JPH0612670A - Initialization method for recording medium - Google Patents

Initialization method for recording medium

Info

Publication number
JPH0612670A
JPH0612670A JP17232992A JP17232992A JPH0612670A JP H0612670 A JPH0612670 A JP H0612670A JP 17232992 A JP17232992 A JP 17232992A JP 17232992 A JP17232992 A JP 17232992A JP H0612670 A JPH0612670 A JP H0612670A
Authority
JP
Japan
Prior art keywords
recording
track
recording medium
initialization
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17232992A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tsuchinaga
浩之 土永
Takeshi Maeda
武志 前田
Hisashi Ando
寿 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17232992A priority Critical patent/JPH0612670A/en
Publication of JPH0612670A publication Critical patent/JPH0612670A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To eliminate the fluctuation in the level of a reproduced signal of a phase shift optical disk of an overwriting type by suppressing the fluctuation in the width of the uncrystallized regions generated in the course of recording. CONSTITUTION:The reference clock signal formed from the prepit information embedded in the disk is frequency-divided by two to form two patterns 14, 14' for initialization which are synchronized with the reference clock signal and are inverted in phase. The progression of the crystallization of the uncrystallized regions 13' generated in the peripheral parts of the recorded amorphous pits 15, 15' is satd. by alternately overwriting of these patterns plural times, by that, the spread of the width of the crystallized tracks 12 at the time of recording is made invisible. The appearance of the fluctuation in the width of the crystallized tracks is obviated even after the formation of the recording pits and the uncrystallized regions are no longer caught in a laser beam for reproduction and, therefore, the fluctuation in the level of the reproduced signal is eliminated. Consequently, the detection error arising from the fluctuation in the level of the reproduced signal is suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はディジタル情報を光学的
に記録再生する光ディスク装置に係わり、特に相変化現
象を用いて情報の記録再生を行なう書き替え可能な光デ
ィスク装置に用いる記録媒体の記録部位の初期化方法及
びその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk device for optically recording / reproducing digital information, and more particularly to a recording portion of a recording medium used in a rewritable optical disk device for recording / reproducing information using a phase change phenomenon. Initialization method and apparatus therefor.

【0002】[0002]

【従来の技術】ディジタル情報を光学的に記録再生する
書き替え型の光ディスク装置の例として相変化型の光デ
ィスク装置がある。この装置で情報を記録するには、記
録媒体上に半導体レーザの出射ビームを微小な光スポッ
トに絞り込み、光スポットの照射部分を急熱又は急冷
し、結晶状態からアモルファス状態への相変化を起こし
て記録ピットを形成する。こうして形成された記録ピッ
トの相は、アモルファス状態である。再生時には、アモ
ルファス状態の記録部分と、未記録部分とでは屈折率が
異なることを利用する。屈折率が異なると、記録媒体か
ら光検出器に戻る反射光量が異なるため、この検出され
た反射光量によって記録ピットの有無を検知して、情報
を再生する。
2. Description of the Related Art A phase change type optical disk device is an example of a rewritable optical disk device for optically recording and reproducing digital information. To record information with this device, the emitted beam of the semiconductor laser is narrowed down to a minute light spot on the recording medium, and the irradiated portion of the light spot is rapidly heated or rapidly cooled to cause a phase change from a crystalline state to an amorphous state. To form a recording pit. The phase of the recording pit thus formed is in an amorphous state. At the time of reproduction, the fact that the recorded portion in the amorphous state and the unrecorded portion have different refractive indexes is used. When the refractive index is different, the amount of reflected light returning from the recording medium to the photodetector is different, and therefore the presence or absence of a recording pit is detected by the detected amount of reflected light to reproduce the information.

【0003】記録情報を消去するには、まずアモルファ
ス状態の記録ピットに、再生レベルと記録レベルの中間
程度の強度のレーザビームを照射する。記録膜の結晶化
温度の下に、ある一定の時間内保温することにより、結
晶化過程を進行させることで行なう。この消去時間は、
使用する記録膜材料固有の結晶化速度に依存する。ジャ
パニーズ アプライド フィジックス 64(4),15 マー
チ オーガスト(1988)(J.Appl.Phys.64(4),15 M
arch August (1988))の第1715頁から第1719頁に記載さ
れているように、In3SbTe2膜では50nsが実現してい
る。消去時間より長い時間間隔でビットが反転するディ
ジタル情報であれば、ビーム強度を中間レベルと記録レ
ベルの間で直接変調することで、オーバライト動作も実
現可能である。この種の従来技術としては、特開昭61
−101130がある。
In order to erase the recorded information, first, the recording pits in the amorphous state are irradiated with a laser beam having an intensity approximately between the reproduction level and the recording level. This is performed by advancing the crystallization process by keeping the temperature under the crystallization temperature of the recording film for a certain period of time. This erase time is
It depends on the crystallization rate specific to the recording film material used. Japanese Applied Physics 64 (4), 15 March August (1988) (J.Appl.Phys.64 (4), 15 M
As described in pages 1715 to 1719 of Arch August (1988)), 50 ns is realized in the In 3 SbTe 2 film. With digital information in which bits are inverted at time intervals longer than the erasing time, the overwrite operation can be realized by directly modulating the beam intensity between the intermediate level and the recording level. As a conventional technique of this kind, Japanese Patent Laid-Open No. Sho 61-61 is known.
There is -101130.

【0004】相変化型の記録媒体に用いられる記録膜材
料には、Te,Se,Sなどの元素を含むカルコゲン化
物がよく用いられる。これを蒸着などのプロセスにより
ディスク坦体上に気相成長させて膜形成する。蒸着直後
の記録膜は非晶質の状態であり、これをas-depo状態と
呼ぶ。蒸着後(as-depo)の記録膜だからである。記録
消去の過程で生じるアモルファス状態も、非晶質の状態
の一形態ではあるが、as-depo状態とは分子配列や屈折
率などの物性定数が異なる。これはアモルファス相が、
結晶状態すなわち固相(すなわち結晶質の状態)から非
晶質化したものであることに起因する。このため、as-d
epo状態と呼び、アモルファス相と区別される。このよ
うに、記録ピットを構成するアモルファス状態は、as-d
epo状態の記録膜に光ビームを照射して相変化されても
形成されない。結晶質の状態から相変化させなくてはア
モルファス状態は得られない。したがって相変化型の光
ディスク装置に用いられる記録媒体では、ディスクの使
用前に、as-depo状態から結晶状態にするための初期化
操作が必要である。
Chalcogenides containing elements such as Te, Se and S are often used for recording film materials used in phase change recording media. This is vapor-deposited on the disk carrier by a process such as vapor deposition to form a film. The recording film immediately after vapor deposition is in an amorphous state, which is called as-depo state. This is because it is a recording film after vapor deposition (as-depo). The amorphous state generated in the process of recording and erasing is also a form of the amorphous state, but has different physical constants such as molecular arrangement and refractive index from the as-depo state. This is an amorphous phase,
It is caused by being amorphized from a crystalline state, that is, a solid phase (that is, a crystalline state). Therefore, as-d
It is called the epo state and is distinguished from the amorphous phase. In this way, the amorphous state that constitutes the recording pits is as-d
It is not formed even if the recording film in the epo state is irradiated with a light beam to undergo a phase change. The amorphous state cannot be obtained without changing the phase from the crystalline state. Therefore, the recording medium used in the phase-change type optical disk device requires an initialization operation for changing the as-depo state to the crystalline state before using the disk.

【0005】従来の初期化方法は、as-depo状態の記録
膜上に記録レベルのレーザビームを照射して一旦アモル
ファス化領域を形成する。次に、記録レベルよりも低い
消去レベルのレーザビームを照射して、アモルファス状
態から結晶状態を形成する。この初期化操作により形成
される結晶化領域は同心円又はらせん状の帯状領域であ
りこれを記録トラックとして、記録又は再生が行なわれ
る。
In the conventional initialization method, a recording level laser beam is irradiated onto the recording film in the as-depo state to temporarily form an amorphous region. Next, a laser beam having an erase level lower than the recording level is irradiated to form a crystalline state from an amorphous state. The crystallization region formed by this initialization operation is a concentric circle or spiral band region, and recording or reproduction is performed using this as a recording track.

【0006】[0006]

【発明が解決しようとする課題】レーザスポットのビー
ム強度分布は、一般にガウス分布で近似される2次元的
なひろがりを呈しており、実際の記録消去には、ピーク
レベル付近の分布を利用している。このため、ビーム強
度を記録レベルまで上げると、記録トラック上にアモル
ファスピットを形成すると同時に、記録トラックの外部
の未初期化領域(すなわちas-depo状態の部分)の温度が
消去温度まで達することがあり、記録ピットの周辺部の
結晶化部分の幅が拡がってしまう。この結晶化は記録消
去を繰り返す毎に空間的にも時間的にもランダムに起こ
る。相変化光ディスクでは、光スポットで照射された範
囲内の反射率分布が、再生信号の振幅レベルに大きく寄
与しているので、初期化トラック中の結晶化部分の幅の
変動は、再生信号のレベル変動に影響を与え、記録ピッ
トの誤検出を引き起こすこととなる。
The beam intensity distribution of the laser spot generally exhibits a two-dimensional spread that is approximated by a Gaussian distribution. For actual recording / erasing, a distribution near the peak level is used. There is. Therefore, when the beam intensity is raised to the recording level, an amorphous pit is formed on the recording track, and at the same time, the temperature of the uninitialized area outside the recording track (that is, the part in the as-depo state) reaches the erasing temperature. Therefore, the width of the crystallized portion around the recording pit is increased. This crystallization randomly occurs spatially and temporally every time recording and erasing are repeated. In a phase-change optical disc, the reflectance distribution within the range irradiated by the light spot greatly contributes to the amplitude level of the reproduction signal, so the fluctuation of the width of the crystallized portion in the initialization track is the level of the reproduction signal. This will affect the fluctuations and will cause erroneous detection of recording pits.

【0007】本発明の目的は、トラック中の結晶部分の
幅の変動がなく、記録情報再生の際に誤検出のない相変
化型の光ディスク装置を提供することにある。
An object of the present invention is to provide a phase change type optical disk device in which the width of a crystal part in a track does not fluctuate and erroneous detection does not occur when reproducing recorded information.

【0008】[0008]

【課題を解決するための手段】上記目的はディスク上に
予め設けたプリピット情報から記録再生の基準となるク
ロック信号を抽出するサンプルサーボフォーマットを採
用して、最密の記録ビットパターンとこれと逆相のパタ
ーンを交互に重ね書きすることによって達成される。
The above object is to adopt a sample servo format for extracting a clock signal serving as a reference for recording / reproducing from pre-pit information provided in advance on a disc, and to realize a densest recording bit pattern and a reverse recording bit pattern. This is achieved by alternating the pattern of phases.

【0009】[0009]

【作用】交互重ね書きすることによって、記録パワー照
射の条件下で記録ピットの周辺部を強制的に再結晶化さ
せる。この結果、結晶トラックの幅が最大限ひろがるこ
とになり、記録消去の過程における結晶トラックの幅の
変動がなくなる。
By overwriting alternately, the peripheral portion of the recording pit is forcibly recrystallized under the condition of recording power irradiation. As a result, the width of the crystal track is widened to the maximum, and the fluctuation of the width of the crystal track is eliminated during the recording / erasing process.

【0010】[0010]

【実施例】本発明の実施例を図を用いて説明する。Embodiments of the present invention will be described with reference to the drawings.

【0011】本実施例では、サンプルサーボフォーマッ
トの光ディスクを用いた場合を例として説明する。サン
プルサーボフォーマットの光ディスク21は、トラック
は整数個のセクタに分割され、更に1セクタは整数個の
セグメントに分割されている。図2(a)に光ディスク
を、図2(b)に1セグメントを示す。図2(b)に示す
ように、1セグメントはサーボ領域22とデータ領域2
3に分かれている。サーボ領域22にはトラッキング誤
差信号を得るためのウォブルピット24とクロック信号
を得るためのクロックピット25がミラー部26を隔て
て設けられている。ディスク21からの反射光を、図示
していない光検出器にて光電変換すると、プリピット部
は回折現象による光検出器への明暗の入射光量の変化と
して検出され、図2(c)に示したようなプリピット再
生信号が得られる。この信号をあるスライスレベル27
で2値化することにより、クロックピット25の位置で
Highとなるクロックピット信号28信号が得られる(図
2(d))。このクロックピット信号28をもとに、図
示していないPLL(Phase Locked Loop)回路にて、ク
ロックピット信号28に同期した基準クロック信号29
を得る(図2(e))。この基準クロック信号29は光
ディスクに記録するビット系列の生成に使用する。ここ
では、簡単のためビット系列としてはNRZ符号系列を
採用した場合を例にとる。NRZ符号は情報ビット'1'
に対して記録ビット'1'を、情報ビット'0'に対して記
録ビット'0'を対応させるものである。
In this embodiment, the case where an optical disk of sample servo format is used will be described as an example. In the sample servo format optical disc 21, a track is divided into an integer number of sectors, and one sector is further divided into an integer number of segments. FIG. 2A shows an optical disc, and FIG. 2B shows one segment. As shown in FIG. 2B, one segment includes the servo area 22 and the data area 2.
Divided into three. A wobble pit 24 for obtaining a tracking error signal and a clock pit 25 for obtaining a clock signal are provided in the servo area 22 with a mirror portion 26 therebetween. When the reflected light from the disk 21 is photoelectrically converted by a photodetector (not shown), the prepit portion is detected as a change in the amount of light incident on the photodetector due to a diffraction phenomenon, and is shown in FIG. 2 (c). Such a pre-pit reproduction signal can be obtained. Slice level 27
By binarizing with, at the position of clock pit 25
A clock pit signal 28 signal which becomes High is obtained (FIG. 2 (d)). Based on this clock pit signal 28, a reference clock signal 29 synchronized with the clock pit signal 28 by a PLL (Phase Locked Loop) circuit (not shown).
Is obtained (FIG. 2 (e)). This reference clock signal 29 is used to generate a bit sequence to be recorded on the optical disc. Here, for simplification, the case where an NRZ code sequence is adopted as a bit sequence will be taken as an example. NRZ code is information bit '1'
The recording bit "1" corresponds to the information bit "0", and the recording bit "0" corresponds to the information bit "0".

【0012】次に本実施例における光ディスクの初期化
手順を図1を用いて説明する。図1(a)に示したよう
に、初期化前の光ディスク上の領域11はas-depo状態
であり、これに結晶化温度に相当する強度のレーザビー
ムを照射して、被照射部分の結晶化を進行させる。この
結果、図1(b)に示したように、レーザビームのスポッ
ト径に対応した幅13の帯状の結晶化トラック12が形
成される。ところで、トラック間隔は隣のトラックから
の再生信号の漏れ込みを防ぐために、再生用ビームスポ
ット径よりも幅広となるように決められる。例えば、波
長0.83μmのレーザ光源と開口数0.5の絞り込みレ
ンズを用いた場合、ビームスポット径はおよそ1.6μ
m程度になり、トラック間隔としては1.6μmが通常
選ばれる。結晶化時における有効ビームスポット径は、
強度レベルが再生時と比較して大きいことに伴って小さ
くなるため、1.6μmの幅のトラックが全て結晶化す
るものではなく結晶トラック12の両側には未結晶化の
領域11が生じる。
Next, the initialization procedure of the optical disk in this embodiment will be described with reference to FIG. As shown in FIG. 1 (a), the region 11 on the optical disc before initialization is in the as-depo state, and a laser beam having an intensity corresponding to the crystallization temperature is irradiated onto the region 11 to crystallize the irradiated portion. Progress the conversion. As a result, as shown in FIG. 1B, a band-shaped crystallization track 12 having a width 13 corresponding to the spot diameter of the laser beam is formed. By the way, the track interval is determined to be wider than the reproduction beam spot diameter in order to prevent the reproduction signal from leaking from the adjacent track. For example, when a laser light source with a wavelength of 0.83 μm and a focusing lens with a numerical aperture of 0.5 are used, the beam spot diameter is about 1.6 μm.
The track spacing is usually 1.6 μm. The effective beam spot diameter during crystallization is
Since the intensity level becomes smaller as the intensity level becomes larger than that at the time of reproduction, not all the tracks having a width of 1.6 μm are crystallized, but uncrystallized regions 11 are formed on both sides of the crystal track 12.

【0013】次に、基準クロック信号を2分周して得ら
れるNRZ符号系列の細密の繰返しパターン14を生成
し、これに従ってレーザビーム強度を記録レベルと消去
レベルの間で変調することにより結晶化トラック12の
上にアモルファスピット列15を形成する。同図(C)に
示したように、形成されたアモルファスピット列15の
周辺部の未結晶化の領域13'で結晶化が進行し、結晶
化トラック12と未結晶化の領域13’の境界部分がピ
ット列に同期して変調を受ける。次に、上記細密の繰返
しパターン14とは逆位相のパターン14'で、記録レ
ベルと消去レベルの間のレーザビームをアモルファスピ
ット列15上にオーバライトする。パターン14’でレ
ーザビームを照射すると、図1(d)に示したように、形
成されたアモルファスピット15'の周辺部の未結晶化
領域13'で結晶化が進行し、結晶化トラック12の幅
がピット列に同期して変調を受ける。このとき、結晶化
が進行する領域は、同図(c)で結晶化が進行していない
領域である。図1(c)と(d)に示した操作を複数回交互に
繰り返すと、図1(e)に示したように、アモルファスピ
ット周辺部における結晶化の進行が飽和し、結晶化トラ
ック12'の変調が見えなくなる。本実施例では、オー
バライト型の相変化光ディスクを想定して説明している
ので、同図(e)の状態でも初期化操作は完了したとみな
しうるが、初期化操作の過程で残されたアモルファスピ
ット列(15、15’)を消去して、同図(f)に示した
ような幅拡の結晶トラック12'を形成しても構わな
い。
Next, the reference clock signal is divided by two to generate a fine repetitive pattern 14 of the NRZ code sequence, and the laser beam intensity is modulated between the recording level and the erasing level in accordance therewith to crystallize. An amorphous pit row 15 is formed on the track 12. As shown in FIG. 6C, crystallization progresses in the uncrystallized region 13 ′ around the formed amorphous pit array 15, and the boundary between the crystallization track 12 and the non-crystallized region 13 ′. The part is modulated in synchronization with the pit train. Next, a laser beam between the recording level and the erasing level is overwritten on the amorphous pit train 15 by a pattern 14 'having a phase opposite to that of the fine repeating pattern 14. When the pattern 14 'is irradiated with the laser beam, crystallization progresses in the uncrystallized region 13' around the formed amorphous pit 15 'as shown in FIG. The width is modulated in synchronization with the pit train. At this time, the region where crystallization has progressed is the region where crystallization has not progressed in FIG. When the operations shown in FIGS. 1 (c) and 1 (d) are alternately repeated a plurality of times, as shown in FIG. 1 (e), the progress of crystallization in the peripheral portion of the amorphous pit is saturated and the crystallization track 12 ' The modulation of is not visible. In this embodiment, an overwrite type phase change optical disk is assumed for explanation, so it can be considered that the initialization operation is completed even in the state of FIG. 7E, but it is left in the process of the initialization operation. The amorphous pit train (15, 15 ') may be erased to form a crystal track 12' having a wide width as shown in FIG.

【0014】本実施例では、初期化に用いるレーザ光源
は1つであるとして説明してきたが、初期化にかかる時
間を短縮するなどの理由により、複数のレーザ光源を用
いても本実施例はその本質を失うことなく適用可能であ
る。また、本実施例はその際の各々のレーザ光源の役割
及び光ディスク装置の中における配置を限定するもので
はないことは言うまでもない。更に、本実施例ではトラ
ックの初期化状態を結晶状態であるとして説明してきた
が、結晶とアモルファス間の可逆変化を利用する相変化
光ディスクでは初期化の状態を必ずしも結晶状態である
とする根拠はない。従って、アモルファス状の初期化ト
ラックを形成する場合についても、本実施例はその本質
を失うことなく適用可能である。
In the present embodiment, the description has been given assuming that only one laser light source is used for initialization. However, this embodiment is not limited to the case where a plurality of laser light sources are used for reasons such as shortening the time required for initialization. It is applicable without losing its essence. Further, it goes without saying that the present embodiment does not limit the role of each laser light source at that time and the arrangement in the optical disk device. Furthermore, in the present embodiment, the explanation has been made assuming that the initialized state of the track is the crystalline state, but there is a rationale that the initialized state is not necessarily the crystalline state in the phase change optical disk utilizing the reversible change between the crystal and the amorphous. Absent. Therefore, even in the case of forming an amorphous initialization track, the present embodiment can be applied without losing its essence.

【0015】[0015]

【発明の効果】図3を用いて本発明の効果について説明
する。本発明を適用しない場合、図3(a)に示したよう
に、記録ピット形成後に結晶化トラック36の境界部分
が記録パターンに応じて変調を受ける。再生用レーザス
ポット光37は未結晶化領域38をも照射するために、
この変調成分が再生信号39に現われ、図3(b)に示す
ように記録パターンにない信号レベルの変動箇所31d
が生じる。一方、本発明を適用した場合、図3(c)に示
したように、記録ピット形成後も結晶化トラック36'
の幅の変動が現われず、再生用レーザスポット光37は
未結晶化領域38'を照射しないために、図3(d)に示す
ように再生信号39'のレベル変動がなくなる。この結
果、再生信号のレベル変動にともなう検出誤りが抑圧さ
れる。
The effect of the present invention will be described with reference to FIG. When the present invention is not applied, as shown in FIG. 3A, the boundary portion of the crystallization track 36 is modulated according to the recording pattern after the formation of the recording pit. Since the reproducing laser spot light 37 also irradiates the uncrystallized region 38,
This modulation component appears in the reproduced signal 39, and as shown in FIG. 3 (b), the signal level fluctuation portion 31d not present in the recording pattern.
Occurs. On the other hand, when the present invention is applied, as shown in FIG. 3C, the crystallization track 36 'is formed even after the recording pits are formed.
Does not appear and the reproducing laser spot light 37 does not irradiate the uncrystallized region 38 ', so that the level fluctuation of the reproduction signal 39' disappears as shown in FIG. 3 (d). As a result, the detection error due to the level fluctuation of the reproduction signal is suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】記録トラックの初期化の手順を示す図である。FIG. 1 is a diagram showing a procedure for initializing a recording track.

【図2】ディスクフォーマットの基準クロック生成の手
順を示す図である。
FIG. 2 is a diagram showing a procedure of generating a reference clock of a disk format.

【図3】本発明の効果を示す模式図である。FIG. 3 is a schematic diagram showing an effect of the present invention.

【符号の説明】[Explanation of symbols]

11…初期化前トラック、12,12'…結晶化トラッ
ク、13',13"…未結晶化領域、14,14'…初期化
用記録パターン、15,15'…アモルファスピット列、
36,36'…結晶化トラック、37…再生用光スポッ
ト、38,38'…未結晶化領域、39,39'…再生信号
波形。
11 ... Track before initialization, 12, 12 '... Crystallized track, 13', 13 "... Uncrystallized area, 14, 14 '... Recording pattern for initialization, 15, 15' ... Amorphous pit row,
36, 36 '... Crystallized track, 37 ... Reproducing light spot, 38, 38' ... Uncrystallized region, 39, 39 '... Reproduced signal waveform.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】レーザ光照射により温度制御を行ない、ア
モルファス状態と結晶状態との間で相変化過程を起こす
ことによって、光学的に識別可能な情報ピット列を形成
する光記録媒体の初期化方法であって、上記光記録媒体
の記録トラック上に光学的に検出可能なピット情報を予
め設け、前記ピット情報から基準クロック信号を抽出
し、上記基準クロック信号に同期し、かつ、これを少な
くとも2分周した第1の初期化用ディジタル信号とこれ
と逆極性の第2の初期化用ディジタル信号とに応じて上
記レーザ光を交互に上記光記録媒体上に間欠的に照射す
ることによって上記記録トラックの初期化をすることを
特徴とする光記録媒体の初期化方法。
1. A method for initializing an optical recording medium, wherein an optically identifiable information pit string is formed by controlling a temperature by irradiating a laser beam and causing a phase change process between an amorphous state and a crystalline state. In addition, pit information that can be optically detected is provided in advance on a recording track of the optical recording medium, a reference clock signal is extracted from the pit information, synchronized with the reference clock signal, and at least 2 The recording is performed by intermittently irradiating the optical recording medium with the laser beam alternately according to the divided first digital signal for initialization and the second digital signal for initialization having the opposite polarity. A method for initializing an optical recording medium, which comprises initializing a track.
【請求項2】前記第1、第2の初期化用ディジタル信号
を複数の異なるレーザ光源にそれぞれ供給し、上記レー
ザ光源からの光を同一記録トラック上に時間差を与えて
照射することを特徴とする請求項第1記載の光記録媒体
の初期化方法。
2. The first and second initialization digital signals are respectively supplied to a plurality of different laser light sources, and the light from the laser light sources is irradiated on the same recording track with a time difference. The method of initializing an optical recording medium according to claim 1.
【請求項3】前記記録トラック上に連続的に上記レーザ
光を照射して、前記記録トラックをアモルファスもしく
は結晶状態にすることを特徴とする請求項第1記載の光
記録媒体の初期化方法。
3. The method for initializing an optical recording medium according to claim 1, wherein the recording track is continuously irradiated with the laser beam to bring the recording track into an amorphous or crystalline state.
【請求項4】前記記録トラック上に連続的にレーザ光を
照射する第3のレーザ光源を具備し、前記第1、第2の
初期化用ディジタル信号による同一記録トラックの初期
化操作の後に、前記記録トラックをアモルファスもしく
は結晶状態にすることを特徴とする請求項第2記載の光
記録媒体の初期化方法。
4. A third laser light source for continuously irradiating a laser beam onto the recording track is provided, and after the initialization operation of the same recording track by the first and second initialization digital signals, 3. The method for initializing an optical recording medium according to claim 2, wherein the recording track is made amorphous or crystalline.
JP17232992A 1992-06-30 1992-06-30 Initialization method for recording medium Pending JPH0612670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17232992A JPH0612670A (en) 1992-06-30 1992-06-30 Initialization method for recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17232992A JPH0612670A (en) 1992-06-30 1992-06-30 Initialization method for recording medium

Publications (1)

Publication Number Publication Date
JPH0612670A true JPH0612670A (en) 1994-01-21

Family

ID=15939891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17232992A Pending JPH0612670A (en) 1992-06-30 1992-06-30 Initialization method for recording medium

Country Status (1)

Country Link
JP (1) JPH0612670A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718831A2 (en) * 1994-12-20 1996-06-26 Matsushita Electric Industrial Co., Ltd Recording and reproducing method of optical information recording medium
WO1998038636A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
US5953299A (en) * 1996-05-30 1999-09-14 Hitachi, Ltd. Information recording method and apparatus
US6094405A (en) * 1997-11-07 2000-07-25 Nec Corporation Initialization method for phase change type recording medium
US6554972B1 (en) 1998-06-26 2003-04-29 Kabushiki Kaisha Toshiba Information recording medium and its manufacturing method
US6683275B2 (en) 2000-06-23 2004-01-27 Memex Optical Media Solutions Ag Method and apparatus for fabricating phase-change recording medium

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707776B2 (en) 1994-12-20 2004-03-16 Matsushita Electric Industrial Co., Ltd. Recording and reproducing method of optical information recording medium
EP0718831A3 (en) * 1994-12-20 1997-05-21 Matsushita Electric Ind Co Ltd Recording and reproducing method of optical information recording medium
EP0718831A2 (en) * 1994-12-20 1996-06-26 Matsushita Electric Industrial Co., Ltd Recording and reproducing method of optical information recording medium
US6697313B2 (en) 1994-12-20 2004-02-24 Matsushita Electric Industrial Co., Ltd. Optical information recording and reproducing system with overwrite capability and recording medium for use therewith
US6031814A (en) * 1994-12-20 2000-02-29 Matsushita Electric Industrial Co., Ltd. Optical disk with stop-pulse generating means in a guide groove
US6683739B2 (en) 1994-12-20 2004-01-27 Matsushita Electric Industrial Co., Ltd. Optical information recording and reproducing system with overwrite capability and recording medium for use therewith
US6487151B1 (en) * 1994-12-20 2002-11-26 Matsushita Electric Industrial Co. Ltd. Optical information recording and reproducing system with overwrite capability and recording medium for use therewith
US7092348B2 (en) 1996-05-30 2006-08-15 Hitachi, Ltd. Optical recording apparatus capable of changing the length of synchronization portions
US7075884B2 (en) 1996-05-30 2006-07-11 Hitachi, Ltd. Optical recording apparatus capable of changing the length of synchronization portions
US6307825B1 (en) 1996-05-30 2001-10-23 Hitachi, Ltd. Information recording method and apparatus
US7099262B2 (en) 1996-05-30 2006-08-29 Hitachi, Ltd. Rewritable recording medium capable of changing the length and start position of synchronization portion
US6181661B1 (en) 1996-05-30 2001-01-30 Hitachi, Ltd. Information recording method and apparatus
US6580673B2 (en) 1996-05-30 2003-06-17 Hitachi, Ltd. Information recording method and apparatus
US6430134B1 (en) 1996-05-30 2002-08-06 Hitachi, Ltd. Information recording method and apparatus
KR100281353B1 (en) * 1996-05-30 2001-03-02 가나이 쓰도무 Information recording method and information recording device
US6788643B2 (en) 1996-05-30 2004-09-07 Hitachi, Ltd. Information recording method and apparatus
US5953299A (en) * 1996-05-30 1999-09-14 Hitachi, Ltd. Information recording method and apparatus
WO1998038636A1 (en) * 1997-02-28 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
AU723890B2 (en) * 1997-02-28 2000-09-07 Asahi Kasei Kogyo Kabushiki Kaisha Phase change optical recording medium, method of manufacturing the same, and method of recording information on the same
US6335069B1 (en) 1997-02-28 2002-01-01 Asahi Kasei Kabushiki Kaisha Phase-changeable optical recording medium, method of manufacturing the same, and method of recording information on the same
US6094405A (en) * 1997-11-07 2000-07-25 Nec Corporation Initialization method for phase change type recording medium
US6554972B1 (en) 1998-06-26 2003-04-29 Kabushiki Kaisha Toshiba Information recording medium and its manufacturing method
US7455951B2 (en) 1998-06-26 2008-11-25 Kabushiki Kaisha Toshiba Information recording medium and its manufacturing method
US6683275B2 (en) 2000-06-23 2004-01-27 Memex Optical Media Solutions Ag Method and apparatus for fabricating phase-change recording medium

Similar Documents

Publication Publication Date Title
JP2574752B2 (en) Information recording medium and recording / reproducing method
JP2697555B2 (en) Optical information recording medium
JP3231533B2 (en) Optical information recording method
US5412626A (en) Method of recording optical information with selective correction in pulse waveform and a recording system therefor
US6754143B2 (en) Optical information recording medium, and method and apparatus for recording/reproducing information thereon
US6108287A (en) Method and apparatus for writing and reading optical recording medium
JP3266971B2 (en) How to record optical information
US5216657A (en) Method and apparatus for timing variable optical information recording
EA003310B1 (en) Method and device for recording an information signal on an information layer of a recording medium
US6018507A (en) Method of and apparatus for recording data on land/groove track on optical recording medium
US5761172A (en) Method of optical reproduction using pulsed light
JPH0427610B2 (en)
JPH0612670A (en) Initialization method for recording medium
US6320839B1 (en) Optical information recording medium, optical information recording method and optical information recording apparatus
JP2997115B2 (en) Optical disk and optical disk device
JP2001052342A (en) Optical recording medium, and device and method for signal recording
JPH09147366A (en) Optical information recording medium and optical information recording/reproducing device
JP4003614B2 (en) Recording power adjustment method and optical information recording apparatus using the same
JP4112555B2 (en) Method and apparatus for recording marks on a phase change information layer of a record carrier
US6922387B1 (en) Optical information recording medium, and method and apparatus for recording/reproducing information thereon
JP3314565B2 (en) Recording / reproducing method of optical information recording medium
JP2602245B2 (en) Recording and playback of information
JP2917728B2 (en) Optical information recording method
JP2615450B2 (en) Optical disk recording / erasing method
JP3094740B2 (en) Optical information recording medium and recording / reproducing method thereof