JPH06128709A - Thermomechanical treatment for shape memory alloy and shape memory alloy member - Google Patents

Thermomechanical treatment for shape memory alloy and shape memory alloy member

Info

Publication number
JPH06128709A
JPH06128709A JP27634792A JP27634792A JPH06128709A JP H06128709 A JPH06128709 A JP H06128709A JP 27634792 A JP27634792 A JP 27634792A JP 27634792 A JP27634792 A JP 27634792A JP H06128709 A JPH06128709 A JP H06128709A
Authority
JP
Japan
Prior art keywords
shape memory
shape
memory alloy
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27634792A
Other languages
Japanese (ja)
Inventor
Yoshiaki Shiyugo
嘉朗 守護
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27634792A priority Critical patent/JPH06128709A/en
Publication of JPH06128709A publication Critical patent/JPH06128709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To provide a shape under constraint, as a shape at a martensitic-phase temp., by applying shape memory treatment and constraining heat treatment to a member made of shape memory alloy consisting of specific percentages of Ni, Cu, and Ti under respectively specified conditions. CONSTITUTION:Shape memory treatment (length, L0), consisting of heating up to 400-650 deg.C for 0.5-120min, is applied to a member made of a shape memory alloy having a composition consisting of, by weight, 45-50% Ni, 5-12% Cu, and the balance Ti. Further, this member is subjected to constraining heat treatment consisting of heating in a state under constraint (length, L1) up to a temp. exceeding the transformation heat treatment temp. and cooling in the constrained state. By this method, a shape under constraint (length, L2) can be provided as a shape at a martensitic-phase temp., and the recovery when this member is heated up to a temp. not lower than the transformation temp. can take the value of (L0-L2) as working distance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、NiTiX(X=C
u,Cr,Fe,Co,Mo,V,Pd)系の形状記憶
合金の加工熱処理方法、およびその方法によって処理さ
れた形状記憶合金部材に関する。
The present invention relates to NiTiX (X = C
(u, Cr, Fe, Co, Mo, V, Pd) Shape memory alloy thermomechanical processing method, and shape memory alloy member processed by the method.

【0002】[0002]

【従来の技術】よく知られているように、形状記憶合金
はマルテンサイト相(低温)で柔軟であり母相(高温)で
固いという性質を示し、高温で記憶させた形状を憶えて
いて、マルテンサイト相で変形を与えても、合金組成に
より決定される変態温度(Af温度)以上に加熱する
と、記憶した元の形状に回復する。
2. Description of the Related Art As is well known, shape memory alloys exhibit the property of being flexible in the martensite phase (low temperature) and being hard in the matrix phase (high temperature), and remembering the shape stored at high temperatures, Even if a deformation is given in the martensite phase, when it is heated above the transformation temperature (Af temperature) determined by the alloy composition, the original shape that has been memorized is restored.

【0003】この性能を利用して温度センサーとしては
たらかせることもできるし、記憶した形状を回復すると
きの回復力を利用してアクチュエーターとして機能させ
ることもできる。 実用上重要な形状記憶合金はNiT
i系およびNiTiX系である。 アクチュエーターと
しては、通常コイルバネの形態で使用されている。
Utilizing this performance, it can be made to function as a temperature sensor, and it can also be made to function as an actuator by utilizing the recovery force when recovering the stored shape. NiT is a practical shape memory alloy
i-based and NiTiX-based. As an actuator, it is usually used in the form of a coil spring.

【0004】ところが、従来既知の形状記憶合金でコイ
ルバネを製作した場合、高温であれ低温であれ変形を行
なったものが、必然的にスプリングバックを生じてしま
うため、所望の形状(たとえば変形後のコイル高さ)を
実現することが、著しく困難であった。
However, when a coil spring is manufactured from a conventionally known shape memory alloy, even if the coil spring is deformed at a high temperature or a low temperature, spring back is inevitably generated, so that a desired shape (for example, after deformation) is obtained. It was extremely difficult to achieve the coil height).

【0005】また、元の形に戻るときに実現する変位の
相対的な大きさは、従来の形状記憶合金部材では、自ら
限界がある。 これは、回復力は小さくてよいが変位は
大きくとりたい、という用途に関しては不都合である。
Further, the relative magnitude of the displacement realized when returning to the original shape has its own limit in the conventional shape memory alloy member. This is inconvenient for applications in which the recovery force may be small but the displacement is large.

【0006】図1はこれらの関係を示したものであっ
て、コイルバネを第1段に示すようにセットして(長さ
0)これを加熱することにより形状記憶させたもの
を、第2段に示すように拘束して(長さl1)変形して
も、拘束力を解放すれば第3段に示すようにスプリング
バックが起り(長さl2)拘束状態の形状を与えることは
できないし、これをAf温度以上に加熱して第4段のよ
うに記憶させた形状に戻しても、このコイルバネを用い
たアクチュエーターの作動距離は、l0−l2しかとれな
い。
FIG. 1 shows these relationships. The coil spring is set as shown in the first stage (length l 0 ) and the shape is memorized by heating it. Even if the material is restrained as shown in the step (length l 1 ) and deformed, if the restraining force is released, springback occurs as shown in the third step (length l 2 ) and the shape of the restrained state is not given. No, and even if this is heated to Af temperature or higher and returned to the memorized shape as in the fourth stage, the working distance of the actuator using this coil spring can be only l 0 -l 2 .

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、形状
記憶合金における上記のような問題を解消して、マルテ
ンサイト相(低温)において任意の形状を与えることので
きる形状記憶合金の熱処理加工方法を提供すること、ま
た、所望の形状に精度よく近づけた形状をもち、従って
回復量も精度よく設定できる形状記憶合金部材を提供す
ることにある。
An object of the present invention is to eliminate the above-mentioned problems in shape memory alloys and to heat-process a shape memory alloy capable of giving an arbitrary shape in the martensite phase (low temperature). It is another object of the present invention to provide a method, and also to provide a shape memory alloy member which has a shape that is accurately approximated to a desired shape, and therefore can set the recovery amount with high accuracy.

【0008】コイルバネという代表的な形状の部材を用
いたアクチュエーターに関していえば、作動距離を高精
度にするほか、相対的に大きい作動距離をもったアクチ
ュエーターを実現することも、本発明の目的に含まれ
る。
With respect to an actuator using a member having a typical shape of a coil spring, it is also an object of the present invention to realize an actuator having a relatively large working distance in addition to making the working distance highly accurate. Be done.

【0009】[0009]

【課題を解決するための手段】本発明の形状記憶合金の
加工熱処理方法は、Ni:45〜50%(重量%、以下
同じ)、Cu:5〜12%、残部Tiからなる形状記憶
合金の部材に対し、400〜650℃の温度に0.5〜
120分間加熱する形状記憶処理を施し、さらに部材に
拘束を加えた状態で変態温度を超える温度に加熱し拘束
したまま冷却する拘束熱処理を施すことによって、マル
テンサイト相温度での形状として拘束状態の形状を与え
ることを特徴とする。
The method of thermomechanical processing of a shape memory alloy according to the present invention is a shape memory alloy comprising Ni: 45 to 50% (weight%, hereinafter the same), Cu: 5 to 12%, and the balance Ti. 0.5 ~ to the temperature of 400 ~ 650 ℃
A shape memory treatment is performed by heating for 120 minutes, and a constraint heat treatment is performed in which the member is constrained and heated to a temperature exceeding the transformation temperature and cooled while constrained, so that the shape at the martensite phase temperature is constrained. It is characterized by giving a shape.

【0010】本発明の形状記憶合金部材は、Ni:45
〜50%(重量%、以下同じ)、Cu:5〜12%、残
部Tiからなる形状記憶合金の部材であって、形状記憶
処理および拘束熱処理によって拘束状態の形状を与えら
れたことを特徴とする。
The shape memory alloy member of the present invention is Ni: 45.
A shape memory alloy member composed of ˜50% (weight%, the same hereinafter), Cu: 5 to 12%, and the balance Ti, characterized by being given a shape in a restrained state by shape memory treatment and restraint heat treatment. To do.

【0011】形状記憶合金の組成としては、上記の成分
のうちNiおよび(または)Tiの一部をCr,Fe,C
o,Mo,VおよびPdの1種または2種以上0.1〜
5.0%で置換したものもまた、同様に使用できる。
上記Cr以下の諸元素による置換は、変態温度(Af
点)を低くする作用がある。
As the composition of the shape memory alloy, a part of Ni and / or Ti among the above components is Cr, Fe, C.
One or more of o, Mo, V and Pd 0.1 to 0.1
Substitutions with 5.0% can be used as well.
The substitution by the elements below Cr is not limited to the transformation temperature (Af
Has the effect of lowering the point.

【0012】[0012]

【作用】本発明で使用する形状記憶合金の合金組成その
ものは、既知である。 NiTiCu系合金において、
Ni:45〜50%は形状記憶性能を発揮させるために
不可欠である。
FUNCTION The alloy composition itself of the shape memory alloy used in the present invention is known. In NiTiCu based alloy,
Ni: 45 to 50% is indispensable for exhibiting shape memory performance.

【0013】Cuは5%以上加えないと、本発明で意図
する効果が得られない。 一方、12%を超える存在
は、加工性を低下させてコイルバネなどの形をつくるこ
とを困難にする。
If Cu is not added in an amount of 5% or more, the effect intended by the present invention cannot be obtained. On the other hand, the presence of more than 12% reduces workability and makes it difficult to form a coil spring or the like.

【0014】Cr,Fe,Co,Mo,VおよびPd
は、変態温度低下の効果を明確に得るためには0.1%
以上の添加を要する。 しかし、変態温度を下げ過ぎる
と常用の温度領域で形状記憶特性を示さなくなるし、加
工性を保つ意味でも過大に加えない方がよいから、5.
0%の上限を設けた。
Cr, Fe, Co, Mo, V and Pd
Is 0.1% in order to clearly obtain the effect of lowering the transformation temperature.
The above addition is required. However, if the transformation temperature is lowered too much, the shape memory property will not be exhibited in the normal temperature region, and it is better not to add too much in order to maintain the workability.
An upper limit of 0% was set.

【0015】本発明に従って形状記憶処理に続く拘束熱
処理を行なうと、マルテンサイト相温度において任意の
形状を与えることができる。 この模様は図2に示すと
おりであって、第1段は図1のそれと同様の形状記憶処
理をあらわすが、第2段は本発明固有の拘束熱処理をあ
らわし、その結果として第3段に示すように、拘束から
解放した後のコイルバネは、拘束時の形状を保ってい
る。 これを変態温度以上に加熱したときの回復は、第
4段に示すとおりであるから、作動距離としてはL0
2(>l0−l2)をとることができる。
When the restraint heat treatment following the shape memory treatment is performed according to the present invention, any shape can be given at the martensite phase temperature. This pattern is as shown in FIG. 2. The first stage shows the shape memory processing similar to that of FIG. 1, but the second stage shows the restraint heat treatment peculiar to the present invention, and as a result, shown in the third stage. As described above, the coil spring after being released from the constraint maintains the shape at the time of the constraint. The recovery when this is heated to the transformation temperature or higher is as shown in the fourth stage, so the working distance is L 0 −.
L 2 (> l 0 −l 2 ) can be taken.

【0016】[0016]

【実施例】Ni:46.8%、Cu:8.3%、残部T
iからなる組成の形状記憶合金を用意し、径1.0mmに
伸線した。 これを内径15.0mm、有効巻数7回のコ
イルに巻いた。 コイルの自由高は30.0mmである。
Example: Ni: 46.8%, Cu: 8.3%, balance T
A shape memory alloy having a composition of i was prepared and drawn to a diameter of 1.0 mm. This was wound on a coil having an inner diameter of 15.0 mm and 7 effective turns. The free height of the coil is 30.0 mm.

【0017】このコイルを440℃×30分間の加熱に
より、上記自由高30.0mmに形状記憶させる処理を行
なった。
This coil was heated at 440 ° C. for 30 minutes to perform shape memory to the above free height of 30.0 mm.

【0018】続いて、コイルを高さ10.0mmに圧縮し
た形で拘束し、90℃×1分間の加熱と、拘束のまま常
温まで冷却する拘束熱処理を行なった。 拘束から解放
したとき、スプリングバックは実質上認められなかっ
た。
Subsequently, the coil was constrained in a form compressed to a height of 10.0 mm, heated at 90 ° C. for 1 minute, and constrained heat treatment was performed to cool it to room temperature. When released from restraint, virtually no springback was observed.

【0019】以上の処理をしたコイルバネについて、0
℃から90℃に加熱し90℃から0℃に戻る温度変化を
与え、コイルバネの発生力を測定した。 温度と発生力
の関係は、図3のグラフに示すとおりである。
With respect to the coil spring which has been subjected to the above processing, 0
The force generated by the coil spring was measured by applying a temperature change of heating from 90 ° C to 90 ° C and returning from 90 ° C to 0 ° C. The relationship between temperature and generated force is as shown in the graph of FIG.

【0020】[0020]

【発明の効果】本発明の熱処理加工法により、NiTi
Cu系形状記憶合金の部材に対し、マルテンサイト相に
おいて任意の形状を与えることができる。 従ってこの
熱処理加工方法により得られる本発明の形状記憶合金部
材は、コイルバネでいえば精度のよい自由長を有し、回
復量もまた精度よく設定できる。 アクチュエーターと
しては作動距離の精度が高く、小さな回復力で大きな作
動距離をもったものを製作することができる。
According to the heat treatment method of the present invention, NiTi
An arbitrary shape can be given to the member of the Cu-based shape memory alloy in the martensite phase. Therefore, the shape memory alloy member of the present invention obtained by this heat treatment method has a precise free length in terms of a coil spring, and the recovery amount can also be set accurately. As an actuator, it is possible to manufacture an actuator having a high working distance and a large working distance with a small recovery force.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の形状記憶合金部材について、形状記憶
処理からマルテンサイト相における変形を経て高温にお
ける回復までを、コイルバネの長さで示した概念的な
図。
FIG. 1 is a conceptual diagram showing a length of a coil spring from a shape memory treatment to a deformation at a martensite phase to a recovery at a high temperature for a conventional shape memory alloy member.

【図2】 本発明に従う形状記憶合金部材について、熱
処理加工の工程とコイルバネの長さとの関係を示した、
図1に対応する図。
FIG. 2 shows the relationship between the process of heat treatment and the length of the coil spring for the shape memory alloy member according to the present invention,
The figure corresponding to FIG.

【図3】 本発明の実施例において得た、コイルバネの
発生力−温度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between the force generated by the coil spring and the temperature obtained in the example of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Ni:45〜50%(重量%、以下同
じ)、Cu:5〜12%、残部Tiからなる形状記憶合
金の部材に対し、400〜650℃の温度に0.5〜1
20分間加熱する形状記憶処理を施し、さらに部材に拘
束を加えた状態で変態温度を超える温度に加熱し拘束し
たまま冷却する拘束熱処理を施すことによって、マルテ
ンサイト相温度での形状として拘束状態の形状を与える
ことを特徴とする形状記憶合金の加工熱処理方法。
1. A shape memory alloy member composed of Ni: 45 to 50% (weight%, the same applies hereinafter), Cu: 5 to 12% and the balance Ti: 0.5 to 1 at a temperature of 400 to 650 ° C.
A shape-memory treatment of heating for 20 minutes is performed, and a constraint heat treatment of heating to a temperature above the transformation temperature in a state of restraining the member and cooling while restrained is performed, whereby the shape at the martensite phase temperature is restrained. A thermomechanical processing method for a shape memory alloy, which is characterized by giving a shape.
【請求項2】 Ni:45〜50%(重量%、以下同
じ)、Cu:5〜12%、残部Tiからなる形状記憶合
金のNiおよび(または)Tiの一部をCr,Fe,C
o,Mo,VおよびPdの1種または2種以上0.1〜
5.0%で置換した合金の部材に対し、400〜650
℃の温度に0.5〜120分間加熱する形状記憶処理を
施し、さらに部材に拘束を加えた状態で変態温度を超え
る温度に加熱し拘束したまま冷却する拘束熱処理を施す
ことによって、マルテンサイト相温度での形状として拘
束状態の形状を与えることを特徴とする形状記憶合金の
加工熱処理方法。
2. A shape memory alloy consisting of Ni: 45 to 50% (weight%, the same applies hereinafter), Cu: 5 to 12%, and the balance Ti, and a part of Ni and / or Ti is Cr, Fe, C.
One or more of o, Mo, V and Pd 0.1 to 0.1
400-650 for alloy members replaced with 5.0%
The martensite phase is subjected to a shape memory treatment of heating at a temperature of 0.5 ° C. for 0.5 to 120 minutes, and further to a restraining heat treatment of heating the member to a temperature above the transformation temperature in a restrained state and cooling while restrained. A method for thermomechanical processing of a shape memory alloy, characterized in that a shape in a restrained state is given as a shape at temperature.
【請求項3】 Ni:45〜50%(重量%、以下同
じ)、Cu:5〜12%、残部Tiからなる形状記憶合
金の部材であって、形状記憶処理および拘束熱処理によ
って拘束状態の形状を与えられたことを特徴とする形状
記憶合金部材。
3. A shape memory alloy member comprising Ni: 45 to 50% (weight%, the same applies hereinafter), Cu: 5 to 12%, and the balance Ti, the shape being in a restrained state by shape memory treatment and restraint heat treatment. A shape memory alloy member characterized by being given.
【請求項4】 Ni:45〜50%(重量%、以下同
じ)、Cu:5〜12%、残部Tiからなる形状記憶合
金のNiおよび(または)Tiの一部をCr,Fe,C
o,Mo,VおよびPdの1種または2種以上0.1〜
5.0%で置換した合金の部材であって、形状記憶処理
および拘束熱処理によって拘束状態の形状を与えられた
ことを特徴とする形状記憶合金部材。
4. A shape memory alloy consisting of Ni: 45 to 50% (weight%, the same applies hereinafter), Cu: 5 to 12%, and the balance Ti, and a part of Ni and (or) Ti is Cr, Fe, C.
One or more of o, Mo, V and Pd 0.1 to 0.1
A shape memory alloy member, which is an alloy member replaced by 5.0% and is given a shape in a constrained state by shape memory treatment and restraint heat treatment.
【請求項5】 コイルバネの形状を有する請求項3また
は4に記載の形状記憶合金部材。
5. The shape memory alloy member according to claim 3, which has the shape of a coil spring.
JP27634792A 1992-10-14 1992-10-14 Thermomechanical treatment for shape memory alloy and shape memory alloy member Pending JPH06128709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27634792A JPH06128709A (en) 1992-10-14 1992-10-14 Thermomechanical treatment for shape memory alloy and shape memory alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27634792A JPH06128709A (en) 1992-10-14 1992-10-14 Thermomechanical treatment for shape memory alloy and shape memory alloy member

Publications (1)

Publication Number Publication Date
JPH06128709A true JPH06128709A (en) 1994-05-10

Family

ID=17568173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27634792A Pending JPH06128709A (en) 1992-10-14 1992-10-14 Thermomechanical treatment for shape memory alloy and shape memory alloy member

Country Status (1)

Country Link
JP (1) JPH06128709A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042629A1 (en) * 1998-02-19 1999-08-26 Boston Scientific Ltd. Process for the improved ductility of nitinol
CN101982657A (en) * 2010-11-19 2011-03-02 哈尔滨工业大学 Square sleeve-type actuator made of shape memory alloy for increasing displacement
CN102003363A (en) * 2010-11-19 2011-04-06 哈尔滨工业大学 Square telescopic shape memory alloy actuator for adding activation force
CN102052271A (en) * 2010-11-19 2011-05-11 哈尔滨工业大学 Round sleeve type memory alloy actuator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999042629A1 (en) * 1998-02-19 1999-08-26 Boston Scientific Ltd. Process for the improved ductility of nitinol
US6106642A (en) * 1998-02-19 2000-08-22 Boston Scientific Limited Process for the improved ductility of nitinol
US6540849B2 (en) 1998-02-19 2003-04-01 Scimed Life Systems, Inc. Process for the improved ductility of nitinol
CN101982657A (en) * 2010-11-19 2011-03-02 哈尔滨工业大学 Square sleeve-type actuator made of shape memory alloy for increasing displacement
CN102003363A (en) * 2010-11-19 2011-04-06 哈尔滨工业大学 Square telescopic shape memory alloy actuator for adding activation force
CN102052271A (en) * 2010-11-19 2011-05-11 哈尔滨工业大学 Round sleeve type memory alloy actuator

Similar Documents

Publication Publication Date Title
US4283233A (en) Method of modifying the transition temperature range of TiNi base shape memory alloys
US4631094A (en) Method of processing a nickel/titanium-based shape memory alloy and article produced therefrom
US4770725A (en) Nickel/titanium/niobium shape memory alloy & article
JPS60121247A (en) Shape memory alloy
JPS58151445A (en) Titanium-nickel alloy having reversible shape storage effect and its manufacture
US9205178B2 (en) Ti-Ni-Nb alloy device
WO2007066555A1 (en) Co BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
JP6156865B2 (en) Super elastic alloy
JPH06128709A (en) Thermomechanical treatment for shape memory alloy and shape memory alloy member
JPS5818427B2 (en) Method for producing metal articles with repeated shape memory
JP2539786B2 (en) Nickel / Titanium / Niobium Shape Memory Alloy
JPH07233432A (en) Shape memory alloy and its production
KR20180108992A (en) Metal composition having self-healing property and method of fabricating the same
JPS62287052A (en) Production of alloy piece at least partially amorphous
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JPS58217834A (en) Superelastic spring
JPS59179765A (en) Elinvar constant-modulus alloy
JPH059686A (en) Production of shape memory niti alloy
JPH07207390A (en) Super elastic spring
JP2733787B2 (en) High expansion alloy
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPH0238547A (en) Manufacture of ti-ni shape memory alloy
JP3239382B2 (en) Superelastic material and method of manufacturing the same
JPH04329854A (en) Method for shape memorizing treatment of ti-ni shape memory alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture