JPH06128811A - Production of polyester fiber - Google Patents

Production of polyester fiber

Info

Publication number
JPH06128811A
JPH06128811A JP14766892A JP14766892A JPH06128811A JP H06128811 A JPH06128811 A JP H06128811A JP 14766892 A JP14766892 A JP 14766892A JP 14766892 A JP14766892 A JP 14766892A JP H06128811 A JPH06128811 A JP H06128811A
Authority
JP
Japan
Prior art keywords
yarn
zone
yarns
heating zone
spinneret
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14766892A
Other languages
Japanese (ja)
Inventor
Motoi Mizuhashi
基 水橋
Yuhei Maeda
裕平 前田
Haruo Aiso
晴男 相蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14766892A priority Critical patent/JPH06128811A/en
Publication of JPH06128811A publication Critical patent/JPH06128811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To efficiently obtain polyester fibers by cooling and solidify a polyester delivered through a spinneret and by reheating the resultant yarns under a specified temperature gradient before takeup to enable various kinds of products to be produced without the need for changing spinning speed with higher successful winder switching rate. CONSTITUTION:A polyester is delivered at about 290 deg.C through a spinneret 1, the resultant filament yarns Y are passed through a thermal insulating zone 2 under the spinneret 1 and perpendicularly subjected to air flow by a chimney 3 to cool the yarns Y to room temperature and solidify them followed by introducing the solidified yarns into a heating zone such as a hot tube 4 set up under the spinneret 1. The heating gradient in this zone is set according to the formula, [where, Tc is the atmospheric temperature at the center of the zone ( deg.C); Ti is the atmospheric temperature at the inlet of the zone ( deg.C); To is the atmospheric temperature at the outlet of the zone ( deg.C)] and, under this condition, the yarns are drawn and heat set followed by oiling with a relevant device 5 and then interlacing them with a relevant device 6 and takeup with a pair of goddet rolls 7 and then winding the heatset yarns on a winder 8, thus obtaining objective polyester fibers so as to enable various kinds of products to be produced without the need for changing spinning speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はポリエステル繊維の製造
方法に関し、詳しくは紡糸工程のみで実用に供し得る特
性を満足するポリエステル繊維の製造方法に関し、さら
に詳しくは大きな残留伸度をもつポリエステル繊維の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a polyester fiber, and more particularly to a method for producing a polyester fiber satisfying the characteristics that can be put to practical use only in a spinning step, and more specifically, a polyester fiber having a large residual elongation The present invention relates to a manufacturing method.

【0002】[0002]

【従来の技術】近年、引取り速度を4000m/分以上
にすることにより延伸工程を通さなくとも十分実用特性
を満足し得る繊維を得ることが可能な高速紡糸方法が生
産性向上を目的として、開発され実用化されてきた。こ
の高速紡糸方法には、紡糸口金から溶融吐出した糸条を
そのまま5000m/分以上で引取る超高速紡糸法、一
旦冷却固化した後ホットチューブのような加熱雰囲気
で、再加熱しながら延伸熱処理して4000m/分以上
で引取るホットチューブ延伸紡糸法、第1引取りロール
で引取った後、第2引取りロールとの間で延伸して40
00m/分以上で引取る直接紡糸延伸法などがある。
2. Description of the Related Art In recent years, a high-speed spinning method capable of obtaining fibers sufficiently satisfying practical properties without passing through a drawing step by setting a take-up speed to 4000 m / min or more is aimed at improving productivity. It has been developed and put to practical use. This high-speed spinning method includes an ultra-high-speed spinning method in which the yarn melt-discharged from the spinneret is drawn as it is at 5000 m / min or more, and once it is cooled and solidified, it is drawn and heat-treated while being reheated in a heating atmosphere such as a hot tube. 40 m / min or more by a hot tube stretch-spinning method in which a first take-up roll is used to draw and then a second take-up roll is used to draw 40
There is a direct spinning and drawing method in which the fiber is drawn at a rate of 00 m / min or more.

【0003】このうち超高速紡糸法によって得られる糸
は染色性が良く、ヤング率が小さいため柔らかいなどの
特徴を持つが、その物性や繊維構造が従来の延伸糸と本
質的に異なるので、従来の延伸糸の代替品としては使用
できない。これに対し、ホットチューブ延伸紡糸法によ
って得られる糸は従来の紡糸・延伸の二工程法で作られ
る糸、いわゆる延伸糸に近い物性を有するため従来の延
伸糸の用途への展開が可能である。
Of these, the yarns obtained by the ultra-high speed spinning method have good dyeability and are soft because they have a small Young's modulus, but since their physical properties and fiber structure are essentially different from those of conventional drawn yarns, Cannot be used as a substitute for the drawn yarn of On the other hand, the yarn obtained by the hot tube draw-spinning method has physical properties close to those of a so-called drawn yarn, which is a yarn produced by a conventional two-step spinning / drawing method. .

