JPH0612973A - Method for operating thermoelectric field radiating cathode - Google Patents

Method for operating thermoelectric field radiating cathode

Info

Publication number
JPH0612973A
JPH0612973A JP18895392A JP18895392A JPH0612973A JP H0612973 A JPH0612973 A JP H0612973A JP 18895392 A JP18895392 A JP 18895392A JP 18895392 A JP18895392 A JP 18895392A JP H0612973 A JPH0612973 A JP H0612973A
Authority
JP
Japan
Prior art keywords
electron beam
field emission
emission cathode
cathode
emit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18895392A
Other languages
Japanese (ja)
Other versions
JP3164651B2 (en
Inventor
Masaru Ide
勝 井出
Yoshinori Terui
良典 照井
Katsuyoshi Tsunoda
勝義 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP18895392A priority Critical patent/JP3164651B2/en
Publication of JPH0612973A publication Critical patent/JPH0612973A/en
Application granted granted Critical
Publication of JP3164651B2 publication Critical patent/JP3164651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To emit a stable electron beam by heating a thermoelectric field emitting cathode in a specific condition to volatilize a volatile, object from a hot cathode constitutional member, and then increasing drawout voltage to emit the electron beam. CONSTITUTION:A thermoelectric field emitting cathode, comprising a tungsten monocrystal needle electrode of <100> axial azimuth having a coating layer consisting of Zr and oxygen and a suppressor electrode formed of conductive material with 5X10<-10>m<2>/s or less diffusion speed of hydrogen gas at 600 deg.K, is heated while holding drawout voltage to 1kv or less and a vacuum degree to 1X10<-8>Torr, to volatilize a volatile object from a thermoelectric field emitting cathode constitutional member. Then, the drawout voltage is increased to emit an electron beam.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子顕微鏡、測長機、電
子ビーム露光機、電子ビームテスターなどに用いられる
熱電界放射陰極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal field emission cathode used in electron microscopes, length measuring machines, electron beam exposure machines, electron beam testers and the like.

【0002】[0002]

【従来の技術】安定な高輝度電子源としてLaB6からなる
熱電子放射体が使用されているが、より輝度の高い超高
速電子ビーム露光装置などに必要とされる放射条件を満
たすには至っていない。そこで、近年、軸方位が<10
0>方位からなるタングステン単結晶の針状電極にジル
コニウムと酸素とからなる被覆層を設けた、いわゆるZr
O/W熱電界放射陰極が、従来の熱陰極に比べて高輝度、
長寿命であり、また冷電界放射陰極よりも安定で使いや
すいという特徴を有するため、使用されるようになって
いる。
2. Description of the Related Art A thermoelectron emitter made of LaB 6 is used as a stable high-brightness electron source, but it has not reached the radiation conditions required for an ultrahigh-speed electron beam exposure apparatus with higher brightness. Not in. Therefore, in recent years, the axis direction has become <10.
The so-called Zr in which a coating layer made of zirconium and oxygen is provided on a needle electrode of a tungsten single crystal having a 0> orientation.
The O / W thermal field emission cathode has higher brightness than the conventional hot cathode.
It is used because it has a long life and is stable and easy to use as compared with a cold field emission cathode.

【0003】[0003]

【発明が解決しようとする課題】上述した熱電界放射陰
極は所定の回路にセットして真空に排気した後、熱電界
放射陰極の温度を上げながら所定の電界を印加して電子
ビームを放射させるが、安定に動作させるには、限られ
た温度領域と良好な真空度を確保することが重要であ
る。一般的には温度領域として1400〜1900度K、真空度
として10-8Torrより良い真空下で動作させる必要があ
る。
The above-mentioned thermal field emission cathode is set in a predetermined circuit and evacuated to a vacuum, and then a predetermined electric field is applied while raising the temperature of the thermal field emission cathode to emit an electron beam. However, for stable operation, it is important to secure a limited temperature range and a good vacuum degree. In general, it is necessary to operate in a vacuum having a temperature range of 1400 to 1900 ° K and a vacuum degree of better than 10 -8 Torr.

【0004】このような条件下で動作させても、時には
容易に電子ビームを発生しなかったり、またある時には
放電現象を生じて熱電界放射陰極を破損したりするとい
う問題があった。
Even when operated under such a condition, there are problems that an electron beam is not easily generated at some time and that a discharge phenomenon occurs at some time to damage the thermal field emission cathode.

【0005】本発明は、これらの問題点に鑑みてなされ
たものであって、放電現象が生じ難く、効率よく動作で
きる熱電界放射陰極の操作方法を提供することを目的と
する。特にサプレッサー電極の材質と立ち上げ時の引出
し電圧と真空度が重要な要因であることを見いだし鋭意
検討した結果、本発明を完成するに至った。
The present invention has been made in view of these problems, and it is an object of the present invention to provide a method for operating a thermal field emission cathode which is less likely to cause a discharge phenomenon and can operate efficiently. In particular, the inventors have found that the material of the suppressor electrode, the extraction voltage at the time of startup and the degree of vacuum are important factors, and as a result of intensive investigations, the present invention has been completed.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明の特徴
は、ジルコニウムと酸素からなる被覆層を有する軸方位
が<100>方位のタングステン単結晶の針状電極と 6
00°Kにおける水素ガスの拡散速度が5×10-10 2/s
より小さい導電性材料で形成されたサプレッサー電極と
からなる熱電界放射陰極を、引出し電圧を1kV以下に
真空度を1×10-8Torr以下に保ちながら加熱して、前
記熱電界放射陰極部材から揮発物を揮発させた後、さら
に引出し電圧をあげて電子ビームを放出させることを特
徴とする熱電界放射陰極の操作方法である。
That is, a feature of the present invention is to provide a needle-shaped electrode of a tungsten single crystal with a <100> orientation in the axial direction, which has a coating layer made of zirconium and oxygen.
Hydrogen gas diffusion rate at 00 ° K is 5 × 10 -10 m 2 / s
A thermoelectric field emission cathode composed of a suppressor electrode formed of a smaller conductive material is heated while keeping the extraction voltage at 1 kV or less and the vacuum degree at 1 × 10 -8 Torr or less. It is a method of operating a thermal field emission cathode, characterized in that, after volatilization of volatile matter, an extraction voltage is further raised to emit an electron beam.

【0007】[0007]

【作用】熱電界放射陰極の針状電極から電子ビームを安
定に引き出すための要因として、サプレッサー電極の材
質、針状電極の温度、表面状態、この部分の電界強度お
よび雰囲気の真空度等があげられる。熱電界放射陰極動
作条件に導く、いわゆる立ち上げの段階では、針状電極
表面やサプレッサー電極に付着していた酸化物等の揮発
が起こり、各々の電極表面の清浄化が行われる。また、
サプレッサー電極内部からのガス発生も生じる。
[Function] Factors for stably extracting the electron beam from the needle electrode of the thermal field emission cathode are the material of the suppressor electrode, the temperature of the needle electrode, the surface condition, the electric field strength of this portion, the vacuum degree of the atmosphere, and the like. To be At the so-called start-up stage which leads to the operating conditions of the thermal field emission cathode, the oxides and the like adhering to the surface of the needle electrode and the suppressor electrode are volatilized, and the surface of each electrode is cleaned. Also,
Gas is also generated from inside the suppressor electrode.

【0008】サプレッサー電極内部からのガスの発生は
針状電極温度の上昇と電界の印加により、放射される電
子の一部がサプレッサー電極に衝突したり、陰極からの
熱放射によりサプレッサー電極の一部が加熱されること
で、サプレッサー電極内部に吸蔵されていたガス成分が
放出されることが、放電現象を生じる原因となってい
る。
Generation of gas from the inside of the suppressor electrode causes a part of the emitted electrons to collide with the suppressor electrode due to a rise in the temperature of the needle electrode and the application of an electric field, or a part of the suppressor electrode due to thermal radiation from the cathode. The fact that the gas component stored in the suppressor electrode is released by heating the is causing a discharge phenomenon.

【0009】そして、吸蔵ガスの中で水素ガスは拡散速
度が大きく、放電現象を生じる上で最大の原因となって
いる。この水素ガスの発生について検討を続け、前記の
放電現象を回避できることを見いだしたものである。
Of the stored gases, hydrogen gas has a high diffusion rate, which is the largest cause of the discharge phenomenon. The inventors have continued to study the generation of this hydrogen gas and have found that the above-mentioned discharge phenomenon can be avoided.

【0010】すなわち、 600度Kでの拡散速度が5×10
-10 2/sより小さい導電性材料をサプレッサー電極に
用い、かつ立ち上げに先だって、引出し電圧を1kV以
下に、圧力を1×10-8Torr以下に保ちながら加熱するこ
とによって、放電を起こすことなく熱陰極構成部材から
揮発物を揮発させることができる。この後、引出し電圧
をあげることによって安定した電子ビームを引出すこと
ができる。
That is, the diffusion rate at 600 degrees K is 5 × 10 5.
Discharge occurs by using a conductive material smaller than -10 m 2 / s for the suppressor electrode and heating it while keeping the extraction voltage below 1 kV and the pressure below 1 × 10 -8 Torr before starting. It is possible to volatilize volatiles from the hot cathode constituent member without the need. After that, a stable electron beam can be extracted by increasing the extraction voltage.

【0011】また、電極表面に働く電界強度は、針状電
極とサプレッサー電極によって形成されるが、この電界
が強すぎると、揮発物や発生ガスを通じて放電現象が発
生すると考えられている。一方、電極表面に働く電界強
度が低すぎると、容易に電子ビームを引き出すことが出
来ず、いたずらに時間を費やすばかりである。
The electric field strength acting on the electrode surface is formed by the needle-shaped electrode and the suppressor electrode, and it is considered that if this electric field is too strong, a discharge phenomenon will occur through volatile matter and generated gas. On the other hand, if the electric field strength acting on the electrode surface is too low, the electron beam cannot be easily extracted, and it only takes time for mischief.

【0012】従って、上述したように熱陰極を実用的に
立ち上げ、安定な動作をさせるためには、電極表面の電
界強度は、揮発物や発生ガスが針状電極及びサプレッサ
ー電極表面から早く脱離する様に調整されていることが
重要である。
Therefore, as described above, in order to practically start up the hot cathode and perform stable operation, the electric field strength on the electrode surface is such that volatile matter and evolved gas are quickly desorbed from the needle electrode and suppressor electrode surfaces. It is important that they are tuned apart.

【0013】[0013]

【実施例及び比較例】以下、本発明の実施例にいて添付
の図面を参照して具体的に説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Examples of the present invention will be specifically described below with reference to the accompanying drawings.

【0014】図1は本発明の熱電界放射陰極の構造を示
す断面図である。軸方位が<100>方位からなるタン
グステン単結晶の針状電極1にジルコニウムと酸素とか
らなる被覆層を設けた針状電極は、所定の寸法精度が維
持される様にサプレッサー電極2に組み込まれている。
針状電極1は、これを加熱するタングステンワイヤー3
に溶接固定され、該タングステンワイヤーは、碍子4に
固定された金属製支柱5にも溶接固定されている。ここ
で、サプレッサー電極は、 600°Kにおける水素ガスの
拡散速度が5×10-10 2/sより小さい導電性材料で形
成されている。
FIG. 1 is a sectional view showing the structure of the thermal field emission cathode of the present invention. The needle-shaped electrode 1 made of a tungsten single crystal having an axis orientation of <100> is provided with a coating layer made of zirconium and oxygen on the suppressor electrode 2 so that a predetermined dimensional accuracy is maintained. ing.
The needle electrode 1 is a tungsten wire 3 that heats the needle electrode 3.
The tungsten wire is also welded and fixed to the metal support 5 fixed to the insulator 4. Here, the suppressor electrode is formed of a conductive material having a diffusion rate of hydrogen gas at 600 ° K of less than 5 × 10 -10 m 2 / s.

【0015】表1に示す材質のサプレッサー電極を用い
て、熱電界放射陰極を試作し、図3の回路に組み上げて
電子放射特性を調べた。このときの熱電界放射陰極の立
ち上げは図2に示す代表的な実用的立ち上げスケジュー
ルで行った。すなわち、1×10-8Torrに減圧した後、加
熱しながら10分で温度1500℃に、さらに10分後に1800℃
に昇温した。その後20分後に引出し電圧を0.5 kVに、さ
らに5分後に1kVにあげた。この後、引出し電圧を3kV
にあげ、電子ビームを放射した。その結果、表1に示す
とおり、実験No.1〜No.14 は放電現象がなく、順調に立
ち上げることができ 100μA〜 200μAの全放射電流を
示し良好な作動を示したが、実験No.15〜No.18 は放電
が発生し、うまく作動することができなかった。
Using a suppressor electrode made of the material shown in Table 1, a thermal field emission cathode was prototyped and assembled into the circuit of FIG. 3 to examine the electron emission characteristics. The startup of the thermal field emission cathode at this time was performed according to a typical practical startup schedule shown in FIG. That is, after reducing the pressure to 1 × 10 -8 Torr, the temperature was raised to 1500 ° C in 10 minutes while heating, and 1800 ° C after 10 minutes.
The temperature was raised to. After 20 minutes, the extraction voltage was raised to 0.5 kV, and after 5 minutes, to 1 kV. After this, pull out voltage 3kV
And radiated an electron beam. As a result, as shown in Table 1, in Experiment Nos. 1 to 14, there was no discharge phenomenon, and it was possible to start up smoothly, showing a total radiation current of 100 μA to 200 μA and showing good operation. Nos. 15 to No. 18 were not able to operate well due to discharge.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【発明の効果】本発明の操作方法によれば、熱電界放射
陰極を実用的な立ち上げ条件で作動させるときに放電現
象などのトラブルの発生もなく、安定して立ち上げ良好
な作動状態とすることができるので、特に超高速電子ビ
ーム露光装置などの用途に有効である。
According to the operating method of the present invention, a trouble such as a discharge phenomenon does not occur when the thermoelectric field emission cathode is operated under practical startup conditions, and a stable startup and good operating condition are obtained. Therefore, it is particularly effective for applications such as an ultra-high speed electron beam exposure apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電界放射陰極の構造を示す断面図で
ある。
FIG. 1 is a sectional view showing a structure of a thermal field emission cathode of the present invention.

【図2】本発明の熱電界放射陰極の代表的な立ち上げス
ケジュールである。
FIG. 2 is a typical start-up schedule of the thermal field emission cathode of the present invention.

【図3】熱電界放射陰極の電子放射特性を評価する回路
の説明図である。
FIG. 3 is an explanatory diagram of a circuit for evaluating electron emission characteristics of a thermal field emission cathode.

【符号の説明】[Explanation of symbols]

1 タングステン単結晶の針状電極 2 サプレッサー電極 3 タングステンワイヤー 4 碍子 5 金属支柱 6 ネジ 7 引き出し電圧 12 バイアス電圧 13 全放射電流 14 加熱電流 1 Tungsten single crystal needle electrode 2 Suppressor electrode 3 Tungsten wire 4 Insulator 5 Metal support 6 Screw 7 Extraction voltage 12 Bias voltage 13 Total radiation current 14 Heating current

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウムと酸素からなる被覆層を有
する軸方位が<100>方位のタングステン単結晶の針
状電極と 600°Kにおける水素ガスの拡散速度が5×10
-10 2/sより小さい導電性材料で形成されたサプレッ
サー電極とからなる熱電界放射陰極を、引出し電圧を1
kV以下に真空度を1×10-8Torr以下に保ちながら加
熱して、前記熱電界放射陰極構成部材から揮発物を揮発
させた後、さらに引出し電圧をあげて電子ビームを放出
させることを特徴とする熱電界放射陰極の操作方法。
1. A needle electrode of a tungsten single crystal having a <100> orientation with a coating layer of zirconium and oxygen, and a diffusion rate of hydrogen gas at 600 ° K of 5 × 10 5.
-10 m 2 / s A thermoelectric field emission cathode consisting of a suppressor electrode made of a conductive material smaller than 10 m 2 / s, with an extraction voltage of 1
The method is characterized in that heating is performed at a vacuum degree of 1 × 10 -8 Torr or less to kV or less to volatilize volatile substances from the thermoelectric field emission cathode constituent member, and then an extraction voltage is further increased to emit an electron beam. Method of operating a thermal field emission cathode.
JP18895392A 1992-06-24 1992-06-24 How to operate the thermal field emission cathode Expired - Fee Related JP3164651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18895392A JP3164651B2 (en) 1992-06-24 1992-06-24 How to operate the thermal field emission cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18895392A JP3164651B2 (en) 1992-06-24 1992-06-24 How to operate the thermal field emission cathode

Publications (2)

Publication Number Publication Date
JPH0612973A true JPH0612973A (en) 1994-01-21
JP3164651B2 JP3164651B2 (en) 2001-05-08

Family

ID=16232814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18895392A Expired - Fee Related JP3164651B2 (en) 1992-06-24 1992-06-24 How to operate the thermal field emission cathode

Country Status (1)

Country Link
JP (1) JP3164651B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536944A (en) * 1994-06-29 1996-07-16 Denki Kagaku Kogyo Kabushiki Kaisha Thermal field emmission electron gun
JP2008140623A (en) * 2006-11-30 2008-06-19 Japan Science & Technology Agency Electron beam source device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536944A (en) * 1994-06-29 1996-07-16 Denki Kagaku Kogyo Kabushiki Kaisha Thermal field emmission electron gun
JP2008140623A (en) * 2006-11-30 2008-06-19 Japan Science & Technology Agency Electron beam source device

Also Published As

Publication number Publication date
JP3164651B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
US5666025A (en) Flat-panel display containing structure for enhancing electron emission from carbon-containing cathode
JP5301168B2 (en) Cold field emitter
JP5794598B2 (en) Metal hexaboride cold field emitter, manufacturing method thereof, and electron gun
KR100360993B1 (en) Electric field radiation source and its manufacturing method
US5838096A (en) Cathode having a reservoir and method of manufacturing the same
KR20190015585A (en) High-Brightness Boron-containing Electron Beam Emitter for Use in a Vacuum Environment
US20080284332A1 (en) Gun chamber, charged particle beam apparatus and method of operating same
US3809899A (en) Electron-beam tube including a thermionic-field emission cathode for a scanning electron microscope
JP2987140B2 (en) Field emission electron source, method of manufacturing the same, flat light emitting device, display device, and solid-state vacuum device
JP4792404B2 (en) Manufacturing method of electron source
EP1592040B1 (en) Electron source
JP4032057B2 (en) Manufacturing method of electron source
JPH0612973A (en) Method for operating thermoelectric field radiating cathode
KR19980080595A (en) Apparatus having field emission cold cathode and vacuum tank exhaust method and system in same apparatus
JP5363413B2 (en) Electron source
JPH0684450A (en) Thermoelectric field emission cathode
JPWO2019107113A1 (en) Emitter, electron gun using the same, electronic device using the same, and manufacturing method thereof
US20080169743A1 (en) Field emission electron gun and method of operating the same
EP1596418B1 (en) Electron gun
JP3077589B2 (en) Method and apparatus for driving field emission cold cathode
JPH0684452A (en) Thermoelectric field emission cathode
JP2005332677A (en) Manufacturing method of electron source and its use
JPH1021821A (en) Field emitter
EP3736847A1 (en) Electron source manufacturing method
JP2006032195A (en) Electron emission source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees