JPH06128244A - Optically active epoxide derivative and its production - Google Patents

Optically active epoxide derivative and its production

Info

Publication number
JPH06128244A
JPH06128244A JP3152164A JP15216491A JPH06128244A JP H06128244 A JPH06128244 A JP H06128244A JP 3152164 A JP3152164 A JP 3152164A JP 15216491 A JP15216491 A JP 15216491A JP H06128244 A JPH06128244 A JP H06128244A
Authority
JP
Japan
Prior art keywords
optically active
formula
dihydroxy
epoxide derivative
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3152164A
Other languages
Japanese (ja)
Other versions
JP3116420B2 (en
Inventor
Seiichi Takano
誠一 高野
Kuniro Ogasawara
国郎 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP03152164A priority Critical patent/JP3116420B2/en
Publication of JPH06128244A publication Critical patent/JPH06128244A/en
Application granted granted Critical
Publication of JP3116420B2 publication Critical patent/JP3116420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a new compound useful as a synthetic intermediate for various physiologically active substances, functional materials, etc. CONSTITUTION:The compound of formula I (R<1> to R<4> are 1-6C alkyl; *represents asymmetric C), e.g. (3R,4R)-3,4-epoxy-2,5-dihydroxy-2,5-dimethylhexane. The compound of formula I can be produced by the asymmetric oxidation reaction of a tertiary allyl alcohol of formula II in the presence of molecular sieve 4A in a solvent (e.g. methylene chloride) at -78 to 0 deg.C using an oxidizing agent, a tartaric acid ester and a titanium alkoxide at the same time. The oxidizing agent is e.g. a peroxide such as t-butyl hydroperoxide and the tartaric acid ester is e.g. L or D-diethyl tartrate. The amount of the titanium alkoxide is 0.0-1.5 equivalent based on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、一般式、BACKGROUND OF THE INVENTION The present invention has the general formula,

【0002】[0002]

【化3】 [Chemical 3]

【0003】(式中、R1、R2、R3、R4は炭素数1〜6の
アルキル基を示し、*は不斉炭素を表す。)で表される
光学活性エポキシド誘導体及びその製造法に関する。
(Wherein R 1 , R 2 , R 3 and R 4 represent an alkyl group having 1 to 6 carbon atoms, and * represents an asymmetric carbon), and the production thereof. Concerning the law.

【0004】[0004]

【従来の技術】近年、生理活性物質や機能性材料を光学
活性体として合成することの必要性が高まっている。こ
れらに複数の光学異性体が存在する場合、通常、各異性
体間でその活性や特性に差異が認められることが多い。
従って、十分な生理活性あるいは機能性を発現させるた
めには、望ましい光学異性体のみを選択的に合成するこ
とが不可欠である。
2. Description of the Related Art In recent years, there is an increasing need to synthesize physiologically active substances and functional materials as optically active substances. When a plurality of optical isomers are present in these compounds, a difference in activity and properties is usually observed between the isomers.
Therefore, in order to express sufficient physiological activity or functionality, it is essential to selectively synthesize only desired optical isomers.

【0005】本発明における前記一般式(I)で表され
る光学活性エポキシド誘導体は、本発明者らによって初
めて合成された化合物である。この新規化合物は、菊酸
をはじめとする種々の生理活性物質や機能性材料等の有
用化合物の合成中間体として極めて広範に利用できる。
しかしながら、過去に於いては過酢酸を用いたラセミ体
の合成法が知られているに過ぎず、(V. I. Nikitin
ら、Zh. Obshch. Khim.,32, 413(1962))、光学活性体の
工業的に優れた効率のよい合成法は知られていなかっ
た。
The optically active epoxide derivative represented by the general formula (I) in the present invention is the first compound synthesized by the present inventors. This novel compound can be widely used as a synthetic intermediate for useful compounds such as various physiologically active substances such as chrysanthemic acid and functional materials.
However, in the past, only a method for synthesizing a racemate using peracetic acid has been known (VI Nikitin
Zh. Obshch. Khim., 32 , 413 (1962)), an industrially excellent and efficient synthetic method of an optically active substance has not been known.

【0006】一方、光学活性エポキシドの合成法として
は、香月−シャープレス不斉エポキシ化反応(J. Am. C
hem. Soc., 102, 5974(1980)) が、アリルアルコール類
の不斉修飾法として幅広く用いられている。しかしなが
ら、これまでの報告はいずれも第1級及び第2級アルコ
ールを基質としたものであり、第3級アルコールへの適
用例は皆無であった(Rossiterら、Asymmetric Synthes
is, 1985, Vol.5, pp.193-246)。
On the other hand, as a method for synthesizing an optically active epoxide, Kazuki-Sharpress asymmetric epoxidation reaction (J. Am. C
hem. Soc., 102 , 5974 (1980)) is widely used as an asymmetric modification method for allyl alcohols. However, all reports so far have used primary and secondary alcohols as substrates, and there have been no examples of application to tertiary alcohols (Rossiter et al., Asymmetric Synthes
is, 1985, Vol.5, pp.193-246).

【0007】[0007]

【発明が解決しようとする課題】以上の点を踏まえ、本
発明者らは、光学活性エポキシド誘導体を効率よく得る
という目的を達成するために鋭意検討した結果、前記一
般式(I)で表される光学活性エポキシド誘導体を効率
よく得る製造法を見いだし本発明に至った。
Based on the above points, the inventors of the present invention have conducted extensive studies to achieve the purpose of efficiently obtaining an optically active epoxide derivative, and as a result, are represented by the general formula (I). The present invention has been completed by finding a production method for efficiently obtaining an optically active epoxide derivative.

【0008】[0008]

【課題を解決するための手段】本発明は、一般式The present invention has the general formula

【0009】[0009]

【化4】 [Chemical 4]

【0010】(式中、R1、R2、R3、R4は炭素数1〜6の
アルキル基を示し、*は不斉炭素を示す。)で表される
光学活性エポキシド誘導体である。また、一般式
(In the formula, R 1 , R 2 , R 3 , and R 4 represent an alkyl group having 1 to 6 carbon atoms, and * represents an asymmetric carbon.), Which is an optically active epoxide derivative. Also, the general formula

【0011】[0011]

【化5】 [Chemical 5]

【0012】(式中、R1、R2、R3、R4は炭素数1〜6の
アルキル基を示す。)で表される第3級アリルアルコー
ルを不斉酸化することにより、一般式(I)で表される
光学活性エポキシド誘導体を得ることを特徴とする光学
活性エポキシド誘導体の製造法である。更に、好ましく
は、その酸化工程において光学活性L−またはD−酒石
酸エステル、チタニウムアルコキシド、及びモレキュラ
ーシーブス4Aを用いることを特徴とする。
By the asymmetric oxidation of the tertiary allyl alcohol represented by the formula (wherein R 1 , R 2 , R 3 and R 4 represent an alkyl group having 1 to 6 carbon atoms), the general formula A method for producing an optically active epoxide derivative, characterized in that the optically active epoxide derivative represented by (I) is obtained. Further, preferably, optically active L- or D-tartaric acid ester, titanium alkoxide, and molecular sieves 4A are used in the oxidation step.

【0013】本発明の光学活性エポキシド誘導体は前記
一般式(I)で表されるが、具体的化合物名を挙げれ
ば、(3R,4R)−3,4−エポキシ−2,5−ジヒ
ドロキシ−2,5−ジメチルヘキサン、(4R,5R)
−4,5−エポキシ−3,6−ジヒドロキシ−3,6−
ジメチルヘプタン、(4R,5R)−4,5−エポキシ
−3,6−ジヒドロキシ−3−エチル−6−メチルヘプ
タン、(4R,5R)−4,5−エポキシ−3,6−ジ
ヒドロキシ−3−エチル−6−メチルオクタン、(4
R,5R)−4,5−エポキシ−3,6−ジヒドロキシ
−3,6−ジエチルオクタン、(3S,4S)−3,4
−エポキシ−2,5−ジヒドロキシ−2,5−ジメチル
ヘキサン、(4S,5S)−4,5−エポキシ−3,6
−ジヒドロキシ−3,6−ジメチルヘプタン、(4S,
5S)−4,5−エポキシ−3,6−ジヒドロキシ−3
−エチル−6−メチルヘプタン、(4S,5S)−4,
5−エポキシ−3,6−ジヒドロキシ−3−エチル−6
−メチルオクタン、(4S,5S)−4,5−エポキシ
−3,6−ジヒドロキシ−3,6−ジエチルオクタン等
である。
The optically active epoxide derivative of the present invention is represented by the above general formula (I). Specific examples of the compound name are (3R, 4R) -3,4-epoxy-2,5-dihydroxy-2. , 5-dimethylhexane, (4R, 5R)
-4,5-Epoxy-3,6-dihydroxy-3,6-
Dimethylheptane, (4R, 5R) -4,5-epoxy-3,6-dihydroxy-3-ethyl-6-methylheptane, (4R, 5R) -4,5-epoxy-3,6-dihydroxy-3- Ethyl-6-methyloctane, (4
R, 5R) -4,5-Epoxy-3,6-dihydroxy-3,6-diethyloctane, (3S, 4S) -3,4
-Epoxy-2,5-dihydroxy-2,5-dimethylhexane, (4S, 5S) -4,5-epoxy-3,6
-Dihydroxy-3,6-dimethylheptane, (4S,
5S) -4,5-Epoxy-3,6-dihydroxy-3
-Ethyl-6-methylheptane, (4S, 5S) -4,
5-epoxy-3,6-dihydroxy-3-ethyl-6
-Methyloctane, (4S, 5S) -4,5-epoxy-3,6-dihydroxy-3,6-diethyloctane and the like.

【0014】本発明の不斉酸化反応は、モレキュラーシ
ーブス4A存在下、酸化剤、酒石酸エステル、およびチ
タニウムアルコキシドを同時に用いることによって好適
に達成される。反応に用いられる酸化剤の例としては、
t−ブチルヒドロペルオキシド等の過酸化物が挙げられ
る。酒石酸エステルとしては、L−またはD−体の酒石
酸ジエチル、酒石酸ジプロピル、酒石酸ジイソプロピル
等を用いることが出来る。チタニウムアルコキシドとし
ては、チタニウムイソプロポキシド、チタニウムt−ブ
トキシド等が挙げられる。チタニウムアルコキシドは基
質に対して0.05〜1.5 当量用いることが出来るが、特に
好ましくは1当量以上である。1.5 当量を超えて用いて
も特に大きな効果はない。
The asymmetric oxidation reaction of the present invention is preferably accomplished by using an oxidizing agent, a tartaric acid ester, and a titanium alkoxide simultaneously in the presence of molecular sieves 4A. Examples of the oxidizing agent used in the reaction include:
Peroxides such as t-butyl hydroperoxide may be mentioned. As the tartrate ester, L- or D-form diethyl tartrate, dipropyl tartrate, diisopropyl tartrate or the like can be used. Examples of titanium alkoxides include titanium isopropoxide and titanium t-butoxide. The titanium alkoxide can be used in an amount of 0.05 to 1.5 equivalents, preferably 1 equivalent or more, relative to the substrate. There is no particular effect even if it is used in excess of 1.5 equivalents.

【0015】反応溶媒としては、塩化メチレン、クロロ
ホルム、1,2−ジクロロエタン等のハロゲン化炭化水
素系溶媒を用いることが出来る。反応温度は−78℃〜0
℃が適当であり、特に好ましくは−20℃である。以上の
操作により、光学活性エポキシド誘導体を得ることがで
きる。用いる酒石酸により、光学活性エポキシド誘導体
は(+)−体、(−)−体のどちらも有り得る。
As the reaction solvent, halogenated hydrocarbon solvents such as methylene chloride, chloroform and 1,2-dichloroethane can be used. Reaction temperature is -78 ℃ ~ 0
C. is suitable, particularly preferably -20.degree. By the above operation, an optically active epoxide derivative can be obtained. Depending on the tartaric acid used, the optically active epoxide derivative may be either (+)-form or (-)-form.

【0016】本発明の光学活性エポキシド誘導体の立体
配置は次のようにして決定した。即ち、立体配置の知ら
れている天然の(S)−リンゴ酸をジアゾメタンでメチ
ルエステル化し、更にメチルリチウムと反応させること
により、2工程で式(III)で示される(S)−2,3,
5−トリヒドロキシ−2,5−ジメチルヘキサンを合成
した(〔α〕D 29: −19.6°(c 1.00, CHCl3))。
The configuration of the optically active epoxide derivative of the present invention was determined as follows. That is, natural (S) -malic acid having a known configuration is methyl esterified with diazomethane and further reacted with methyllithium to form (S) -2,3 represented by the formula (III) in two steps. ,
5-Trihydroxy-2,5-dimethylhexane was synthesized ([α] D 29 : -19.6 ° (c 1.00, CHCl 3 )).

【0017】[0017]

【化6】 [Chemical 6]

【0018】一方、本発明の化合物である(3R,4
R)−3,4−エポキシ−2,5−ジヒドロキシ−2,
5−ジメチルヘキサンを水素化アルミニウムリチウムで
還元して(R)−2,3,5−トリヒドロキシ−2,5
−ジメチルヘキサンに変換し、前述の比旋光度と比較す
ることにより、本発明の化合物の立体配置を決定した。
On the other hand, the compound of the present invention (3R, 4
R) -3,4-epoxy-2,5-dihydroxy-2,
Reduction of 5-dimethylhexane with lithium aluminum hydride to give (R) -2,3,5-trihydroxy-2,5
-The steric configuration of the compound of the present invention was determined by converting to dimethylhexane and comparing with the specific optical rotation described above.

【0019】[0019]

【発明の効果】本発明の製造法を用いれば、従来不可能
であった第3級アリルアルコールの不斉エポキシ化反応
を容易に達成しうる。また、本発明の前記一般式(I)
で表される化合物は、本発明者らによって初めて合成さ
れた新規化合物であり、種々の生理活性物質や機能性材
料等の有用化合物の合成中間体として利用できる。
EFFECTS OF THE INVENTION By using the production method of the present invention, an asymmetric epoxidation reaction of a tertiary allyl alcohol, which has hitherto been impossible, can be easily achieved. In addition, the general formula (I) of the present invention
The compound represented by is a novel compound synthesized for the first time by the present inventors, and can be used as a synthetic intermediate for useful compounds such as various physiologically active substances and functional materials.

【0020】例えば、以下の反応経路により、式(IV)
で示されるような菊酸誘導体に導くことが可能である。
For example, according to the following reaction route, the formula (IV)
It is possible to lead to a chrysanthemic acid derivative such as

【0021】[0021]

【化7】 [Chemical 7]

【0022】[0022]

【実施例】以下、実施例により本発明を更に詳しく説明
するが、本発明はこれらの実施例によって制限されるも
のではない。 参考例1 (E)−2,5−ジヒドロキシ−2,5−ジメチル−3
−ヘキセンの合成 水素化アルミニウムリチウム11.4g (0.3mol)をテトラヒ
ドロフラン300ml に懸濁し、氷冷下、2,5−ジヒドロ
キシ−2,5−ジメチル−3−ヘキシン14.2g(0.1mol)
のテトラヒドロフラン溶液50mlを滴下して同温度で1時
間攪拌した。濃アンモニア水を滴下し、室温で1時間攪
拌後、セライトを通して濾過した。セライト上の残渣
を、再びテトラヒドロフランで抽出、濾過した。合わせ
た濾液を減圧下濃縮し、粗製物14.7gを得た。エーテル
−ヘキサンより再結晶して(E)−2,5−ジヒドロキ
シ−2,5−ジメチル−3−ヘキセンの無色針状晶を得
た。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. Reference Example 1 (E) -2,5-dihydroxy-2,5-dimethyl-3
-Synthesis of hexene 11.4 g (0.3 mol) of lithium aluminum hydride was suspended in 300 ml of tetrahydrofuran and under ice cooling, 2,5-dihydroxy-2,5-dimethyl-3-hexyne 14.2 g (0.1 mol).
50 ml of a tetrahydrofuran solution of was added dropwise and stirred at the same temperature for 1 hour. Concentrated aqueous ammonia was added dropwise, the mixture was stirred at room temperature for 1 hr, and then filtered through Celite. The residue on Celite was extracted again with tetrahydrofuran and filtered. The combined filtrate was concentrated under reduced pressure to obtain 14.7 g of a crude product. Recrystallization from ether-hexane gave colorless needle crystals of (E) -2,5-dihydroxy-2,5-dimethyl-3-hexene.

【0023】mp : 96〜97℃1 H-NMR (CDCl3) : δ 1.30(s, 12H), 1.82(brs, 2H),
5.80(s, 2H), IR (nujol) : νmax 3450cm-1 MS (m/e) : 129 (M +−CH3), 59(100%)。 実施例1 (3R,4R)−3,4−エポキシ−2,5−ジヒドロ
キシ−2,5−ジメチルヘキサンの合成 工程1 粉砕、乾燥したモレキュラーシーブス4A 4gを、塩化
メチレン200ml に懸濁し、−20℃でチタニウムイソプロ
ポキシド6.3ml(21mmol) 及びL−(+)−酒石酸ジイソ
プロピル5.62g(24mmol)の塩化メチレン溶液を加えて30
分間攪拌した。(E)−2,5−ジヒドロキシ−2,5
−ジメチル−3−ヘキセン 2.88g (20mmol) の塩化メチ
レン溶液を加えて1時間攪拌後、t−ブチルヒドロペル
オキシドの 1.8M 塩化メチレン溶液16.7ml(30mmol)を滴
下し、−20℃で80時間攪拌した。反応混合物に水36ml及
びテトラヒドロフラン180ml を加え、室温で攪拌後、セ
ライトを通して濾過した。セライト上の残渣をテトラヒ
ドロフラン500ml で洗浄後濾過し、合わせた濾液を減圧
下に濃縮して、粗製物を得た。カラムクロマトグラフィ
ー(シリカゲル、エーテル−ヘキサン2:1)で精製
し、(3R,4R)−3,4−エポキシ−2,5−ジヒ
ドロキシ−2,5−ジメチルヘキサン3.15gを得た。収
率96%。
Mp: 96-97 ° C. 1 H-NMR (CDCl 3 ): δ 1.30 (s, 12H), 1.82 (brs, 2H),
5.80 (s, 2H), IR (nujol): νmax 3450cm -1 MS (m / e): 129 (M + -CH 3 ), 59 (100%). Example 1 Synthesis of (3R, 4R) -3,4-epoxy-2,5-dihydroxy-2,5-dimethylhexane Step 1 4 g of crushed and dried molecular sieves 4A was suspended in 200 ml of methylene chloride, and -20 A solution of titanium isopropoxide (6.3 ml, 21 mmol) and L-(+)-diisopropyl tartrate (5.62 g, 24 mmol) in methylene chloride was added at 30 ° C.
Stir for minutes. (E) -2,5-dihydroxy-2,5
-Methyl chloride solution of 2.88g (20mmol) of dimethyl-3-hexene was added and stirred for 1 hour, then 16.7ml (30mmol) of 1.8M methylene chloride solution of t-butyl hydroperoxide was added dropwise, and stirred at -20 ° C for 80 hours. did. 36 ml of water and 180 ml of tetrahydrofuran were added to the reaction mixture, and the mixture was stirred at room temperature and then filtered through Celite. The residue on Celite was washed with tetrahydrofuran (500 ml) and then filtered, and the combined filtrate was concentrated under reduced pressure to give a crude product. Purification by column chromatography (silica gel, ether-hexane 2: 1) gave (3R, 4R) -3,4-epoxy-2,5-dihydroxy-2,5-dimethylhexane (3.15 g). Yield 96%.

【0024】m.p. : 29 〜31℃ 〔α〕D 23 : −18.4°(c 2.0, CHCl3)1 H-NMR (CDCl3) : δ 1.24(s, 6H), 1.33(s, 6H), 1.8
8(brs, 2H, D2O置換),3.02(s, 2H) IR (neat) : νmax 3400cm-1 MS (m/e) : 145 (M + −CH3), 59(100%)。
Mp: 29 to 31 ° C. (α) D 23 : -18.4 ° (c 2.0, CHCl 3 ) 1 H-NMR (CDCl 3 ): δ 1.24 (s, 6H), 1.33 (s, 6H), 1.8
8 (brs, 2H, D 2 O substitution), 3.02 (s, 2H) IR (neat): νmax 3400cm -1 MS (m / e): 145 (M + -CH 3 ), 59 (100%).

【0025】本化合物の光学純度は、工程2において得
られる(R)−2,3,5−トリヒドロキシ−2,5−
ジメチルヘキサンのモノベンゾイル体の光学純度を、光
学分割カラム(ダイセル社製、CHIRALCEL OD) を用いて
測定することによって70%eeと決定した。 工程2 工程1で得た(3R,4R)−3,4−エポキシ−2,
5−ジヒドロキシ−2,5−ジメチルヘキサン250mg(1.
56mmol) をテトラヒドロフラン10mlに溶解し、氷冷下、
水素化アルミニウムリチウム 210mg(5.47mmol)を加えて
同温度で3時間攪拌した。飽和塩化アンモニウム水溶液
を加えて室温で攪拌し、セライトを通して濾過した。セ
ライト上の残渣を更にテトラヒドロフランで洗浄後濾過
し、濾液を合わせて減圧下濃縮した。残渣をカラムクロ
マトグラフィー(シリカゲル、メタノール−エーテル
5:95)で精製し、(R)−2,3,5−トリヒドロキ
シ−2,5−ジメチルヘキサン229mg を得た。収率92
%。
The optical purity of this compound is (R) -2,3,5-trihydroxy-2,5-obtained in step 2.
The optical purity of the monobenzoyl derivative of dimethylhexane was determined to be 70% ee by measuring it using an optical resolution column (CHIRALCEL OD manufactured by Daicel). Step 2 (3R, 4R) -3,4-epoxy-2 obtained in Step 1,
250 mg of 5-dihydroxy-2,5-dimethylhexane (1.
56 mmol) in 10 ml of tetrahydrofuran, and under ice cooling,
210 mg (5.47 mmol) of lithium aluminum hydride was added, and the mixture was stirred at the same temperature for 3 hours. A saturated aqueous ammonium chloride solution was added, the mixture was stirred at room temperature, and filtered through Celite. The residue on Celite was further washed with tetrahydrofuran, filtered, and the filtrates were combined and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, methanol-ether 5:95) to obtain (R) -2,3,5-trihydroxy-2,5-dimethylhexane (229 mg). Yield 92
%.

【0026】〔α〕D 29:+15.6°(c 1.01, MeOH)。 該スペクトルデータは、以下に示す比較例において
(S)−リンゴ酸より調製した標品のそれと完全に一致
した。 比較例 (S)−2,3,5−トリヒドロキシ−2,5−ジメチ
ルヘキサンの合成 工程1 (S)−リンゴ酸1.34g(10mmol) をエーテル15mlに溶解
し、氷冷下、ジアゾメタンの飽和エーテル溶液を反応液
が黄色を持続して呈するまで滴下した。反応液に窒素気
流を導入し、過剰のジアゾメタンを除去後、酢酸エチル
で抽出した。抽出液を飽和食塩水で洗浄し、無水硫酸マ
グネシウム上で乾燥した。濾過、減圧留去し、残渣をカ
ラムクロマトグラフィー(シリカゲル、ヘキサン−エー
テル1:2)で精製し、(S)−リンゴ酸ジメチル1.56
gを得た。収率95%。
[Α] D 29 : + 15.6 ° (c 1.01, MeOH). The spectral data were completely in agreement with those of the standard sample prepared from (S) -malic acid in the comparative example shown below. Comparative Example Synthesis of (S) -2,3,5-trihydroxy-2,5-dimethylhexane Step 1 1.34 g (10 mmol) of (S) -malic acid was dissolved in 15 ml of ether and saturated with diazomethane under ice cooling. The ether solution was added dropwise until the reaction liquid remained yellow. A nitrogen stream was introduced into the reaction solution, excess diazomethane was removed, and the mixture was extracted with ethyl acetate. The extract was washed with saturated saline and dried over anhydrous magnesium sulfate. After filtration and evaporation under reduced pressure, the residue was purified by column chromatography (silica gel, hexane-ether 1: 2), and (S) -dimethyl malate 1.56
g was obtained. Yield 95%.

【0027】1H-NMR (CDCl3) : δ 2.60-3.00(m, 2H),
3.24(d, 1H, D2O置換),3.72(s, 3H), 3.82(s, 3H),4.5
0(dd, 1H, J=5.1, 5.1Hz) IR (neat) : νmax 3490, 1732cm-1。 工程2 工程1で得た(S)−リンゴ酸ジメチル200mg(1.23mmo
l) をテトラヒドロフラン3mlに溶解し、−20℃にてメ
チルリチウムの 1.4M エーテル溶液 8.8ml(12.3mmol)を
滴下して、同温度で8時間攪拌した。飽和塩化アンモニ
ウム水溶液を加えて室温で攪拌した後、エーテルで希釈
し、有機層を飽和重曹水、飽和食塩水で順次洗浄した。
無水硫酸マグネシウム上で乾燥した後、濾過、減圧留去
し、残渣をカラムクロマトグラフィー(シリカゲル、メ
タノール−エーテル5:95)で精製し(S)−2,3,
5−トリヒドロキシ−2,5−ジメチルヘキサン129mg
を得た。収率65%。
1 H-NMR (CDCl 3 ): δ 2.60-3.00 (m, 2H),
3.24 (d, 1H, D 2 O substitution), 3.72 (s, 3H), 3.82 (s, 3H), 4.5
0 (dd, 1H, J = 5.1, 5.1Hz) IR (neat): νmax 3490, 1732cm -1 . Step 2 200 mg (1.23 mmo) of (S) -dimethyl malate obtained in Step 1
l) was dissolved in 3 ml of tetrahydrofuran, 8.8 ml (12.3 mmol) of 1.4M ether solution of methyllithium was added dropwise at -20 ° C, and the mixture was stirred at the same temperature for 8 hours. After adding a saturated aqueous ammonium chloride solution and stirring at room temperature, the mixture was diluted with ether, and the organic layer was washed successively with saturated aqueous sodium hydrogen carbonate and saturated brine.
After drying over anhydrous magnesium sulfate, filtration and evaporation under reduced pressure, the residue was purified by column chromatography (silica gel, methanol-ether 5:95) (S) -2,3,3.
5-trihydroxy-2,5-dimethylhexane 129mg
Got Yield 65%.

【0028】 〔α〕D 29 : −19.6°(c 1.00, CHCl3)1 H-NMR (CDCl3) : δ 1.16(s, 3H), 1.20(s, 3H), 1.2
9(s, 3H),1.32(s, 3H), 1.45-1.85(m, 2H),2.65(brs, 1
H, D2O置換), 3.45(brs, 1H, D2O置換),3.70-3.85(m, 1
H),4.20(brd, 1H, J=1.5Hz, D2O置換) IR (neat) : νmax 3360cm-1 MS (m/e) : 163 (M ++1), 129, 71(100%)。
[Α] D 29 : −19.6 ° (c 1.00, CHCl 3 ) 1 H-NMR (CDCl 3 ): δ 1.16 (s, 3H), 1.20 (s, 3H), 1.2
9 (s, 3H), 1.32 (s, 3H), 1.45-1.85 (m, 2H), 2.65 (brs, 1
H, D 2 O substitution), 3.45 (brs, 1H, D 2 O substitution), 3.70-3.85 (m, 1
H), 4.20 (brd, 1H, J = 1.5Hz, D 2 O substitution) IR (neat): νmax 3360cm -1 MS (m / e): 163 (M + +1), 129, 71 (100%).

【0029】実施例2 (3S,4S)−3,4−エポキシ−2,5−ジヒドロ
キシ−2,5−ジメチルヘキサンの合成 粉砕、乾燥したモレキュラーシーブス4A 1gを塩化メ
チレン50mlに懸濁し、−20℃でチタニウムイソプロポキ
シド1.6ml(5.3mmol)及びD−(−)−酒石酸ジイソプロ
ピル1.41g(6.0mmol) の塩化メチレン溶液を加えて、30
分間攪拌した。(E)−2,5−ジヒドロキシ−2,5
−ジメチル−3−ヘキセン0.72g (5.0mmol) の塩化メチ
レン溶液を加えて1時間攪拌後、t−ブチルヒドロペル
オキシドの 1.8M 塩化メチレン溶液4.2ml(7.6mmol)を滴
下し、−20℃で80時間攪拌した。反応混合物に水9ml及
びテトラヒドロフラン45mlを加え、室温で攪拌後、セラ
イトを通して濾過した。セライト上の残渣をテトラヒド
ロフラン125ml で洗浄後、濾過し、合わせた濾液を、減
圧下、濃縮して粗製物を得た。カラムクロマトグラフィ
ー(シリカゲル、エーテル−ヘキサン2:1)で精製
し、(3S,4S)−3,4−エポキシ−2,5−ジヒ
ドロキシ−2,5−ジメチルヘキサン0.78gを得た。収
率95%。
Example 2 Synthesis of (3S, 4S) -3,4-epoxy-2,5-dihydroxy-2,5-dimethylhexane Grinded and dried molecular sieves 4A (1 g) was suspended in methylene chloride (50 ml) to give -20 A solution of 1.6 ml (5.3 mmol) of titanium isopropoxide and 1.41 g (6.0 mmol) of diisopropyl D-(-)-tartrate in methylene chloride was added at 30 DEG C.
Stir for minutes. (E) -2,5-dihydroxy-2,5
A solution of 0.72 g (5.0 mmol) of dimethyl-3-hexene in methylene chloride was added and stirred for 1 hour, and then 4.2 ml (7.6 mmol) of a 1.8 M solution of t-butyl hydroperoxide in methylene chloride was added dropwise, and the mixture was heated at -20 ° C at 80 ° C. Stir for hours. 9 ml of water and 45 ml of tetrahydrofuran were added to the reaction mixture, and the mixture was stirred at room temperature and then filtered through Celite. The residue on Celite was washed with 125 ml of tetrahydrofuran and then filtered, and the combined filtrates were concentrated under reduced pressure to give a crude product. Purification by column chromatography (silica gel, ether-hexane 2: 1) gave (3S, 4S) -3,4-epoxy-2,5-dihydroxy-2,5-dimethylhexane 0.78 g. Yield 95%.

【0030】m.p. : 29 〜31℃ 〔α〕D 23 : +18.2°(c 2.0, CHCl3)1 H-NMR (CDCl3) : δ 1.24(s, 6H), 1.33(s, 6H), 1.8
8(brs, 2H, D2O置換),3.02(s, 2H) IR (neat) : νmax 3400cm-1 MS (m/e) : 145 (M +−CH3), 59(100%)。
Mp: 29-31 ° C. [α] D 23 : + 18.2 ° (c 2.0, CHCl 3 ) 1 H-NMR (CDCl 3 ): δ 1.24 (s, 6H), 1.33 (s, 6H), 1.8
8 (brs, 2H, D 2 O substitution), 3.02 (s, 2H) IR (neat): νmax 3400cm -1 MS (m / e): 145 (M + -CH 3 ), 59 (100%).