【0004】しかし、ホットチューブ延伸紡糸法では、
加熱域は糸道調整などの目的でその位置を微調整できる
以外は、紡糸線に沿って移動できず、実質的に固定され
ている。そのため、例えば、単糸繊度が1.5〜3デニ
ールの通常品種を製造する装置で加熱域の位置を変更せ
ずに、そのまま、単糸繊度が1.5デニール以下の極細
繊維を製造しようとすると、実用上問題のある伸度の低
い糸しか得られない。低伸度の糸は製造工程上、生産性
の高い自動切替えワインダーで巻取るときの切り替え成
功率が低く、また巻締りにより、パッケージがワインダ
ーから取り出せないなどの問題があり、また、製品とし
た時には織編工程での毛羽・糸切れが増加するなどの問
題があった。この問題に対して、特開昭62−1620
15号公報は、品種ごとに加熱域の位置および紡糸引取
り速度を調節することにより、加熱域の糸張力を制御し
て、得られる糸を実用可能なものにする提案を行ってい
る。
However, in the hot tube draw spinning method,
The heating zone cannot be moved along the spinning line except that its position can be finely adjusted for the purpose of adjusting the yarn path, and is substantially fixed. Therefore, for example, it is attempted to manufacture ultrafine fibers having a single yarn fineness of 1.5 denier or less without changing the position of the heating area in an apparatus for producing a normal type having a single yarn fineness of 1.5 to 3 denier. Then, only a yarn having a low elongation, which is a practical problem, can be obtained. In the manufacturing process, low elongation yarn has a low switching success rate when wound by an automatic switching winder with high productivity, and there is a problem that the package cannot be taken out from the winder due to winding tightness. At times, there were problems such as increased fluff and yarn breakage in the weaving process. To solve this problem, Japanese Patent Laid-Open No. 62-1620
Japanese Patent Publication No. 15 proposes to control the yarn tension in the heating region by adjusting the position of the heating region and the spinning take-up speed for each product type to make the obtained yarn practicable.

【0005】しかし、通常の糸の製造装置では加熱域の
位置は実質的に固定されているため、加熱領域の位置変
更するためには位置変更のための装置の新設が必要とな
る。また、繊維品種の多様化に対応するためには頻繁に
加熱域を動かす必要があり、位置の変更作業や位置変更
後の糸道の調整作業を伴なうために生産効率が低下する
などの問題があった。さらに加熱域の位置を変更して
も、変更後の位置での生産可能な品種は限定されてお
り、その品種以外の品種を生産するためには、加熱域の
位置を変更せざるを得なかった。逆に加熱域の位置を固
定すると、低伸度化を防ぐためには細デニールほど引取
速度を低下させざるを得ず、生産性の低下につながって
いた。
However, since the position of the heating region is substantially fixed in the usual yarn manufacturing apparatus, a new device for changing the position is required to change the position of the heating region. In addition, it is necessary to frequently move the heating zone to cope with the diversification of fiber types, and the production efficiency decreases due to the work of changing the position and the work of adjusting the yarn path after the position change. There was a problem. Furthermore, even if the position of the heating zone is changed, the types of products that can be produced at the changed position are limited, and in order to produce other types, it is necessary to change the position of the heating zone. It was On the other hand, if the position of the heating area is fixed, the take-up speed has to be reduced for finer denier in order to prevent lower elongation, leading to a reduction in productivity.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、ホッ
トチューブ延伸紡糸方法において、紡糸速度を低下させ
ることなく、単糸デニール1.5デニール以下の極細品
種を含む、多品種の製造を可能とすることにある。
DISCLOSURE OF THE INVENTION The object of the present invention is to enable the production of a large number of varieties, including ultrafine varieties with a single yarn denier of 1.5 denier or less, without reducing the spinning speed in the hot tube drawing and spinning method. To do so.

【0007】[0007]

【課題を解決するための手段】前記した本発明の目的は
ポリエステルを口金から吐出し冷却固化した後、引取り
装置までの間で、加熱域で再加熱する溶融紡糸におい
て、該加熱域における温度勾配を次式(1)とすること
を特徴とするポリエステル繊維の製造方法によって達成
できる。 Tc−Ti≧3.0(To−Tc)・・・(1) (ただし、Tcは加熱域中央の雰囲気温度(℃)、Ti
は加熱域入口の雰囲気温度(℃)、Toは加熱域出口の
雰囲気温度(℃))
Means for Solving the Problems The above-mentioned object of the present invention is to perform melt spinning in which a polyester is discharged from a spinneret, cooled and solidified, and then reheated in a heating zone up to a take-up device. It can be achieved by a method for producing a polyester fiber, characterized in that the gradient is represented by the following formula (1). Tc-Ti ≧ 3.0 (To-Tc) (1) (where Tc is the ambient temperature (° C.) in the center of the heating zone, Ti
Is the ambient temperature at the inlet of the heating zone (° C), To is the ambient temperature at the outlet of the heating zone (° C))

【0008】以下、本発明を詳細に説明する。まず、本
発明のポリエステル繊維の製造方法を図1にしたがっ
て、具体的に説明する。ポリエステルを約290℃で口
金1から吐出する。吐出糸条Yを口金1下の保温ゾーン
2を通過させた後、糸条に対して垂直にチムニー3によ
り空気を吹き当てることにより一旦室温まで冷却し、口
金1下に設置されたホットチューブ4内に導入し、延伸
熱処理後、給油装置5で給油し、引続き交絡装置6で交
絡を施し、一対のゴディロール7で引取り、ワインダー
8で巻取ることによって、本発明のポリエテル繊維が得
られる。本発明におけるポリエステルとは、ポリエステ
ルを構成する主たるジカルボン酸成分がテレフタル酸成
分であることが好ましいが、それ以外のジカルボン酸成
分を本発明の目的を逸脱しない範囲で使用、併用しても
良い。本発明のポリエステルを構成する主たるジオール
成分はエチレングリコールが好ましいが、それ以外の成
分、たとえば、1,4−ブタンジオール、1,6−ヘキ
サンジオール、ポリエチレングリコール、ポリテトラメ
チレングリコール、1,4−シクロヘキサンジメタノー
ルなどのジオール成分などを、本発明の目的を逸脱しな
い範囲で使用、併用しても良い。また、本発明のポリエ
ステルには、各種の添加剤、たとえば、艶消剤、難燃
剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核
剤、螢光増白剤などを必要に応じて共重合または混合し
ても良い。
The present invention will be described in detail below. First, the method for producing a polyester fiber of the present invention will be specifically described with reference to FIG. The polyester is discharged from the base 1 at about 290 ° C. After passing the discharged yarn Y through the heat-retaining zone 2 under the spinneret 1, the chimney 3 blows air perpendicularly to the yarn to cool it once to room temperature, and then the hot tube 4 installed under the spinneret 1 After being introduced into the inside, drawn and heat-treated, oil is supplied by the oil supply device 5, subsequently entangled by the entanglement device 6, taken up by the pair of gody rolls 7, and wound by the winder 8 to obtain the polyethylene fiber of the present invention. With the polyester in the present invention, it is preferable that the main dicarboxylic acid component constituting the polyester is a terephthalic acid component, but other dicarboxylic acid components may be used or used in combination without departing from the object of the present invention. The main diol component constituting the polyester of the present invention is preferably ethylene glycol, but other components such as 1,4-butanediol, 1,6-hexanediol, polyethylene glycol, polytetramethylene glycol, 1,4- A diol component such as cyclohexanedimethanol may be used or used in combination without departing from the object of the present invention. Further, various additives such as a matting agent, a flame retardant, an antioxidant, an ultraviolet absorber, an infrared absorber, a crystal nucleating agent, and a brightening agent may be added to the polyester of the present invention as required. It may be copolymerized or mixed.

【0009】溶融紡糸では紡糸口金から溶融吐出したポ
リエステルを冷却風により、一旦冷却する。冷却はその
後の延伸熱処理が安定して行えるように、ポリエステル
糸条が固化する温度、すなわちガラス転移温度以下にな
るまで冷却する。十分な冷却が行なわれる以前に糸条を
加熱域に導くと、延伸が不安定となり、得られた糸の均
質性を損なう。
In melt spinning, the polyester melted and discharged from the spinneret is once cooled by cooling air. The cooling is performed until the temperature at which the polyester yarn solidifies, that is, the glass transition temperature or less, so that the subsequent drawing heat treatment can be stably performed. If the yarn is introduced into the heating zone before sufficient cooling takes place, the drawing becomes unstable and the homogeneity of the obtained yarn is impaired.

【0010】口金面から加熱域入口までの距離は、通常
の単糸デニール1.5〜3.0デニールの場合は、口金
面下での充分な糸条冷却、作業性、および空気抵抗力に
より生ずる張力を考慮すると、1.0〜2.5mが好ま
しく、1.5〜2.0mがより好ましい。 一旦冷却し
た糸条を本発明においては次式(1)で規定した温度勾
配を有する加熱域に導き、再加熱し延伸熱処理する。 Tc−Ti≧3.0(To−Tc)・・・・(1) (ただし、Tcは加熱域中央の雰囲気温度(℃)、Ti
は加熱域入口の雰囲気温度(℃)、Toは加熱域出口の
雰囲気温度(℃))
The distance from the spinneret surface to the inlet of the heating zone is, in the case of a normal single yarn denier of 1.5 to 3.0 denier, due to sufficient yarn cooling below the spinneret surface, workability, and air resistance. Considering the tension generated, 1.0 to 2.5 m is preferable, and 1.5 to 2.0 m is more preferable. In the present invention, the once cooled yarn is introduced into a heating zone having a temperature gradient defined by the following formula (1), and reheated and subjected to a stretching heat treatment. Tc-Ti ≧ 3.0 (To-Tc) ... (1) (where Tc is the atmospheric temperature (° C.) in the center of the heating zone, Ti
Is the ambient temperature at the inlet of the heating zone (° C), To is the ambient temperature at the outlet of the heating zone (° C))

【0011】TiあるいはToは加熱域入口あるいは出
口での糸条中央の雰囲気温度、Tcは熱電対を加熱域内
部に挿入し、加熱域中央部の内壁から約3mm離れた位置
で計測した雰囲気温度である。
Ti or To is the atmospheric temperature at the center of the yarn at the inlet or outlet of the heating zone, and Tc is the atmospheric temperature measured at a position about 3 mm away from the inner wall of the central portion of the heating zone by inserting a thermocouple inside the heating zone. Is.

【0012】ここで、加熱域入口とは図2中のAで示す
ように糸条が加熱装置内に入り加熱され始める点をい
う。また、加熱域出口とは糸条が加熱装置から出る点B
をいう。本発明の式(1)で規定した加熱域の温度勾配
は加熱域の入口あるいは出口に随伴気流分離装置を設け
る方法、図2の如く、保温体10中に異なる温度からな
る加熱媒体9、9′からなる多段のホットチューブを設
け、加熱域の上部を高温に、下部を低温に制御する方法
などによって達成される。その達成方法は何等限定され
るものではないが、設備の簡便性、および操業コスト面
から考えて、随伴気流分離装置を設けるのが好ましい。
Here, the heating zone inlet means the point where the yarn enters the heating device and begins to be heated, as indicated by A in FIG. The heating zone outlet is the point B at which the yarn comes out of the heating device.
Say. The temperature gradient of the heating zone defined by the formula (1) of the present invention is a method of providing an associated airflow separating device at the inlet or the outlet of the heating zone. As shown in FIG. It is achieved by providing a multi-stage hot tube consisting of ′ and controlling the upper part of the heating zone to a high temperature and the lower part to a low temperature. Although the method for achieving the same is not limited in any way, it is preferable to provide an associated airflow separation device in view of facility simplicity and operation cost.

【0013】加熱域の温度勾配が式(1)の範囲外であ
ると、単糸1.5デニール以下の繊維を製造する場合、
得られる繊維の残留伸度が低下するため、紡糸速度を下
げる必要があり、製造工程での生産性が低下し、また高
次加工での工程通過性も不良となる。加熱域の中央部の
雰囲気温度Tcは式(1)の範囲内で、繊維が実用的強
度を保持し、かつ処理斑を起こさない程度の温度が好ま
しく、該ポリエステルのガラス転移点温度である約80
℃以上が、また充分な熱処理のためには110℃以上が
好ましく、130℃以上が一層好ましい。またTcは、
繊維長手方向の単糸間の均一性や均質な糸条を得るため
に、融点以下が好ましく、エネルギーコストの見地から
は200℃以下がより好ましい。
When the temperature gradient in the heating zone is out of the range of the formula (1), when producing fibers having a single yarn of 1.5 denier or less,
Since the residual elongation of the obtained fiber is reduced, it is necessary to reduce the spinning speed, the productivity in the manufacturing process is reduced, and the process passability in high-order processing is also poor. The atmosphere temperature Tc of the central portion of the heating region is preferably within the range of the formula (1), and is a temperature at which the fiber retains practical strength and does not cause treatment unevenness, which is the glass transition temperature of the polyester. 80
C. or higher, and for sufficient heat treatment, 110.degree. C. or higher is preferable, and 130.degree. C. or higher is more preferable. Also, Tc is
In order to obtain homogeneity between the single yarns in the longitudinal direction of the fiber and a uniform yarn, the melting point or lower is preferable, and 200 ° C. or lower is more preferable from the viewpoint of energy cost.

【0014】図3は加熱域における温度分布を示したも
のである。図3中No.1は本発明の温度分布であり、
(1)式を満たす。No.2は本発明外の温度分布であ
る。No.1のように、(1)式で規定した温度分布と
すると、本発明の目的である紡糸速度を低下させずに単
糸1.5デニール以下の極細品種を高伸度で巻取ること
ができる。その理由は定かではないが、図3のNo.2
のように後半部の温度が高い場合、糸条が空気抵抗によ
る高い応力と高温雰囲気にさらされ、過剰の延伸が起こ
ってしまい、低伸度化するのではないかと推定される。
本発明のNo.1の温度分布では後半部の温度が適度に
低いため、このような過剰の延伸を起こさず、低伸度化
を抑制できると考えられる。
FIG. 3 shows the temperature distribution in the heating area. No. 3 in FIG. 1 is the temperature distribution of the present invention,
Formula (1) is satisfied. No. 2 is the temperature distribution outside the present invention. No. When the temperature distribution defined by the formula (1) is used as in 1, the ultrafine product with a single yarn of 1.5 denier or less can be wound with high elongation without lowering the spinning speed, which is the object of the present invention. . Although the reason for this is not clear, No. 1 in FIG. Two
When the temperature of the latter half is high as described above, it is presumed that the yarn is exposed to high stress due to air resistance and a high temperature atmosphere to cause excessive stretching, resulting in low elongation.
No. 1 of the present invention. In the temperature distribution of No. 1, since the temperature of the latter half is moderately low, it is considered that such excessive stretching does not occur and the elongation reduction can be suppressed.

【0015】図1のカーブはいずれも本発明の紡糸方法
を5000m/分の条件下で適用したときに、同一の熱
セット性、すなわち沸騰水収縮率が同一となるのに必要
な温度勾配を示している。本発明の式(1)に示す加熱
域における温度勾配により、単糸1.5デニール以下の
極細糸の伸度が高くなる理由は定かではないが、ここ式
(1)の効果をより顕著に発現させるためには加熱域は
下式(2)で規定された温度勾配を有することがより好
ましい。 Tic−Ti≧1.25(Tc−Tic)・・・・(2) (ただし、Ticは加熱域入口と中央の中間点の雰囲気温
度(℃)、Tiは加熱域入口の雰囲気温度(℃)、Tc
は加熱域中央の雰囲気温度(℃)である。)ここで、加
熱域入口と中央の中間点の雰囲気温度Ticの測定方法は
Tcのそれに準じる。
All the curves in FIG. 1 show the same heat setting property, that is, the temperature gradient required for the same boiling water shrinkage when the spinning method of the present invention is applied under the condition of 5000 m / min. Shows. Although it is not clear why the elongation of the ultrafine yarn having a single yarn of 1.5 denier or less increases due to the temperature gradient in the heating region shown in the formula (1) of the present invention, the effect of the formula (1) becomes more remarkable. It is more preferable that the heating zone has a temperature gradient defined by the following formula (2) in order to develop the phenomenon. Tic-Ti ≧ 1.25 (Tc-Tic) ... (2) (where Tic is the ambient temperature at the midpoint between the heating zone inlet and the center (° C), Ti is the ambient temperature at the heating zone inlet (° C)) , Tc
Is the ambient temperature (° C.) in the center of the heating area. ) Here, the method of measuring the atmospheric temperature Tic at the midpoint between the inlet of the heating zone and the center is in accordance with that of Tc.

【0016】式(2)を満たすことにより伸度を高くで
きる理由は、糸を急速に昇温させることにより延伸位置
を口金に近付け、延伸位置で糸に加わる張力を低下させ
ることができ、このため、延伸倍率を小さく、すなわち
延伸糸の伸度を高くすることができる効果を発現させる
ものと考えられる。本発明規定の温度勾配を達成するた
めに随伴気流分離装置を用いる場合は、加熱域では糸条
が自由に延伸できるように、入口あるいは出口の随伴気
流分離装置以外には糸条に何物とも接触させないことが
好ましい。
The reason why the elongation can be increased by satisfying the expression (2) is that the drawing position can be brought closer to the spinneret by rapidly raising the temperature of the yarn, and the tension applied to the yarn at the drawing position can be reduced. Therefore, it is considered that the effect of increasing the draw ratio, that is, increasing the elongation of the drawn yarn is exhibited. When using the associated airflow separating device to achieve the temperature gradient specified in the present invention, in order to allow the yarn to freely stretch in the heating zone, anything other than the inlet or outlet associated airflow separating device is applied to the yarn. It is preferable not to contact.

【0017】随伴気流分離装置とは走行している糸条に
近接または接触させることにより、糸条の随伴気流を糸
条から積極的に分離する機能を備えた装置をいう。
The associated airflow separating device is a device having a function of positively separating the associated airflow of the yarn from the yarn by bringing the yarn into proximity with or in contact with the running yarn.

【0018】随伴気流分離装置は加熱域の入口と出口の
いずれに設けても良く、一方のみに設けたものでも良い
が、未延伸糸条は分離装置との擦過で傷付きやすいた
め、糸切れや延伸糸条での毛羽発生や、強度低下を防ぐ
ために、随伴気流分離装置は延伸糸条との接触になる出
口部に設けるのが好ましい。随伴気流分離装置の糸条走
行部の断面形状は任意の形状が採用できるが、具体的に
は次のような随伴気流分離装置を用いることができる。
本発明においては、随伴気流分離装置により糸条が集束
されると糸条中央部の熱交換が低下し、延伸斑を生じた
り、熱セット性不足となり、単糸間の物性差がを生じ
る。効果的に随伴気流を分離しつつ、十分な熱処理を行
なうには糸条を整列させて熱処理できるように、断面形
状は図4に示すようなスリット状とすることが好まし
く、スリット幅Dは2mm以下がより好ましく、1mm
以下がさらに好ましい。また、断面形状をスリット状と
した際には、単糸間で物性差を生じさせないようにする
ために、スリット一端に糸条が偏在しないように走行さ
せることが好ましい。そのためには、例えばスリットの
方向は、その下の糸条集束ガイドとその向きが捩じれの
位置にするなどの方法が採用される。また、糸条は随伴
気流分離装置を通過する際に、分離装置と接触した方が
加熱域から流出する随伴気流量が減少するので好ましい
が、空気を走行糸条に吹き付けるなど他の方法を採用す
れば、糸条と分離装置は非接触でもよい。
The associated airflow separating device may be provided at either the inlet or the outlet of the heating zone, or may be provided at only one of the heating region. However, since the undrawn yarn is easily scratched by rubbing with the separating device, yarn breakage occurs. In order to prevent the occurrence of fluff in the drawn yarn and the reduction in strength, it is preferable to provide the entrained airflow separating device at the outlet portion which comes into contact with the drawn yarn. The cross-sectional shape of the yarn running portion of the associated airflow separating device can be any shape, and specifically, the following associated airflow separating device can be used.
In the present invention, when the yarns are bundled by the associated airflow separating device, the heat exchange at the central portion of the yarns is reduced, and uneven drawing occurs or heat setting property becomes insufficient, resulting in a difference in physical properties between single yarns. In order to perform sufficient heat treatment while effectively separating the accompanying airflow, it is preferable that the cross-sectional shape be a slit shape as shown in Fig. 4 so that the heat treatment can be performed by aligning the yarns, and the slit width D is 2 mm. The following is more preferable, 1 mm
The following is more preferable. Further, when the cross-sectional shape is slit-like, it is preferable to run the yarns so that the yarns are not unevenly distributed at one end of the slits in order to prevent a difference in physical properties between the single yarns. For that purpose, for example, a method is adopted in which the direction of the slit is set such that the yarn collecting guide below the slit and the direction thereof are twisted. Further, when the yarn passes through the associated airflow separation device, it is preferable that the yarn comes into contact with the separation device because the flow rate of the associated air flowing out from the heating area decreases, but other methods such as blowing air to the traveling yarn are adopted. If so, the yarn and the separating device may not be in contact with each other.

【0019】加熱域としては筒状あるいは横断面が矩形
状チューブなどを用いることができるが、糸条が走行す
る空間を加熱することができれば、どのような形状でも
良い。 加熱域の加熱方法としては周囲から熱媒や電熱
線により加熱する方法、加熱導入された乾熱空気、飽和
蒸気あるいは加熱蒸気を満たす方法があるが、加熱域を
均等に加熱するためには、熱媒加熱方式や加熱媒体を加
熱域内に導入する方法や、これらを組み合わせた方法が
好ましい。加熱域の長さは、安定した延伸熱処理や、省
エネルギーの面から、0.5〜3.0mが好ましく、
1.0〜2.0mがより好ましい。引取り速度は得られ
る繊維の繊度、力学的性質、紡糸糸切れ、生産性向上等
を考慮して決められる。紡糸工程のみで従来の延伸糸を
得るためには4000m/分以上が好ましく、4500
m/分以上がより好ましい。
As the heating area, a tube or a tube having a rectangular cross section can be used, but any shape can be used as long as it can heat the space in which the yarn runs. As a heating method of the heating area, there is a method of heating with a heating medium or a heating wire from the surroundings, dry heated air introduced by heating, a method of filling saturated steam or heating steam, but in order to uniformly heat the heating area, A heating medium heating method, a method of introducing a heating medium into the heating zone, and a method of combining these are preferable. The length of the heating region is preferably 0.5 to 3.0 m from the viewpoint of stable stretching heat treatment and energy saving,
1.0 to 2.0 m is more preferable. The take-up speed is determined in consideration of the fineness of the obtained fiber, mechanical properties, spun yarn breakage, productivity improvement and the like. In order to obtain a conventional drawn yarn only by the spinning process, it is preferably 4000 m / min or more and 4500
It is more preferably m / min or more.

【0020】[0020]

【実施例】実施例中の各特性値は次の方法にしたがって
求めた。 (A)雰囲気温度測定 CA熱電対を用いて、紡糸中に実測した。 (B)繊維の強度、伸度 オリエンテック社製テンシロン引張試験機を用いて荷重
伸長曲線から求めた。 (C)染め斑 得られた糸条を筒編とした後、染色し染め斑の有無を目
視判定した。 (D)製糸性 1000kg製糸した際の糸切れ回数で評価した。 A:糸切れ回数 0または1回の場合 B:糸切れ回数 2〜5回の場合 C:糸切れ回数 6回以上の場合
EXAMPLES Each characteristic value in the examples was determined according to the following method. (A) Atmosphere temperature measurement Using a CA thermocouple, measurement was performed during spinning. (B) Strength and Elongation of Fiber It was determined from a load extension curve using a Tensilon tensile tester manufactured by Orientec. (C) Dyeing unevenness After the obtained yarn was formed into a tubular knit, it was dyed and visually checked for the presence of dyeing unevenness. (D) Spinnability Evaluation was made by the number of yarn breakages when spinning 1000 kg. A: Number of thread breaks 0 or 1 B: Number of thread breaks 2 to 5 C: Number of thread breaks 6 or more

【0021】実施例1〜3、比較例1 極限粘度[η]=0.64のポリエステルを290℃で
溶融し、図1に示した紡糸装置を採用して、孔数48の
口金から吐出した。吐出糸条を口金下の保温ゾーン(約
20cm)を通過させた後、1mにわたって糸条に対し
て垂直に25m/分、約25℃の空気を吹き当てて、糸
条を一旦室温まで冷却し、口金下2mに設置された長さ
1.5m、内径30mmφのホットチューブに糸条を導
入し、延伸熱処理後、給油・交絡を施し、5000m/
分の一対のゴディロールで引取り、ワインダーで巻取る
ことによって、50デニール/48フィラメントのポリ
エステル繊維を得た。
Examples 1 to 3 and Comparative Example 1 Polyester having an intrinsic viscosity [η] = 0.64 was melted at 290 ° C., and the spinning device shown in FIG. . After passing the discharged yarn through the heat-retaining zone (about 20 cm) under the spinneret, blow air at 25 m / min, about 25 ° C, perpendicularly to the yarn for 1 m to cool the yarn once to room temperature. The yarn was introduced into a hot tube with a length of 1.5 m and an inner diameter of 30 mmφ installed 2 m below the spinneret, and after drawing heat treatment, lubrication and entanglement were applied to 5000 m /
A polyester fiber of 50 denier / 48 filaments was obtained by taking up with a pair of goddy rolls and winding with a winder.

【0022】表1にホットチューブ入口に取り付けた随
伴気流分離装置の入口形状、出口形状、各雰囲気温度、
および得られた繊維の糸特性、製糸性を示した。この表
から明らかなように、式(1)ならびに式(2)を満た
していれば、実用上十分な残留伸度を有する糸が得られ
る。ここで、実用上十分な残留伸度とは30%以上であ
り、より好ましくは33%以上である。
Table 1 shows the inlet shape, outlet shape, ambient temperature, and temperature of the associated airflow separator attached to the hot tube inlet.
The yarn characteristics and the spinnability of the obtained fiber were shown. As is clear from this table, when the expressions (1) and (2) are satisfied, a yarn having a residual elongation that is practically sufficient can be obtained. Here, the practically sufficient residual elongation is 30% or more, and more preferably 33% or more.

【0023】[0023]

【表1】 実施例4〜5、比較例2 引取った糸の太さが50デニール/72フィラメント、
50デニール/24フィラメントになるように口金を変
更した以外は実施例1と同じ方法で行った。表2にホッ
トチューブの条件および得られた繊維の諸特性を示し
た。単糸繊度が1デニール以下の場合では式(1)およ
び(2)を満たしていれば、実用上十分な残留伸度を有
する糸が得られる。また、単糸繊度が1デニールより大
きいの場合に本発明の方法を採用しても、残留伸度に大
きな変化はなく、従来通りの糸質の糸が生産可能であ
る。
[Table 1] Examples 4 to 5 and Comparative Example 2 The thickness of the yarn taken up is 50 denier / 72 filaments,
The same method as in Example 1 was carried out except that the die was changed to 50 denier / 24 filament. Table 2 shows the conditions of the hot tube and various properties of the obtained fiber. When the single yarn fineness is 1 denier or less, a yarn having a practically sufficient residual elongation can be obtained if the formulas (1) and (2) are satisfied. Further, even when the method of the present invention is adopted when the single yarn fineness is larger than 1 denier, the residual elongation does not change significantly, and the yarn having the conventional yarn quality can be produced.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【発明の効果】本発明方法を採用することにより、次の
効果を奏する。 (1)加熱域位置での品種対応性を向上させることによ
り、紡糸速度を変更することなく、異なる品種を多種製
造することができる。 (2)実用上十分な残留伸度を有する糸が得られるた
め、自動切替えワインダー使用時の切り替えの成功率を
大幅に向上できる。
The following effects can be obtained by adopting the method of the present invention. (1) By improving the type compatibility at the heating zone position, various types of different types can be manufactured without changing the spinning speed. (2) Since a yarn having a practically sufficient residual elongation can be obtained, the success rate of switching when using the automatic switching winder can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のポリエステル繊維の製造方法の概略
図である。
FIG. 1 is a schematic view of a method for producing a polyester fiber of the present invention.

【図2】 本発明の加熱域を好適に作るためのホットチ
ュ−ブの概略図である。
FIG. 2 is a schematic view of a hot tube for suitably making the heating zone of the present invention.

【図3】 本発明の加熱域の温度勾配(NO.1)と本
発明の温度勾配(NO.2)を示す。
FIG. 3 shows a temperature gradient (NO. 1) in the heating zone of the present invention and a temperature gradient (NO. 2) of the present invention.

