JPH06129229A - Particulate trap for diesel engine - Google Patents

Particulate trap for diesel engine

Info

Publication number
JPH06129229A
JPH06129229A JP4277328A JP27732892A JPH06129229A JP H06129229 A JPH06129229 A JP H06129229A JP 4277328 A JP4277328 A JP 4277328A JP 27732892 A JP27732892 A JP 27732892A JP H06129229 A JPH06129229 A JP H06129229A
Authority
JP
Japan
Prior art keywords
pore size
porous body
filter element
dimensional network
network structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4277328A
Other languages
Japanese (ja)
Inventor
Toshisuke Saka
俊祐 坂
Akira Okamoto
暁 岡本
Masayuki Ishii
正之 石井
Takao Maeda
貴雄 前田
Kan Yoshino
完 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP4277328A priority Critical patent/JPH06129229A/en
Publication of JPH06129229A publication Critical patent/JPH06129229A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Processes For Solid Components From Exhaust (AREA)

Abstract

PURPOSE:To provide a particulate trap for a diesel engine which has a low pressure loss, a high degree of trapping efficiency, and which is shock-proof. CONSTITUTION:A filter element 10 is located in a container provided in an exhaust system. The filter element 10 is formed of a three-dimensional mesh-like porous metal member made of a heat-resistant metal frame having communication pores. A combination is made such that the more the difference among the bores of the pores, or the larger the same, the nearer to the exhaust inflow side, they are arranged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディーゼルエンジンの排
気ガス中のカーボン等の微粒子(パティキュレート)を
捕集・除去するためのパティキュレートトラップに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a particulate trap for collecting and removing fine particles (particulates) such as carbon in exhaust gas of a diesel engine.

【0002】[0002]

【従来の技術】自動車の排気ガスは、大気汚染の大きな
原因の一つで、排気ガスに含まれる有害成分を除去する
技術は極めて重要である。
2. Description of the Related Art Exhaust gas from an automobile is one of the major causes of air pollution, and a technique for removing harmful components contained in the exhaust gas is extremely important.

【0003】特にディーゼルエンジン車においては、主
にNOxとカーボンを主体とする微粒子(パティキュレ
ート)の除去が重要な課題である。
Particularly in diesel engine vehicles, the removal of fine particles (particulates) mainly composed of NOx and carbon is an important issue.

【0004】これらの有害成分を除去するために、EG
Rをかけたり、燃料噴射系の改善を行ったり、エンジン
側での努力も行われているが、抜本的な決め手がなく、
排気通路に排気トラップを設置し、パティキュレートを
トラップによって捕集し、後処理により除去することが
提案されている(特開昭58−51235号公報等)。
現在まで、この後処理法が最も実用的であると考えら
れ、検討が続けられている。
In order to remove these harmful components, EG
Although R is applied, the fuel injection system is improved, and efforts are being made on the engine side, there is no fundamental deciding factor,
It has been proposed to install an exhaust trap in the exhaust passage, collect particulates by the trap, and remove them by post-treatment (Japanese Patent Laid-Open No. 58-51235, etc.).
To date, this post-treatment method is considered to be the most practical and is being studied.

【0005】ところで、ディーゼルエンジン排気に含ま
れるパティキュレートを捕集するためのパティキュレー
トトラップとしては、使用される条件から、次のような
性能を満足する必要がある。
By the way, as a particulate trap for collecting the particulates contained in the exhaust gas of a diesel engine, it is necessary to satisfy the following performance from the conditions of use.

【0006】 捕集性能 先ず第1に排気ガスの清浄度を満足させるだけの、パテ
ィキュレートの捕集効率をもっていることが必要であ
る。パティキュレート排出量は、ディーゼルエンジンの
排気量や負荷等により変化するが、ディーゼルエンジン
からの排出量の平均60%以上を捕集できることが必要
であると言われている。
Collection Performance First of all, it is necessary to have a collection efficiency of particulates sufficient to satisfy the cleanliness of exhaust gas. The particulate emission amount changes depending on the exhaust amount and load of the diesel engine, but it is said that it is necessary to collect an average of 60% or more of the emission amount from the diesel engine.

【0007】 圧損 第2には、排気ガスに対する圧力損失が小さいことであ
る。パティキュレートが捕集されるに従って、トラップ
をエンジン排気が通過するときの圧力損失が大きくなっ
て、エンジンに背圧がかかり悪影響をもたらす。このた
め、通常捕集後の圧力損失を30KPa以下に抑える必
要があるといわれている。したがって、パティキュレー
トトラップは初期圧力損失が小さいことはもちろん、排
気ガスを通過させパティキュレートが捕集されても圧力
損失が上がりにくいことが必要とされる。
Pressure loss Secondly, the pressure loss with respect to the exhaust gas is small. As the particulates are collected, the pressure loss when the engine exhaust passes through the trap increases, and the back pressure is exerted on the engine, which causes an adverse effect. For this reason, it is said that it is usually necessary to suppress the pressure loss after collection to 30 KPa or less. Therefore, it is necessary that the particulate trap has a small initial pressure loss and that the pressure loss is unlikely to increase even if the exhaust gas is passed therethrough and the particulates are collected.

【0008】従来、上記の要件を満足するフィルタエレ
メント材料として、コーディエライトセラミックスのウ
ォールフロー式のハニカム状多孔体が最も実用に近いと
考えられてきた。しかしながら、この方式では、パティ
キュレートが局所にたまりやすく、また、コーデイエラ
イトセラミックスは熱伝導率が小さいため、再生時にヒ
ートスポットができやすく、フィルタが溶損したり、熱
応力によってクラックを生じたりすることがあり、信頼
性が確保できなかった。
Conventionally, as a filter element material satisfying the above requirements, a wall-flow type honeycomb porous body of cordierite ceramics has been considered to be the most practical. However, in this method, particulates are likely to locally accumulate, and since cordierite ceramics have a low thermal conductivity, heat spots are likely to be formed during regeneration, and the filter may be melted or cracked due to thermal stress. In some cases, reliability could not be ensured.

【0009】そこで、再生時にクラック等の発生がなく
信頼性の高い金属性トラップやセラミックスファイバー
をキャンドル状に形成したセラミックスファイバートラ
ップが現在注目されている。
Therefore, attention is now being paid to a highly reliable metal trap that does not cause cracks during reproduction and a ceramic fiber trap in which ceramic fibers are formed into a candle shape.

【0010】[0010]

【発明が解決しようとする課題】しかし金属性トラップ
やセラミックスファイバートラップはその構造上、コー
ディエライトフィルターほど排気ガスが流入できる表面
積(漉過面積)を大きくとることができない。そのた
め、高い捕集効率を得るようにフィルター設計を行う
と、パティキュレートがフィルター表面にばかり捕集さ
れて目づまりを起こし、その結果、圧損が急激に上昇し
フィルター寿命が短いという課題があった。
However, due to the structure of the metallic trap and the ceramic fiber trap, the surface area (exhaust area) through which the exhaust gas can flow cannot be as large as that of the cordierite filter. Therefore, when a filter is designed so as to obtain high collection efficiency, particulates are only collected on the filter surface and cause clogging, resulting in a rapid increase in pressure loss and a short filter life.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、本発明においては、排気ガス流入側から流出側にか
けて孔径の大きいものと小さいものの少なくとも2種類
の3次元網状構造多孔体を組み合わせる。また、もう1
つの手段として、孔径の大きい3次元網状構造多孔体
と、3次元網状構造多孔体にセラミックもしくは金属を
充填して孔径を実質的に小さくしたものを、前者同様、
実質孔径の大きいものほど排気ガス流入側にあるように
組み合わせる。
In order to solve the above problems, in the present invention, at least two kinds of three-dimensional network structure porous bodies having a large hole diameter and a small hole diameter are combined from the exhaust gas inflow side to the outflow side. Also another 1
As one means, a three-dimensional network structure porous body having a large pore size and a three-dimensional network structure porous body filled with ceramic or metal to substantially reduce the pore size are
The larger the pore size, the closer to the exhaust gas inflow side.

【0012】組合わせる多孔体の孔径差は、最大孔径の
多孔体の平均孔径をa、最小孔径の多孔体の平均孔径を
bとしたとき、a/b≦15の条件を満足させるのが望
ましい。また、aの下限は1.5b程度が望ましい。セ
ラミックや金属の充填物によって孔径を小さくした多孔
体を組み合わせる場合には、実質的な孔径に差をつけ
る。ここで云う充填は、孔に粒状物を詰め込むことのみ
でなく、化学的、物理的蒸着等で骨格表面に膜やウィス
カーなどを形成することも含む。
It is desirable that the difference in pore diameter between the porous bodies to be combined should satisfy the condition of a / b ≦ 15, where a is the average pore diameter of the porous body having the maximum pore diameter and b is the average pore diameter of the porous body having the minimum pore diameter. . The lower limit of a is preferably about 1.5b. When combining a porous body having a small pore size with a ceramic or metal filler, a substantial difference in pore size is provided. The filling here includes not only filling the pores with the granular material, but also forming a film or whiskers on the skeleton surface by chemical or physical vapor deposition.

【0013】なお、孔径の小さい3次元網状構造多孔体
は、始めから体積充填率を上げたり、骨格径を大きくし
たものを作成してもよく、また、孔径の大きい3次元網
状構造多孔体を圧延等の方法で圧縮することによって作
成してもよい。
The three-dimensional network structure porous body having a small pore size may be prepared by increasing the volume filling rate or increasing the skeleton size from the beginning, and a three-dimensional network structure porous body having a large pore size may be prepared. It may be created by compression by a method such as rolling.

【0014】また、ディーゼルエンジン用パティキュレ
ートトラップは、パティキュレートを捕集した後電気ヒ
ーター等で加熱し、パティキュレートを燃焼させ再生す
る。短時間での再生を可能にするために熱容量を下げる
ことが重要である。本発明においてもフィルター重量を
軽くすることで、短時間での再生ができるのは云うまで
もない。
The diesel engine particulate trap collects particulates and then heats them with an electric heater or the like to burn the particulates for regeneration. It is important to reduce the heat capacity to enable regeneration in a short time. Needless to say, in the present invention as well, the weight of the filter can be reduced to achieve regeneration in a short time.

【0015】[0015]

【作用】まず、図1〜3の模式図を用いてパティキュレ
ートの堆積状態を説明する。図1は排気ガス流入側から
流出側にかけて体積充填率を傾斜させ、孔径を変化させ
た構造、図2は骨格1の径を傾斜させ孔径を変化させた
構造、図3はフィルター厚み方向に体積充填率、骨格径
を傾斜させていない、つまり孔径に変化のない従来の金
属フィルター及びセラミックファイバーフィルター構造
を示す。また図1〜3の(a)はパティキュレート捕集
量が少ない場合(捕集時間が短い場合)、(b)は捕集
量が多くなった場合である。また(c)は(b)の状態
におけるフィルター厚み方向でのパティキュレート捕集
量分布を示す。
First, the state of particulate deposition will be described with reference to the schematic diagrams of FIGS. 1 shows a structure in which the volume filling rate is inclined from the exhaust gas inflow side to the outflow side to change the pore diameter, FIG. 2 is a structure in which the diameter of the skeleton 1 is inclined to change the pore diameter, and FIG. 3 is a volume in the filter thickness direction. The conventional metal filter and ceramic fiber filter structure in which the packing rate and the skeleton diameter are not inclined, that is, the pore diameter does not change is shown. Further, (a) of FIGS. 1 to 3 shows the case where the particulate collection amount is small (when the collection time is short), and (b) shows the case where the collection amount is large. Further, (c) shows a particulate collection amount distribution in the filter thickness direction in the state of (b).

【0016】体積充填率、骨格径を傾斜させない構造で
は図3(b)に示す様に、パティキュレート2捕集の進
行に伴いフィルター表面が目づまりを起こしていく。こ
れに対し体積充填率、骨格径を傾斜させた構造は、初期
状態(図1(a)、図2(a)参照)においてはフィル
ター後方層が主にパティキュレートを捕集するが、その
後はフィルター前方層において捕集されるようになる
(図1(b)、図2(b)参照)。よってフィルター表
面、内部ともに目づまりが生じにくい。
In a structure in which the volume filling rate and the skeleton diameter are not inclined, as shown in FIG. 3B, the filter surface becomes clogged as the collection of particulates 2 progresses. On the other hand, in the structure in which the volume filling rate and the skeleton diameter are inclined, in the initial state (see FIG. 1A and FIG. 2A), the filter rear layer mainly collects the particulates, but after that, It comes to be collected in the front layer of the filter (see FIG. 1 (b) and FIG. 2 (b)). Therefore, clogging is less likely to occur on the surface and inside of the filter.

【0017】フィルターに目づまりが生じた場合、圧損
は急激に上昇し始めるので、以上説明したパティキュレ
ート堆積状態から、体積充填率、骨格径を傾斜させ孔径
を変化させた本発明の構造の方が同一パティキュレート
量を捕集した場合の圧損は低くなると考えられる。また
この傾斜構造では、フィルター後方層の働きによって高
い捕集効率を確保することができる。
When the filter is clogged, the pressure loss starts to rise rapidly. Therefore, the structure of the present invention in which the volume filling rate and the skeleton diameter are tilted and the pore diameter is changed from the particulate deposition state described above is more preferable. It is considered that the pressure loss will be low when the same amount of particulates is collected. Moreover, in this inclined structure, a high collection efficiency can be secured by the action of the filter rear layer.

【0018】[0018]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0019】〔実験例1〕図4に実験装置を示す。34
00cc、4気筒の直噴射式のディーゼルエンジン車の
シャシダイナモとダイリューショントンネルからなる実
験装置で行った評価結果を示す。フィルターエレメント
10としては住友電気工業(株)製のNi基3次元網状
構造多孔体(商品名:セルメット)の筒体を用い、トラ
ップ容器11内に7本装着した。排気ガスは筒体の外側
の空間に導入し、フィルタエレメントの壁を通過してパ
イプ内側へ流れるようにガス流入口と反対側の端面はガ
スケットおよび鉄板でシールされている。
Experimental Example 1 FIG. 4 shows an experimental apparatus. 34
00 cc shows the results of evaluations performed by an experimental apparatus including a chassis dynamo and a dilution tunnel of a 4-cylinder direct injection diesel engine vehicle. As the filter element 10, a cylinder of a Ni-based three-dimensional network structure porous body (trade name: Celmet) manufactured by Sumitomo Electric Industries, Ltd. was used, and seven trap containers 11 were mounted. The end face opposite to the gas inlet is sealed with a gasket and an iron plate so that the exhaust gas is introduced into the space outside the cylindrical body and flows through the wall of the filter element to the inside of the pipe.

【0020】図5に評価試料を示す。試料Aは比較のた
めのフィルター厚み方向に孔径変化がないもの、試料B
は孔径に変化をもたせたものである。なお、図4中の品
番とは単位面積当りのセル数(空孔数)を示しており、
♯7は1平方インチ当り50〜70個、♯4は26〜3
5個である。つまり試料Bは排気ガス入口側に孔径の大
きな♯4、出口側に♯7を組み合わせている。
FIG. 5 shows an evaluation sample. Sample A has no change in pore size in the thickness direction of the filter for comparison, Sample B
Indicates that the pore size is changed. In addition, the product number in FIG. 4 indicates the number of cells (the number of holes) per unit area,
# 7 is 50 to 70 per square inch, # 4 is 26 to 3
There are five. That is, sample B has a combination of # 4 with a large hole diameter on the exhaust gas inlet side and # 7 on the outlet side.

【0021】図6、図7に堆積すす量に対する差圧、捕
集効率の変化を示す。試料Bは試料Aと同じ捕集効率を
持ちながら、差圧の上昇が緩やかでありフィルター寿命
が伸びていることがわかる。
6 and 7 show changes in differential pressure and collection efficiency with respect to the amount of soot deposited. It can be seen that sample B has the same collection efficiency as sample A, but the increase in differential pressure is gentle and the filter life is extended.

【0022】〔実験例2〕実験例1と同じ実験装置で行
った評価結果を示す。フィルターエレメント10として
は住友電気工業(株)製のNi基3次元網状構造多孔体
(商品名:セルメット)をNi−Cr合金化した筒体を
用い、トラップ容器内に7本装着した。排気ガスは筒体
の外側の空間に導入し、フィルタエレメントの壁を通過
してパイプ内側へ流れるようにガス流入口と反対側の端
面はガスケットおよび鉄板でシールされている。
[Experimental Example 2] An evaluation result obtained by the same experimental apparatus as in Experimental Example 1 will be shown. As the filter element 10, a Ni-based three-dimensional network structure porous body (trade name: Celmet) manufactured by Sumitomo Electric Industries, Ltd. was used as a Ni—Cr alloy cylinder, and seven cylinders were mounted in the trap container. The end face opposite to the gas inlet is sealed with a gasket and an iron plate so that the exhaust gas is introduced into the space outside the cylindrical body and flows through the wall of the filter element to the inside of the pipe.

【0023】図8に評価試料を示す。試料Cは比較用の
フィルター厚み方向に孔径変化がないもの、試料Dは排
気ガス入口側に♯4を3層、次に♯7の厚さ1.8mmの
多孔体を3層、そして排気ガス出口側に♯7の厚さ0.
9mmの多孔体を3層重ねて孔径に変化をもたせたのであ
る。ここで使用した♯7の厚さ0.9mm品は、#7の
1.8mm品を圧縮成形したものである。
FIG. 8 shows an evaluation sample. Sample C has no change in pore size in the thickness direction of the comparative filter, Sample D has 3 layers of # 4 on the exhaust gas inlet side, then 3 layers of # 7 porous material with a thickness of 1.8 mm, and exhaust gas. The thickness of # 7 on the exit side is 0.
Three layers of 9 mm porous material were layered to change the pore size. The # 7 0.9 mm thick product used here is a # 7 1.8 mm product compression molded.

【0024】なお、♯4、♯7の意味は実施例1で説明
した通りである。
The meanings of # 4 and # 7 are as described in the first embodiment.

【0025】図9、図10に堆積すす量に対する差圧、
捕集効率の変化を示す。試料Bは試料Aと同じ捕集効率
を持ちながら、差圧の上昇が緩やかでありフィルター寿
命が伸びていることがわかる。
9 and 10, the differential pressure with respect to the amount of soot deposited,
The change of collection efficiency is shown. It can be seen that sample B has the same collection efficiency as sample A, but the increase in differential pressure is gentle and the filter life is extended.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば、
パティキュレートが捕集されても差圧の上昇が少なく、
長寿命で捕集効率も高いパティキュレートトラップが得
られる。
As described above, according to the present invention,
Even if particulates are collected, the rise in differential pressure is small,
A particulate trap with a long life and high collection efficiency can be obtained.

【0027】なお、このパティキュレートトラップは、
燃焼再生時の熱応力にも充分に耐え、ディーゼルエンジ
ン車を始めとする各種ディーゼルエンジン用として大き
な効果を期待できる。
The particulate trap is
It can sufficiently withstand the thermal stress at the time of combustion regeneration and can be expected to have a great effect for various diesel engines including diesel engine cars.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明品のパティキュレートの堆積状態を示す
模式図{(a)、(b)}と、捕集量分布図(c)
FIG. 1 is a schematic diagram {(a), (b)} showing a particulate accumulation state of the product of the present invention, and a collection amount distribution diagram (c).

【図2】本発明品のパティキュレートの堆積状態を示す
模式図{(a)、(b)}と、捕集量分布図(c)
FIG. 2 is a schematic diagram {(a), (b)} showing a particulate deposition state of the product of the present invention, and a collection amount distribution diagram (c).

【図3】従来品の本発明品のパティキュレートの堆積状
態を示す模式図{(a)、(b)}と、捕集量分布図
(c)
FIG. 3 is a schematic diagram {(a), (b)} showing a state of particulate accumulation of a conventional product of the present invention, and a collection amount distribution diagram (c).

【図4】捕集性能評価に用いた実験装置の概要図FIG. 4 is a schematic diagram of an experimental device used for evaluation of collection performance.

【図5】実験例1で用いた評価試料の詳細を示す表FIG. 5 is a table showing details of evaluation samples used in Experimental Example 1.

【図6】堆積すす量に対する差圧の変化を示すグラフFIG. 6 is a graph showing changes in the differential pressure with respect to the amount of accumulated soot.

【図7】堆積すす量に対する捕集効率の変化を示すグラ
FIG. 7 is a graph showing changes in collection efficiency with respect to the amount of accumulated soot.

【図8】実験例2で用いた評価試料の詳細を示す表FIG. 8 is a table showing details of evaluation samples used in Experimental Example 2.

【図9】堆積すす量に対する差圧の変化を示すグラフFIG. 9 is a graph showing changes in differential pressure with respect to accumulated soot amount.

【図10】堆積すす量に対する捕集効率の変化を示すグ
ラフ
FIG. 10 is a graph showing changes in collection efficiency with respect to the amount of accumulated soot.

【符号の説明】[Explanation of symbols]

1 フィルターの骨格 2 パティキュレート 10 フィルターエレメント 11 トラップ容器 1 Filter skeleton 2 Particulate 10 Filter element 11 Trap container

フロントページの続き (72)発明者 前田 貴雄 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内 (72)発明者 吉野 完 伊丹市昆陽北一丁目1番1号 住友電気工 業株式会社伊丹製作所内Front page continuation (72) Inventor Takao Maeda 1-1-1 Kunyokita, Itami-shi Itami Works Ltd. Business Itami Manufacturing Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 排気系の途中に設置される容器内にフィ
ルタエレメントを装着して構成されるディーゼルエンジ
ン用パティキュレートトラップにおいて、前記フィルタ
エレメントが連通空孔を有する耐熱性金属骨格からなる
3次元網状構造多孔体からなり、このフィルターエレメ
ントは、孔径に差のある少なくとも2種類の3次元網状
構造多孔体が孔径の大きいものほど排気ガス流入側にあ
るように組み合わされていることを特徴とするディーゼ
ルエンジン用パティキュレートトラップ。
1. A particulate trap for a diesel engine configured by mounting a filter element in a container installed in the middle of an exhaust system, wherein the filter element is a three-dimensional heat-resistant metal skeleton having communicating pores. This filter element is composed of a net-structured porous body, and is characterized in that at least two types of three-dimensional network-structured porous bodies having different pore sizes are combined so that the larger the pore size, the closer to the exhaust gas inflow side. Particulate trap for diesel engine.
【請求項2】 前記フィルターエレメントの中の最大孔
径の3次元網状構造多孔体と、最小孔径の3次元網状構
造多孔体の孔径比が、15:1以下であることを特徴と
する請求項1記載のディーゼルエンジン用パティキュレ
ートトラップ。
2. The pore size ratio of the three-dimensional network structure porous body having the maximum pore size and the three-dimensional network structure porous body having the minimum pore size in the filter element is 15: 1 or less. Particulate trap for diesel engine described.
【請求項3】 前記フィルターエレメントの孔径の小さ
い3次元網状構造多孔体は、孔径の大きい3次元網状構
造多孔体を圧縮成形することによって作られていること
を特徴とする請求項1又は2記載のディーゼルエンジン
用パティキュレートトラップ。
3. The three-dimensional network structure porous body having a small pore size of the filter element is produced by compression molding of a three-dimensional network structure porous body having a large pore size. Particulate trap for diesel engines.
【請求項4】 排気系の途中に設置される容器内にフィ
ルタエレメントを装着して構成されるディーゼルエンジ
ン用パティキュレートトラップにおいて、前記フィルタ
エレメントが、連通空孔を有する耐熱性金属骨格からな
る3次元網状構造多孔体と、3次元網状構造多孔体にセ
ラミックスもしくは金属を充填して孔径を実質的に小さ
くした多孔体を実質孔径の大きい多孔体ほど排気ガス流
入側にあるように組み合わされていることを特徴とする
ディーゼルエンジン用パティキュレートトラップ。
4. A particulate trap for a diesel engine, which is configured by mounting a filter element in a container installed in the middle of an exhaust system, wherein the filter element is made of a heat-resistant metal skeleton having communicating pores. A porous body having a three-dimensional network structure porous body and a three-dimensional network structure porous body filled with ceramics or metal to have a substantially small pore size are combined so that a porous body having a substantially larger pore size is closer to the exhaust gas inflow side. A particulate trap for diesel engines, which is characterized.
【請求項5】 前記フィルターエレメントの中の最大孔
径の3次元網状構造多孔体と、セラミックスもしくは金
属を充填してある実質孔径が最小の3次元網状構造多孔
体の孔径比が、15:1以下であることを特徴とするデ
ィーゼルエンジン用パティキュレートトラップ。
5. The pore size ratio of the three-dimensional network structure porous body having the maximum pore size in the filter element and the three-dimensional network structure porous body having a minimum substantial pore size filled with ceramics or metal is 15: 1 or less. Particulate trap for diesel engine characterized by
JP4277328A 1992-10-15 1992-10-15 Particulate trap for diesel engine Pending JPH06129229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4277328A JPH06129229A (en) 1992-10-15 1992-10-15 Particulate trap for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4277328A JPH06129229A (en) 1992-10-15 1992-10-15 Particulate trap for diesel engine

Publications (1)

Publication Number Publication Date
JPH06129229A true JPH06129229A (en) 1994-05-10

Family

ID=17582000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4277328A Pending JPH06129229A (en) 1992-10-15 1992-10-15 Particulate trap for diesel engine

Country Status (1)

Country Link
JP (1) JPH06129229A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310529A (en) * 1994-05-17 1995-11-28 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JPH07310530A (en) * 1994-05-17 1995-11-28 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
US5486220A (en) * 1993-06-18 1996-01-23 Sumitomo Electric Industries, Ltd. Exhaust gas purification filter
JP2001073742A (en) * 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd Particulate trap for diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5486220A (en) * 1993-06-18 1996-01-23 Sumitomo Electric Industries, Ltd. Exhaust gas purification filter
JPH07310529A (en) * 1994-05-17 1995-11-28 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JPH07310530A (en) * 1994-05-17 1995-11-28 Isuzu Ceramics Kenkyusho:Kk Diesel particulate filter
JP2001073742A (en) * 1999-06-29 2001-03-21 Sumitomo Electric Ind Ltd Particulate trap for diesel engine

Similar Documents

Publication Publication Date Title
JP3378432B2 (en) Particulate trap for diesel engine
JP2870369B2 (en) Exhaust gas purification filter
JP3434117B2 (en) Particulate trap for diesel engine
JPH0949421A (en) Particulate trap for diesel engine
JPH06257422A (en) Particulate trap for diesel engine
JP3288536B2 (en) Exhaust gas filter and exhaust gas treatment device using the same
US5961931A (en) Particulate trap
JP3265737B2 (en) High corrosion resistant metal filter
EP0849444A2 (en) Particulate trap for a diesel engine
US6102976A (en) Exhaust gas purifier
JPH06129229A (en) Particulate trap for diesel engine
JP2841803B2 (en) Particle trap media for diesel engine exhaust
JP3207088B2 (en) Particulate trap for diesel engine
JPH06294313A (en) Trap for purifying exhaust gas
Tutko et al. Feasibility of ceramic foam as a diesel particulate trap
JPH09262415A (en) Particulate trap for diesel engine
JPH08246844A (en) Particulate trap for diesel engine
JP3943891B2 (en) Particulate filter
JPH06307228A (en) Exhaust gas purifying trap
JPH1162552A (en) Exhaust emission control device
JPH06137129A (en) Diesel particulate filter
JP2003239720A (en) Exhaust emission control device
JPS6256770B2 (en)
JPH06307229A (en) Exhaust gas purifying trap
JPH06272534A (en) Trap for exhaust gas purification