ2に受信される。受信アンテナ2にて受
信された電磁波パルスP’はパルスレーダ本体3に入力
され、増幅、復調、波形整形を経た後、演算処理され、
埋設物の有無、位置及び形状等が表示部4に出力され
る。
One or a plurality of electromagnetic wave pulses P having a predetermined pulse width are continuously output from the pulse radar main body 3 and radiated from the transmitting antenna 1 into the ground. The radiated electromagnetic wave pulse P is reflected by an underground buried object X having a relative dielectric constant different from that of the surrounding soil as shown by a broken line in the figure, and the reflected wave is received by the receiving antenna 2. The electromagnetic wave pulse P ′ received by the receiving antenna 2 is input to the pulse radar main body 3, undergoes amplification, demodulation, and waveform shaping, and is then processed.
Presence / absence, position, shape, etc. of the buried object are output to the display unit 4.

【0006】図6に示す電磁誘導法を用いた埋設物探知
方法において、サーチコイル部Cは地中掘進機械先端部
A’に配設されており、当該サーチコイル部Cは、磁界
Mを発生、放射する送信コイル5と、当該放射された磁
界Mによって埋設物Xから発生した誘導磁界M’を受け
て電気エネルギーに変換する受信コイル6が並行配設さ
れている。送信コイル5は演算増幅部7の出力端子に、
受信コイル6は演算増幅部7の入力端子にそれぞれ接続
され、演算増幅部7の出力は表示部8に接続されてい
る。
In the buried object detecting method using the electromagnetic induction method shown in FIG. 6, the search coil portion C is arranged at the tip portion A'of the underground excavating machine, and the search coil portion C generates a magnetic field M. A transmitting coil 5 for radiating and a receiving coil 6 for receiving an induced magnetic field M ′ generated from the embedded object X by the radiated magnetic field M and converting it into electric energy are arranged in parallel. The transmission coil 5 is connected to the output terminal of the operational amplifier 7,
The receiving coils 6 are respectively connected to the input terminals of the operational amplification section 7, and the output of the operational amplification section 7 is connected to the display section 8.

【0007】演算増幅部7は交流電流を発生し送信コイ
ル5に送り込む。送信コイル5は交番磁界Mを発生し地
中に放射する。周辺土壌と比透磁率の異なる埋設物Xが
存在すると、地中の磁束密度が一定とならず、受信コイ
ル6にて検知される磁界M’は変動する。当該磁界を受
信コイル6によって電気エネルギーに変換し、演算増幅
部7へ入力して、増幅、波形整形及び演算処理を行い、
表示部8に出力して埋設物Xの有無、位置及び形状等を
表示する。従来の埋設物探知方法はこのように構成され
ているので、地中の埋設物の探知を行うことが可能であ
る。
The operational amplifier 7 generates an alternating current and sends it to the transmitter coil 5. The transmission coil 5 generates an alternating magnetic field M and radiates it into the ground. If the buried object X having a relative magnetic permeability different from that of the surrounding soil exists, the magnetic flux density in the ground is not constant, and the magnetic field M ′ detected by the receiving coil 6 fluctuates. The magnetic field is converted into electric energy by the receiving coil 6 and input to the operational amplifier 7, where amplification, waveform shaping and arithmetic processing are performed,
It is output to the display unit 8 to display the presence / absence, position, shape, etc. of the embedded object X. Since the conventional buried object detection method is configured in this manner, it is possible to detect buried objects in the ground.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、前記従
来のパルスレーダ法あるいは電磁誘導法を用いた埋設物
探知方法は、以下のような欠点を有していた。まず、両
方法共に送信部及び受信部がセンサ部に並行配設されて
いるため、レーダパルスあるいは磁力線が送信部から埋
設物、埋設物から受信部と往復の経路を通過せねばなら
ず、この経路となる土壌におけるレーダパルスあるいは
磁力線の減衰が極めて大きいことから、感度が低く、探
知限界距離が短い欠点があった。
However, the conventional buried object detecting method using the pulse radar method or the electromagnetic induction method has the following drawbacks. First, in both methods, since the transmitter and the receiver are arranged in parallel with the sensor, the radar pulse or the magnetic field line must pass through the route from the transmitter to the buried object, and from the buried object to the receiver. Since the attenuation of radar pulse or magnetic field lines in the soil that forms the path is extremely large, it has the drawbacks of low sensitivity and short detection limit distance.

【0009】パルスレーダ法は、小型の地中掘進機械等
の探知装置の搭載場所に制限を受ける機械装置に搭載す
る場合、必然的に送信アンテナ及び受信アンテナを小型
に構成せねばならない。これにより使用される電磁波パ
ルスの波長が短くなる。地中では波長が短くなるほど減
衰が大きくなるため、両者との兼ね合いから探知限界距
離を延ばすことが困難であり、例えばアンテナ長が20
cmでは約50cm程度の探知限界距離であることや、
電磁波パルスの発生回路及び復調回路がパルスレーダ本
体に必要であるために回路構成が複雑になり高価かつ装
置が比較的大型になる欠点があった。
In the pulse radar method, when it is mounted on a mechanical device such as a small underground excavating machine which is restricted in the mounting location of the detecting device, the transmitting antenna and the receiving antenna must be constructed in a small size. This shortens the wavelength of the electromagnetic pulse used. In the ground, the shorter the wavelength is, the larger the attenuation is. Therefore, it is difficult to extend the detection limit distance in consideration of the both. For example, if the antenna length is 20
In cm, the detection limit distance is about 50 cm,
Since the pulse radar main body requires an electromagnetic wave pulse generation circuit and a demodulation circuit, the circuit configuration is complicated, expensive, and the device is relatively large.

【0010】電磁誘導法では、地中掘進機械先端部の実
装スペースの関係から送信コイル及び受信コイルの大き
さが制限される。このため送信コイルの容量が小さく流
せる電流が制限されるので、放射される磁力線が少な
い。同様に受信コイルも巻数を多くとることが不可能な
ために感度が低い。このため探知限界距離が10cm〜
15cm程度と短い欠点があった。ここにおいて、本発
明は地中に埋設された金属埋設物の探知限界距離が比較
的長く、かつ容易に構成可能な金属埋設物探知方法及び
装置を提供せんとするものである。
In the electromagnetic induction method, the size of the transmitting coil and the receiving coil is limited due to the mounting space of the tip of the underground excavating machine. For this reason, the capacity of the transmission coil is small, and the current that can flow is limited, so that the magnetic field lines radiated are small. Similarly, the receiving coil has a low sensitivity because it is impossible to increase the number of turns. Therefore, the detection limit distance is 10 cm ~
It had a short defect of about 15 cm. Here, the present invention provides a method and apparatus for detecting a metal buried object which has a relatively long detection limit distance of a metal buried object buried in the ground and can be easily constructed.

【0011】[0011]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手法及び手段を採用
することにより達成される。すなわち、本発明方法の特
徴は、所要間隔を置いた二つの地点から地中に、ある発
振周波数の交流電圧を印加し、前記二つの地点間の地中
の金属埋設物に電流を流して磁界を発生させ、当該磁界
を地中掘進機械に取付けた探知センサにより前記発振周
波数で共振検知し、選択率Qを大きくして誘起電圧のQ
倍の検出電圧を得てなる金属埋設物探知方法である。
The solution to the above-mentioned problems can be achieved by adopting the novel characteristic construction method and means listed in the following by the present invention. That is, the feature of the method of the present invention is to apply an AC voltage of a certain oscillation frequency to the ground from two points spaced apart from each other by a current, and to apply a current to a metal buried object in the ground between the two points to generate a magnetic field. Is generated, and the magnetic field is resonantly detected at the oscillation frequency by the detection sensor attached to the underground excavation machine, and the selectivity Q is increased to increase the Q of the induced voltage.
This is a method for detecting a metal buried object obtained by doubling the detection voltage.

【0012】本発明装置の第1の特徴は、地中の金属埋
設物を探知する金属埋設物探知装置において、探知開始
位置近傍及び探知終了位置近傍に埋設した電極と、当該
電極にその出力端子が接続され所定の周波数の交流電流
を発生する交流電源と、当該交流電源の出力周波数に共
振する共振回路からなる探知センサと、当該探知センサ
に発生した電圧若しくは電流を増幅、波形整形及び演算
する演算増幅部と、当該演算増幅部にて演算された金属
埋設物の有無、位置あるいは形状を表示する表示部とを
具備してなる金属埋設物探知装置である。
The first feature of the device of the present invention is, in a metal buried object detecting device for detecting a metal buried object in the ground, an electrode buried near a detection start position and a detection end position, and an output terminal of the electrode. Is connected to generate an alternating current of a predetermined frequency, a detection sensor including a resonance circuit that resonates at the output frequency of the AC power supply, and a voltage or current generated in the detection sensor is amplified, waveform shaped, and calculated. A metal buried object detecting apparatus comprising: an operational amplifier section; and a display section that displays the presence, position, or shape of the metal buried object calculated by the operational amplifier section.

【0013】本発明装置の第2の特徴は、前記装置の第
1の特徴における探知センサが共振回路の代わりにホー
ル素子を具備してなる金属埋設物探知装置である。
A second feature of the device of the present invention is a metal-buried object detecting device in which the detection sensor according to the first feature of the above-mentioned device is provided with a Hall element instead of the resonance circuit.

【0014】[0014]

【作用】本発明は前記のような手法及び手段を講じたの
で、地上から交流電圧あるいは交流電流を印加すること
により、探知センサの共振作用を利用して検出電圧ある
いは検出電流を増大させることが可能となる。
Since the present invention has taken the above method and means, it is possible to increase the detection voltage or the detection current by utilizing the resonance action of the detection sensor by applying the AC voltage or the AC current from the ground. It will be possible.

【0015】[0015]

【実施例】【Example】

(方法例)本発明方法の実施例を図面につき詳説する。
図1は本実施例において金属埋設物が地中掘進機械前方
に直交して埋設されている場合を示す構成概念図、図2
は本実施例において金属埋設物が地中掘進機械に沿って
埋設されている場合を示す構成概念図である。図中、α
は金属埋設物探知装置、α’は探知センサ、9は交流電
源、10a,10bは電極、11は演算増幅部、12は
表示部である。なお、従来例と同一部材には同一記号を
付した。
(Example of Method) An example of the method of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a structural conceptual diagram showing a case where a metal buried object is buried orthogonally to the front of an underground excavation machine in this embodiment, and FIG.
FIG. 4 is a structural conceptual diagram showing a case where a metal buried object is buried along an underground excavating machine in this embodiment. In the figure, α
Is a metal buried object detection device, α ′ is a detection sensor, 9 is an AC power supply, 10a and 10b are electrodes, 11 is an operational amplifier, and 12 is a display. The same members as those in the conventional example are designated by the same reference numerals.

【0016】図1に示す本方法例において、金属埋設物
探知装置αは、交流電源9、電極10a,10b、演算
増幅部11及び表示部12から構成されている。探知セ
ンサα’は、地中掘進機械先端部A’に配設され、交流
電源9の出力周波数に等しい共振周波数を有するLCR
共振回路である。交流電源9は、探知センサα’の共振
周波数と同一周波数の交流電流を発生する。地中掘進機
械Aの推進開始地点近傍及び推進終了地点近傍には地上
からそれぞれ電極10a,10bを埋設し、交流電源9
の出力を電極10a,10bに接続し、地中に交流電流
を流す。
In the present method example shown in FIG. 1, the metal buried object detecting apparatus α is composed of an AC power source 9, electrodes 10a and 10b, an operational amplifier section 11 and a display section 12. The detection sensor α ′ is arranged at the tip A ′ of the underground excavation machine and has an LCR having a resonance frequency equal to the output frequency of the AC power supply 9.
It is a resonant circuit. The AC power supply 9 generates an AC current having the same frequency as the resonance frequency of the detection sensor α ′. Electrodes 10a and 10b are buried from the ground near the propulsion start point and the propulsion end point of the underground excavating machine A, respectively, and an AC power source 9
The output of is connected to the electrodes 10a and 10b, and an alternating current is made to flow in the ground.

【0017】この時金属管やヒューム管等の金属埋設物
Xはその固有の抵抗率が大地の抵抗率に対して1/10
から1/数百万であることから、流された交流電流は金
属埋設物Xが存在するとその中を通過する。金属埋設物
X内を交流電流が流れることにより金属埋設物Xの周囲
には交番磁界Mが発生する。
At this time, the metal buried object X such as a metal pipe or a fume pipe has an inherent resistivity of 1/10 of the resistivity of the ground.
Since it is 1 / several millions, the flowed alternating current passes through the metal buried object X, if present. An alternating magnetic field M is generated around the metal buried object X by the alternating current flowing in the metal buried object X.

【0018】この交番磁界Mの磁力線を探知センサα’
にて検出し、当該探知センサα’のLCR共振回路にて
共振させた後、検出信号Sとして取り出す。探知センサ
α’にて検出された検出信号Sは、演算増幅部11に入
力され、増幅、波形整形及び信号処理が行われ、表示部
12に金属埋設物Xの有無、距離、位置及び形状等を表
示する。
The magnetic field lines of the alternating magnetic field M are detected by the detection sensor α '.
The detection signal α ′ is resonated by the LCR resonance circuit of the detection sensor α ′, and then extracted as the detection signal S. The detection signal S detected by the detection sensor α ′ is input to the operational amplification unit 11, where amplification, waveform shaping and signal processing are performed, and the presence or absence of the metal buried object X on the display unit 12, distance, position and shape, etc. Is displayed.

【0019】一般に大地の抵抗率は1mあたり100Ω
前後であり、図6に示す電磁誘導法に用いる送信コイル
5の直流抵抗分に対し約20倍程度である。本方法例で
は交流電圧を印加するので、インピーダンスを考慮する
と、送信コイル5を用いたセンサ回路と比較した大地帰
還回路では数倍〜十倍程度であるため、印加電圧もこの
程度多くすれば良い。図6の電磁誘導法では送信コイル
5に5V程度の交流電圧を印加しているので、本方法例
を利用しても土壌の厚さ1mにつき50V程度の交流電
圧を印加すれば良い。
Generally, the resistivity of the ground is 100 Ω / m.
Before and after, about 20 times the DC resistance of the transmission coil 5 used in the electromagnetic induction method shown in FIG. Since an AC voltage is applied in this example of the method, considering the impedance, the ground feedback circuit compared with the sensor circuit using the transmission coil 5 is about several times to ten times, so the applied voltage may be increased to this extent. . Since an AC voltage of about 5 V is applied to the transmission coil 5 in the electromagnetic induction method of FIG. 6, it is sufficient to apply an AC voltage of about 50 V per 1 m of soil thickness even if this method example is used.

【0020】(装置例)本発明装置の実施例を図面につ
き詳説する。図1は本実施例において金属埋設物が地中
掘進機械前方に直交して埋設されている場合を示す構成
概念図、図2は本実施例において金属埋設物が地中掘進
機械に沿って埋設されている場合を示す構成概念図、図
3は本発明装置のLCR直列共振回路を用いた探知セン
サの原理回路図、図4は本発明装置のLCR並列共振回
路を用いた探知センサの原理回路図である。図中、α
a’はLCR直列共振回路、αb’はLCR並列共振回
路、13はコイル、14はコンデンサ、15は抵抗、1
6はコイル、17はコンデンサ、18は抵抗である。な
お、従来例と同一部材には同一記号を付した。
(Apparatus Example) An embodiment of the apparatus of the present invention will be described in detail with reference to the drawings. FIG. 1 is a structural conceptual view showing a case where a metal buried object is buried orthogonally to the front of the underground excavating machine in this embodiment, and FIG. 2 is a metal buried object buried along the underground excavating machine in this embodiment. 3 is a conceptual diagram of the configuration of the detection sensor using the LCR series resonance circuit of the present invention device, and FIG. 4 is a principle circuit of the detection sensor using the LCR parallel resonance circuit of the present invention device. It is a figure. In the figure, α
a ′ is an LCR series resonance circuit, αb ′ is an LCR parallel resonance circuit, 13 is a coil, 14 is a capacitor, 15 is a resistor, 1
6 is a coil, 17 is a capacitor, and 18 is a resistor. The same members as those in the conventional example are designated by the same reference numerals.

【0021】図1に示す本装置例において、金属埋設物
探知装置αは、探知センサα’、交流電源9、電極10
a,10b、演算増幅部11及び表示部12から構成さ
れている。地中掘進装置先端部A’には探知センサα’
が配設されている。当該探知センサα’に設けられたコ
イル13は、コンデンサ14及び抵抗15と直列共振回
路あるいは並列共振回路を構成し、その共振周波数が交
流電源9の出力周波数と等しくなるように、又その選択
率(Q値)ができるだけ高い値を有するように各素子の
特性値が選択されている。コイル13は探知センサα’
の最前部に配設され、最も探知感度が高くなるように配
設されている。
In the example of the present apparatus shown in FIG. 1, the metal buried object detecting apparatus α includes a detecting sensor α ′, an AC power source 9, and an electrode 10.
a, 10b, an operational amplifier 11, and a display 12. A detection sensor α'is provided at the tip A'of the underground excavation device.
Is provided. The coil 13 provided in the detection sensor α ′ constitutes a series resonance circuit or a parallel resonance circuit together with the capacitor 14 and the resistor 15 so that the resonance frequency becomes equal to the output frequency of the AC power supply 9 and the selection rate thereof. The characteristic value of each element is selected so that the (Q value) has a value as high as possible. The coil 13 is a detection sensor α '
Is arranged at the foremost part of the No. 1 and has the highest detection sensitivity.

【0022】交流電源9は、探知センサα’の共振周波
数と同一周波数の交流電流を発生する。地中掘進機械A
の推進開始地点及び推進終了地点のそれぞれ近傍には地
上から電極10a,10bを埋設し、交流電源9の出力
を電極10a,10bに接続し、地中に交流電流を流
す。この時金属管やヒューム管等の金属埋設物Xはその
固有の抵抗率が大地の抵抗率に対して1/10から1/
数百万であることから、流された交流電流は金属埋設物
Xが存在するとその中を通過する。
The AC power supply 9 generates an AC current having the same frequency as the resonance frequency of the detection sensor α '. Underground excavation machine A
Electrodes 10a and 10b are buried from the ground near the propulsion start point and the propulsion end point, respectively, and the output of the AC power supply 9 is connected to the electrodes 10a and 10b to pass an AC current in the ground. At this time, the inherent resistivity of the metal buried object X such as the metal pipe or the fume pipe is 1/10 to 1 / the resistivity of the ground.
Since it is several million, the flowed alternating current passes through the metal buried object X, if present.

【0023】金属埋設物X内を交流電流が流れることに
より金属埋設物Xの周囲には交番磁界Mが発生する。こ
の交番磁界Mの磁力線を探知センサα’先端のコイル1
3にて検出し、LCR共振回路にて共振させた後、検出
信号として取り出す。探知センサα’にて検出された検
出信号Sは、演算増幅部11に入力され、増幅、波形整
形及び信号処理が行われ、表示部12に金属埋設物Xの
有無、距離及び形状等を表示する。
An alternating magnetic field M is generated around the metal buried object X due to the alternating current flowing in the metal buried object X. The magnetic field lines of the alternating magnetic field M are detected by the coil 1 at the tip of the detection sensor α ′.
It is detected in 3 and resonated in the LCR resonance circuit, and then extracted as a detection signal. The detection signal S detected by the detection sensor α ′ is input to the operational amplification unit 11 where amplification, waveform shaping and signal processing are performed, and the display unit 12 displays the presence or absence of the metal buried object X, the distance and the shape, etc. To do.

【0024】次に図3乃至図4より本装置例に用いる受
信センサ回路の原理について説明する。図3はLCR直
列共振回路αa’を用いた受信センサ回路を、図4はL
CR並列共振回路αbを用いた受信センサ回路をそれぞ
れ示したものである。図3のLCR直列共振回路αa’
を用いた受信センサ回路において、コイル13、コンデ
ンサ14及び抵抗15は直列接続されている。コイル1
3のインダクタンスをL、コンデンサ14の容量をC、
抵抗15の抵抗値をR、LCR直列共振回路αa’のイ
ンピーダンスをZ、角周波数をω、周波数をfとする
と、 Z=(R2 +(ωL−1/ωC)2 1/2 となる。
Next, the principle of the reception sensor circuit used in this example of the apparatus will be described with reference to FIGS. FIG. 3 shows a receiving sensor circuit using the LCR series resonance circuit αa ′, and FIG.
The reception sensor circuits using the CR parallel resonance circuit αb are shown respectively. LCR series resonance circuit αa ′ of FIG.
In the reception sensor circuit using, the coil 13, the capacitor 14, and the resistor 15 are connected in series. Coil 1
The inductance of 3 is L, the capacity of the capacitor 14 is C,
If the resistance value of the resistor 15 is R, the impedance of the LCR series resonance circuit αa ′ is Z, the angular frequency is ω, and the frequency is f, then Z = (R 2 + (ωL-1 / ωC) 2 ) 1/2 .

【0025】ここで、直列共振回路のインピーダンスが
最小になる角周波数をωr 、共振周波数をfr とする
と、これを満たす条件は、 ωr L−1/ωr C=0 より LCω r 2 =1 ωr =1/(LC)1/2 ωr =2πfr より、 fr =1/(2π(LC)1/2 ) である。
Assuming that the angular frequency at which the impedance of the series resonance circuit is minimum is ω r and the resonance frequency is f r , the condition that satisfies these conditions is ω r L-1 / ω r C = 0, and LC ω r 2 = than 1 ω r = 1 / (LC ) 1/2 ω r = 2πf r, it is f r = 1 / (2π ( LC) 1/2).

【0026】この時、選択率Qは次式で表される。 Q=ωr L/R =(2πfr L)/R =1/(2πfr CR)At this time, the selectivity Q is expressed by the following equation. Q = ω r L / R = (2πf r L) / R = 1 / (2πf r CR)

【0027】この時、コイル13及びコンデンサ14の
両端の電位差をそれぞれEL 、ECとすると、 EL =(2πfr L)/R・E EC =1/(2πfr CR)・E よって、共振時にLCR直流共振回路αa’のコイル1
3及びコンデンサ14にかかる電圧は共にQ倍となり、
共振現象によって高い検出電圧を取り出すことができ
る。
At this time, assuming that the potential differences between the ends of the coil 13 and the capacitor 14 are E L and E C , respectively, E L = (2πf r L) / R · E E C = 1 / (2πf r CR) · E , Coil 1 of LCR DC resonance circuit αa 'at resonance
3 and the voltage applied to the capacitor 14 are both Q times,
A high detection voltage can be taken out by the resonance phenomenon.

【0028】図4はLCR並列共振回路αb’を用いた
受信センサ回路において、コイル16と抵抗17は直列
接続され、これにコンデンサ18が並列接続されてい
る。コイル16、抵抗17及びコンデンサ18のインピ
ーダンスをそれぞれZL 、ZR及びZC と表すと、LC
R並列共振回路のαb’インピーダンスZは、 Z=((ZR +ZL )・ZC )/(ZR +ZL +ZC
FIG. 4 shows a receiving sensor circuit using an LCR parallel resonance circuit αb ', in which a coil 16 and a resistor 17 are connected in series, and a capacitor 18 is connected in parallel. When the impedances of the coil 16, the resistor 17, and the capacitor 18 are expressed as Z L , Z R, and Z C , respectively, LC
The αb ′ impedance Z of the R parallel resonance circuit is Z = ((Z R + Z L ) · Z C ) / (Z R + Z L + Z C ).

【0029】この時、直流抵抗分ZR が非常に小さけれ
ば分母は無視でき、なおかつ共振時にはZL とZC が等
しいので、 Z=(ZL 2 /R =(2πfr L)2 /R =(1/R)・(2πfr L/2πfr C) =L/(C・R) =(2πfr L)2 /R2 ・R =Q2 ・R
At this time, if the DC resistance component Z R is very small, the denominator can be ignored, and since Z L and Z C are equal at resonance, Z = (Z L ) 2 / R = (2πf r L) 2 / R = (1 / R) · (2πf r L / 2πf r C) = L / (C · R) = (2πf r L) 2 / R 2 · R = Q 2 · R

【0030】よって、選択率Qは、 Q=(Z/R)1/2 =(L/(C・R2 ))1/2 よって、LCR並列共振回路αb’の起電力Eは、 E=I・Z =I・(L/(C・R))Therefore, the selectivity Q is Q = (Z / R) 1/2 = (L / (C · R 2 )) 1/2 Therefore, the electromotive force E of the LCR parallel resonance circuit αb ′ is E = I ・ Z = I ・ (L / (C ・ R))

【0031】よって、コイル15を流れる電流IL は次
式で表せる。 IL =E/ωL この時の選択率QはLCR直列共振回路αa’の時と同
様に表せるので、上式に代入して、 IL =Q・I となり、共振時にはコイル16に流れる電流IL はコイ
ル16に発生する電流のQ倍となる。従って、LCR並
列共振回路αb’を受信センサに使用すれば検出電流を
多くすることが可能となる。
Therefore, the current I L flowing through the coil 15 can be expressed by the following equation. I L = E / ωL Since the selectivity Q at this time can be expressed in the same manner as in the case of the LCR series resonance circuit αa ′, it is substituted into the above equation, I L = Q · I, and the current I flowing through the coil 16 at resonance is obtained. L is Q times the current generated in the coil 16. Therefore, the detection current can be increased by using the LCR parallel resonance circuit αb ′ for the reception sensor.

【0032】センサ部にホール素子を用いた他の例につ
いて詳説する。ホール素子は磁力線の通過量に比例して
通過する電流が増加し、またその検出感度が高いことか
ら、探知センサα’に使用するLCR共振回路αa’,
αb’の代替として使用することができる。
Another example in which the Hall element is used in the sensor section will be described in detail. Since the Hall element increases the amount of current passing therethrough in proportion to the amount of passage of magnetic force lines and has a high detection sensitivity, the LCR resonance circuit αa ′ used in the detection sensor α ′,
It can be used as an alternative to αb ′.

【0033】交番磁界Mの磁力線を探知センサα’のホ
ール素子にて検出し、検出信号Sとして取り出す。探知
センサα’にて検出された検出信号Sは、演算増幅部1
1に入力され、増幅、波形整形及び信号処理が行われ、
表示部12に金属埋設物Xの有無、距離及び形状等を表
示する。
The magnetic field lines of the alternating magnetic field M are detected by the Hall element of the detection sensor α'and extracted as a detection signal S. The detection signal S detected by the detection sensor α ′ is the operational amplifier 1
1 is input, amplification, waveform shaping and signal processing are performed,
The presence / absence of the metal buried object X, the distance, the shape, etc. are displayed on the display unit 12.

【0034】[0034]

【発明の効果】かくして、本発明によれば、地上に設置
した交流電源に接続された二本の電極を埋設し交流電流
を地中に流すことによって、探知限界距離を大幅に延ば
すことが可能となる。また、探知用の発信源が地上にあ
り、なおかつ金属埋設物には探知センサからは何等の手
段を講じなくても磁界を発生させることが可能であり発
信源の大きさに制約を受けないので探知装置の設置に融
通性を有する。
As described above, according to the present invention, it is possible to significantly extend the detection limit distance by burying two electrodes connected to an AC power source installed on the ground and flowing an AC current into the ground. Becomes In addition, there is a source for detection on the ground, and it is possible to generate a magnetic field in a metal buried object without taking any means from the detection sensor, so there is no restriction on the size of the source. It has flexibility in the installation of the detection device.

【0035】さらに、地中掘進機械先端部に発信源を設
ける必要がないことから、該先端部を小型・軽量に構成
できる利点を有する。特に探知センサとしてホール素子
を使用した場合には非常に小型軽量に構成可能である。
その上、装置構成が容易で安価に構成できることから、
優れた経済性、有用性を発揮する。
Further, since it is not necessary to provide a transmission source at the tip of the underground excavation machine, there is an advantage that the tip can be made small and lightweight. In particular, when a hall element is used as a detection sensor, it can be made very small and lightweight.
Moreover, since the device configuration is easy and inexpensive,
Exhibits excellent economic efficiency and usefulness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明において金属埋設物が地中掘進機械前方
に直交して埋設されている場合を示す構成概念図であ
る。
FIG. 1 is a structural conceptual diagram showing a case where a metal buried object is buried orthogonally to the front of an underground excavation machine in the present invention.

【図2】同上・金属埋設物が地中掘進機械に沿って埋設
されている場合を示す構成概念図である。
FIG. 2 is a structural conceptual diagram showing a case where the same metal-embedded object is buried along an underground excavation machine.

【図3】本発明装置のLCR直列共振回路を用いた探知
センサの原理回路図である。
FIG. 3 is a principle circuit diagram of a detection sensor using an LCR series resonance circuit of the device of the present invention.

【図4】同上・LCR並列共振回路を用いた探知センサ
の原理回路図である。
FIG. 4 is a principle circuit diagram of a detection sensor using the same LCR parallel resonance circuit.

【図5】従来例のパルスレーダ法を用いた埋設物探知装
置の構成概念図である。
FIG. 5 is a conceptual diagram of a configuration of a buried object detection device using a pulse radar method of a conventional example.

【図6】従来例の電磁誘導法を用いた埋設物探知装置の
構成概念図である。
FIG. 6 is a conceptual diagram of the configuration of a buried object detection device using an electromagnetic induction method of a conventional example.

【符号の説明】[Explanation of symbols]

α…金属埋設物探知装置 α’…探知センサ A…地中掘進機械 A’…地中掘進機械先端部 B…レーダアンテナ部 C…サーチコイル部 αa’…LCR直列共振回路 αb’…LCR並列共振回路 X…金属埋設物 1…送信アンテナ 2…受信アンテナ 3…パルスレーダ本体 4…表示部 5…送信コイル 6…受信コイル 7…演算増幅部 8…表示部 9…交流電源 10a,10b…電極 11…演算増幅部 12…表示部 13…コイル 14…コンデンサ 15…抵抗 16…コイル 17…抵抗 18…コンデンサ α ... Metal buried object detection device α '... Detection sensor A ... Underground excavation machine A' ... Underground excavation machine tip B ... Radar antenna part C ... Search coil part αa '... LCR series resonance circuit αb' ... LCR parallel resonance Circuit X ... Metal buried object 1 ... Transmission antenna 2 ... Reception antenna 3 ... Pulse radar main body 4 ... Display unit 5 ... Transmission coil 6 ... Reception coil 7 ... Operation amplification unit 8 ... Display unit 9 ... AC power supply 10a, 10b ... Electrode 11 Computational amplification section 12 ... Display section 13 ... Coil 14 ... Capacitor 15 ... Resistor 16 ... Coil 17 ... Resistor 18 ... Capacitor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 力 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 増田 順一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Riki Nishimura 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Junichi Masuda 1-16-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nippon Telegraph and Telephone Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】所要間隔を置いた二つの地点から地中に、
ある発振周波数の交流電圧を印加し、前記二つの地点間
の地中の金属埋設物に電流を流して磁界を発生させ、当
該磁界を地中掘進機械に取付けた探知センサにより前記
発振周波数で共振検知し選択率Qを大きくして誘起電圧
のQ倍の検出電圧を得ることを特徴とする金属埋設物探
知方法。
1. From two points with a required distance to the ground,
Applying an AC voltage of a certain oscillation frequency, passing a current through the underground metal buried object between the two points to generate a magnetic field, and resonating at the oscillation frequency by the detection sensor attached to the underground excavation machine. A method for detecting a metal buried object, which comprises detecting and increasing the selection rate Q to obtain a detection voltage Q times the induced voltage.
【請求項2】地中の金属埋設物を探知する金属埋設物探
知装置において、探知開始位置近傍及び探知終了位置近
傍に埋設した電極と、当該電極にその出力端子が接続さ
れ所定の周波数の交流電流を発生する交流電源と、当該
交流電源の出力周波数に共振する共振回路からなる探知
センサと、当該探知センサに発生した電圧若しくは電流
を増幅、波形整形及び演算する演算増幅部と、当該演算
増幅部にて演算された金属埋設物の有無、位置あるいは
形状を表示する表示部とを具備したことを特徴とする金
属埋設物探知装置。
2. A metal buried object detecting apparatus for detecting a metal buried object in the ground, an electrode buried near a detection start position and a detection end position, and an output terminal connected to the electrode, and an alternating current of a predetermined frequency. An AC power supply that generates an electric current, a detection sensor including a resonance circuit that resonates at the output frequency of the AC power supply, an operational amplification unit that amplifies the voltage or current generated in the detection sensor, shapes the waveform, and operates the operation amplification unit. A metal buried object detection apparatus, comprising: a display unit that displays the presence, position, or shape of the metal buried object calculated by the unit.
【請求項3】探知センサは共振回路の代わりにホール素
子を具備したことを特徴とする請求項2記載の金属埋設
物探知装置。
3. The metal embedded object detecting apparatus according to claim 2, wherein the detecting sensor includes a Hall element instead of the resonance circuit.
JP28007592A 1992-10-19 1992-10-19 Method and apparatus for searching embedded metal Pending JPH06130156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28007592A JPH06130156A (en) 1992-10-19 1992-10-19 Method and apparatus for searching embedded metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28007592A JPH06130156A (en) 1992-10-19 1992-10-19 Method and apparatus for searching embedded metal

Publications (1)

Publication Number Publication Date
JPH06130156A true JPH06130156A (en) 1994-05-13

Family

ID=17619959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28007592A Pending JPH06130156A (en) 1992-10-19 1992-10-19 Method and apparatus for searching embedded metal

Country Status (1)

Country Link
JP (1) JPH06130156A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034539B2 (en) 2003-07-16 2006-04-25 Canon Kabushiki Kaisha Underground exploration apparatus, system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7034539B2 (en) 2003-07-16 2006-04-25 Canon Kabushiki Kaisha Underground exploration apparatus, system and method

Similar Documents

Publication Publication Date Title
US4818944A (en) Magnetic locating and tracing system and method using dual-antenna transmitter to distinguish between concealed adjacent objects
EP0535139B1 (en) An improved system for locating concealed underground objects using digital filtering
KR0147811B1 (en) Locatable object suitable for underground use and method of locating the same
EP0368762B1 (en) Multifrequency signal transmitter for an array induction well logging apparatus
FI71203B (en) FOER FARERE OCH ANORDNING FOER BESTAEMNING AV MARKENS ELEKTRISKA LEDNINGSFOERMAOGA
GB2041531A (en) Detecting inaccessible objects
US20030107377A1 (en) Metal detector
US6690169B2 (en) Interference cancelling metal detector including electronic selection of effective sensing coil arrangement
JPH06130156A (en) Method and apparatus for searching embedded metal
JP3189189B2 (en) Metal buried object detection sensor assembly device
WO1998054600A1 (en) Detecting concealed pipes and cables
US6122969A (en) Main bang recovery EMAT
CN220491053U (en) Portable underground metal detector
JP3259907B2 (en) Vehicle sensor
USH1217H (en) Easily tunable detector for covering discontinuities in buried energized antenna ground wipes
JP3392221B2 (en) How to detect long buried objects
US20220276074A1 (en) Systems and methods for through wall locating
JP2002070062A (en) Detecting method for underground buried piping
CN211291329U (en) Highway guardrail stand burial depth detection device
JPH09189772A (en) Electromagnetic induction sensor for surveying metals
JPH0659048A (en) Inductive transmission type buried pipe detecter and its transmitter
JP2003107166A (en) Resonance body marker surveying device
JPH07119806B2 (en) Obstacle detection device for civil engineering excavation and propulsion machinery
JPH079464B2 (en) Position detection method and system for buried object, and optical fiber cable
JP4039947B2 (en) Electromagnetic proximity detector