【図4】 本発明のポリエステル繊維の製造方法におい
て、好適に採用される随伴気流分離装置の概略図であ
る。
FIG. 4 is a schematic view of an associated airflow separation device that is preferably used in the method for producing a polyester fiber of the present invention.

【符号の説明】 1 口金 2 保温ゾーン 3 チムニー 4 ホットチューブ 5 給油装置 6 交絡装置 7 ゴディロール 8 ワインダー 9 9′加熱体 10 保温体[Explanation of symbols] 1 mouthpiece 2 heat insulation zone 3 chimney 4 hot tube 5 oil supply device 6 confounding device 7 Gody roll 8 winder 9 9'heater 10 heat insulator

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ポリエステルを口金から吐出し冷却固化し
た後、引取り装置までの間で、加熱域で再加熱する溶融
紡糸において、該加熱域における温度勾配を次式(1)
とすることを特徴とするポリエステル繊維の製造方法。 Tc−Ti≧3.0(To−Tc)・・・・・(1) (ただし、Tcは加熱域中央の雰囲気温度(℃)、Ti
は加熱域入口の雰囲気温度(℃)、Toは加熱域出口の
雰囲気温度(℃))
1. In melt spinning in which polyester is discharged from a spinneret, cooled and solidified, and then reheated in a heating zone up to a take-up device, the temperature gradient in the heating zone is expressed by the following formula (1).
And a method for producing a polyester fiber. Tc-Ti ≥ 3.0 (To-Tc) (1) (where Tc is the atmospheric temperature (° C) in the center of the heating zone, Ti
Is the ambient temperature at the inlet of the heating zone (° C), To is the ambient temperature at the outlet of the heating zone (° C))
【請求項2】加熱域における温度勾配を次式(2)とす
ることを特徴とする請求項1記載のポリエステル繊維の
製造方法。 Tic−Ti≧1.25(Tc−Tic)・・・・・(2) (ただし、Tcは加熱域中央の雰囲気温度(℃)、Ti
は加熱域入口の雰囲気温度(℃)、Ticは加熱域入口と
中央の中間点の雰囲気温度(℃))
2. The method for producing a polyester fiber according to claim 1, wherein the temperature gradient in the heating zone is represented by the following formula (2). Tic-Ti ≧ 1.25 (Tc-Tic) (2) (where Tc is the atmospheric temperature (° C.) in the center of the heating zone, Ti
Is the ambient temperature at the inlet of the heating zone (° C), Tic is the ambient temperature at the midpoint between the inlet of the heating zone and the center (° C))
JP14766892A 1992-06-08 1992-06-08 Production of polyester fiber Pending JPH06128811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14766892A JPH06128811A (en) 1992-06-08 1992-06-08 Production of polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14766892A JPH06128811A (en) 1992-06-08 1992-06-08 Production of polyester fiber

Publications (1)

Publication Number Publication Date
JPH06128811A true JPH06128811A (en) 1994-05-10

Family

ID=15435574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14766892A Pending JPH06128811A (en) 1992-06-08 1992-06-08 Production of polyester fiber

Country Status (1)

Country Link
JP (1) JPH06128811A (en)

Similar Documents

Publication Publication Date Title
JP2692513B2 (en) Method and apparatus for producing polyester fiber
JPS62243824A (en) Production of ultrafine polyester filament yarn
KR950007807B1 (en) Process for preparing polyester filamentary meterial
JP3855546B2 (en) Method for producing polyester fiber
JPH06128811A (en) Production of polyester fiber
JPH06294008A (en) Production of polyester fiber
KR100484119B1 (en) Manufacturing method of polyester microfilament yarn
JP3130640B2 (en) Method for producing polyester fiber
JP2609009B2 (en) Method for producing polyester ultrafine fiber
JPH0735606B2 (en) Method for manufacturing polyester thermal shrinkage difference mixed yarn
KR100211140B1 (en) The method of preparing a polyester ultra fine multi filament yarn
JP3224275B2 (en) Method for manufacturing different shrinkage mixed fiber yarn
JPH07157914A (en) Production of polyester fiber and heating apparatus for high-speed fiber making
KR100211134B1 (en) The manufacturing method of polyester fiber
JPH11279825A (en) Melt spinning unit for multifilament yarn and melt spinning using the same
JPH07157915A (en) Production of polyester fiber
JPH10130944A (en) Apparatus for producing polyester fiber and its production
KR100216966B1 (en) The manufacture method of the lumen yarn by the heat treatment
JP3271401B2 (en) Method for producing polyester fiber
JPH02229211A (en) Production of polyester fiber
JPH07305224A (en) Method for spinning and drawing ultrafine polyester filament
JPH09316725A (en) Spin-draw unit for polyester fiber
JPH07305223A (en) Method for spinning and drawing polyester filament having thick denier
JP2002013023A (en) Method for producing polyamide fiber
JPS62289608A (en) Production of polyester fancy yarn