【0031】本化合物の光学純度は実施例1に示した方
法と同様の方法によって、70%eeと決定した。
The optical purity of this compound was determined to be 70% ee by the same method as that shown in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location // C07B 61/00 300

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 【化1】 (式中、R1、R2、R3、R4は炭素数1〜6のアルキル基を
示し、*は不斉炭素を示す。)で表される光学活性エポ
キシド誘導体。
1. A general formula: (In the formula, R 1 , R 2 , R 3 and R 4 represent an alkyl group having 1 to 6 carbon atoms, and * represents an asymmetric carbon.) An optically active epoxide derivative.
【請求項2】 一般式 【化2】 (式中、R1、R2、R3、R4は炭素数1〜6のアルキル基を
示す。)で表される第3級アリルアルコールを不斉酸化
することにより、請求項1記載の一般式(I)で表され
る光学活性エポキシド誘導体を得ることを特徴とする光
学活性エポキシド誘導体の製造法。
2. A general formula: The tertiary allyl alcohol represented by the formula (wherein R 1 , R 2 , R 3 and R 4 represent an alkyl group having 1 to 6 carbon atoms) is asymmetrically oxidized to obtain a tertiary allyl alcohol according to claim 1. A process for producing an optically active epoxide derivative, which comprises obtaining the optically active epoxide derivative represented by the general formula (I).
【請求項3】 酸化工程において光学活性L−またはD
−酒石酸エステル、チタニウムアルコキシド、及びモレ
キュラーシーブス4Aを用いる請求項2記載の製造法。
3. Optically active L- or D in the oxidation step
-The production method according to claim 2, wherein a tartaric acid ester, a titanium alkoxide, and a molecular sieve 4A are used.
JP03152164A 1991-05-29 1991-05-29 Optically active epoxide derivative and production method Expired - Fee Related JP3116420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03152164A JP3116420B2 (en) 1991-05-29 1991-05-29 Optically active epoxide derivative and production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03152164A JP3116420B2 (en) 1991-05-29 1991-05-29 Optically active epoxide derivative and production method

Publications (2)

Publication Number Publication Date
JPH06128244A true JPH06128244A (en) 1994-05-10
JP3116420B2 JP3116420B2 (en) 2000-12-11

Family

ID=15534428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03152164A Expired - Fee Related JP3116420B2 (en) 1991-05-29 1991-05-29 Optically active epoxide derivative and production method

Country Status (1)

Country Link
JP (1) JP3116420B2 (en)

Also Published As

Publication number Publication date
JP3116420B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
KR100849880B1 (en) New process for the preparation of optically active 2-[6-substituted alkyl-1,3-dioxan-4-yl]acetic acid derivatives
US5430171A (en) T-butyl (R)-(-)-4-cyano-3-hydroxybutyrate and process for preparing the same
EP0452143B1 (en) Process for preparing optically active 3-hydroxypyrrolidine derivatives
JP3116420B2 (en) Optically active epoxide derivative and production method
JPH01228994A (en) Gamma-silylallyl alcohol and production thereof
JP3070141B2 (en) Optically active alkenyl ethylene glycols and method for producing the same
JPH0557248B2 (en)
JPH04149151A (en) Production of 4-bromo-3-hydroxybutyric acid ester derivative
WO1988000190A1 (en) Optically active derivatives of glycidol
US5153338A (en) Optically active derivatives of glycidol
JP3121656B2 (en) Optically active glycidol derivative and method for producing the same
JP2974181B2 (en) A new method for producing cyclobutanol
US6150540A (en) Versatile intermediate for annonaceous acetogenins
JP4106079B2 (en) Method for producing optically active epoxy alcohol
JPH01135781A (en) Optically active epoxidized alcohol and production thereof
JPH09241247A (en) Production of 2-oxazolidinone derivative
JPH01233244A (en) Optically active fluorine-containing alcohol
JP2001064209A (en) Selective reduction
JPH0645571B2 (en) New optically active hydroxy ester
JPH0489441A (en) Production of optically active 2-alkanol
JPH04316538A (en) Production of optically active 3,5-anti-dihydroxycarboxylic acid ester derivative
JPS63174957A (en) Production of 4-amino-3-hydroxylactic acid
JPH0532619A (en) Production of aziridine compound
JPS61254544A (en) Production of 4,4,4-trifluorovaline compound
JPH04316537A (en) Optically active 3,5-anti-dihydroxycarboxylic acid ester derivative

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees