JPH06126484A - Solder - Google Patents

Solder

Info

Publication number
JPH06126484A
JPH06126484A JP27976692A JP27976692A JPH06126484A JP H06126484 A JPH06126484 A JP H06126484A JP 27976692 A JP27976692 A JP 27976692A JP 27976692 A JP27976692 A JP 27976692A JP H06126484 A JPH06126484 A JP H06126484A
Authority
JP
Japan
Prior art keywords
solder
iii
stirred
metals
prescribed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27976692A
Other languages
Japanese (ja)
Inventor
Kouzou Kouno
紅三 河野
Naoki Muraoka
直樹 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWA KINZOKU KK
Tokai Rika Co Ltd
Original Assignee
ISHIKAWA KINZOKU KK
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWA KINZOKU KK, Tokai Rika Co Ltd filed Critical ISHIKAWA KINZOKU KK
Priority to JP27976692A priority Critical patent/JPH06126484A/en
Publication of JPH06126484A publication Critical patent/JPH06126484A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/268Pb as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon

Abstract

PURPOSE:To increase strength and spreading rate and to improve working efficiency and yield by providing the Sn-Pb solder contg. Sn and Bi, Bi and Sb, Bi and In respectively in specific ratio ranges and consisting of the balance Pb. CONSTITUTION:This Sn-Pb solder contains 55 to 65% Sn and the additive metals of the prescribed ratios described in the following (i), (ii) or (iii) and the balance Pb: (1) 1 to 3% Bi, (ii) 0.2 to 2% Bi and 0.1 to 1.0% Sb, (iii) 0.2 to 2% Bi and 0.2 to 2% In. The prescribed amts. of the Sn and the Pb are put into a crucible where these metals are heated to melt at 350 deg.C and are stirred in the case of the Sn-Bi-Pb solder. The prescribed amt. of an Bi alloy is thereafter added thereto and after these metals are melted and stirred, the melt is cast into molds. The casting is then molded to a bar shape or yarn shape, etc., at need. As a result, the working efficiency and yield are improved by using the Sn-Pb solder having the high strength and spreading rate and the small temp. difference between the solidus line and liquidus line at the m. p..

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、強度および広がり率
が高く、融点における固相線と液相線の温度差が小さい
Sn−Pb系はんだに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Sn-Pb based solder which has a high strength and a high spreading rate and has a small temperature difference between a solidus line and a liquidus line at a melting point.

【0002】電気電子部品等の接合で汎用されているS
n−Pb二元系はんだには、一般に次の様な問題点があ
る。即ち、強度が不十分なため(例えば、引張強さは約
40〜50N/mm2である)、はんだ付け部の接合強度を
十分に確保するためには、はんだ接合部に補強およびは
んだ付け面積の拡大等の処理をほどこさなければなら
ず、電気電子部品等の構造の複雑化と重量増およびコス
トアップ等が問題となっている。また、広がり性(濡れ
性)も十分に満足すべきものではないため、はんだ付け
性を向上させるためには、被接合材のめっき処理や酸洗
処理等の付加的な作業工程が必要となる。さらにまた、
融点における固相線と液相線の温度差が比較的大きいた
めに(通常、約1〜20℃)、作業時間が付加的に長くな
るだけでなく、はんだの溶融から冷却固化までの間は、
特に慎重な作業が必要となる(はんだが半溶融の間に、
はんだ付け部に振動等を加えると、クラックが発生した
り、はんだの広がりが不均一になる)。
S, which is widely used for joining electric and electronic parts, etc.
The n-Pb binary solder generally has the following problems. That is, since the strength is insufficient (for example, the tensile strength is about 40 to 50 N / mm 2 ), in order to sufficiently secure the bonding strength of the soldered portion, the soldered portion is reinforced and the soldering area is increased. However, the structure of electric and electronic parts is complicated, and the weight and cost are increased. Moreover, since the spreadability (wettability) is not sufficiently satisfactory, additional work steps such as plating treatment and pickling treatment of the materials to be joined are required to improve solderability. Furthermore,
Due to the relatively large temperature difference between the solidus line and the liquidus line at the melting point (usually about 1 to 20 ° C), not only the working time becomes longer, but also from the melting of the solder to the cooling and solidification. ,
Particularly careful work is required (while the solder is half melted,
If vibration is applied to the soldered part, cracks will occur or the solder will spread unevenly.)

【0003】上記のような問題点を改良するために、被
接合部品等の種類に応じて、適当な金属を少量添加した
はんだが提供されているが、実用上十分に満足すべきも
のはない。例えば、Sb を添加することによって、はん
だの強度は若干高くなるが、広がり率は低下する。ま
た、銅細線等のはんだ付けに際して、所謂 「はんだ食わ
れ」 を防止するためにCu を添加したはんだの場合に
は、強度はさらに高くなるが、融点における固相線と液
相線の温度差が大きくなって、作業性が悪くなる。さら
にまた、銀電極や銀めっき端子等のはんだ付けに際し
て、はんだ食われを防止するためにAg を添加したはん
だの場合には、強度はかなり増加するが、非常に高価な
Ag を必要とするために、汎用性がないという難点があ
る。(なお、SbやCu 等を添加したこれらのSn−Pb系
はんだの具体的な特性は、後述の表1に例示する。)
In order to improve the above-mentioned problems, there are provided solders to which a suitable amount of a small amount of metal is added according to the kind of parts to be joined and the like, but none is sufficiently satisfactory for practical use. For example, by adding Sb, the strength of the solder is slightly increased, but the spread rate is decreased. In addition, when Cu is added to prevent the so-called "solder erosion" when soldering thin copper wires, etc., the strength is higher, but the temperature difference between the solidus line and the liquidus line at the melting point is higher. Becomes large and workability deteriorates. Furthermore, in the case of soldering Ag electrodes or silver-plated terminals etc., in the case of solder with Ag added to prevent solder erosion, the strength increases considerably, but very expensive Ag is required. However, there is a drawback that it is not versatile. (Note that specific characteristics of these Sn-Pb based solders to which Sb, Cu, etc. are added are shown in Table 1 below.)

【0004】[0004]

【発明が解決しようとする課題】この発明は、上記の問
題点を解決し、強度および広がり率が高く、融点におけ
る固相線と液相線の温度差が小さいSn−Pb系はんだを
提供するためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and provides a Sn-Pb based solder having a high strength and a high spreading rate and a small temperature difference between a solidus line and a liquidus line at a melting point. It was done for good.

【課題を解決するための手段】即ちこの発明は、Sn 5
5〜65%および下記(i)、(ii)または(iii)の所定量の
添加金属を含有し、残部がPb から成るはんだに関す
る: (i) Bi 1〜3% (ii) Bi 0.2〜2%およびSb 0.1〜1.0% (iii)Bi 0.2〜2%およびIn 0.2〜2%
Means for Solving the Problems That is, the present invention provides Sn 5
5 to 65% and a solder containing a prescribed amount of an additive metal of (i), (ii) or (iii) below, with the balance being Pb: (i) Bi 1-3% (ii) Bi 0.2 .About.2% and Sb 0.1 to 1.0% (iii) Bi 0.2 to 2% and In 0.2 to 2%

【0006】本発明によるSn−Pb系はんだのSn含有
量は55〜65%、好ましくは58〜63%であり、5
5%よりも少なくなると、液相線温度が高くなり、作業
性が悪くなり、また、65%よりも多くなると、Snが
高価であるため、コストアップとなる。
The Sn content of the Sn-Pb type solder according to the present invention is 55 to 65%, preferably 58 to 63%.
If it is less than 5%, the liquidus temperature becomes high and the workability is deteriorated, and if it is more than 65%, Sn is expensive and the cost increases.

【0007】本発明によるSn−Pb系はんだには、添加
金属として、(i)Bi 1〜3%、好ましくは1.5〜
2.5%、(ii)Bi 0.2〜2%、好ましくは0.5〜
1.5%およびSb 0.1〜1.0%、好ましくは0.
2〜0.7%、または(iii)Bi0.2〜2%、好まし
くは0.5〜1.5%およびIn 0.2〜2%、好ま
しくは0.5〜1.5%含有される。(i)の場合、Biの
含有量が1%よりも少なくなると、本発明の所期の目的
は達成されず、また、3%よりも多くなると、融点が大
きく低下してはんだ付け部の耐熱性が悪くなるだけでな
く、はんだの金属光沢が消失すると共に、はんだが脆化
する。(ii)の場合、Bi およびSb の含有量がそれぞれ
0.2%および0.1%よりも少なくなると、本発明の
所期の目的は達成されず、Bi の含有量が2%よりも多
くなると、上記(i)の場合と同様の効果がもたらされ、
Sb の含有量が1.0%よりも多くなると、はんだの広
がり性が低下する。さらに、(iii)の場合、Bi または
In の含有量が0.2%よりも少なくなると、本発明の
所期の目的は達成されず、Biの含有量が2%よりも多
くなると、(i)の場合と同様の効果がもたらされ、ま
た、In の含有量が2%よりも多くなると、はんだの融
点や広がり率が低下するだけでなく、はんだが脆化する
ようになる。
In the Sn-Pb type solder according to the present invention, as an additive metal, (i) Bi is 1 to 3%, preferably 1.5 to
2.5%, (ii) Bi 0.2-2%, preferably 0.5-
1.5% and Sb 0.1-1.0%, preferably 0.1.
2 to 0.7%, or (iii) Bi 0.2 to 2%, preferably 0.5 to 1.5% and In 0.2 to 2%, preferably 0.5 to 1.5%. . In the case of (i), if the content of Bi is less than 1%, the intended purpose of the present invention is not achieved, and if it exceeds 3%, the melting point is greatly reduced and the heat resistance of the soldered portion is reduced. Not only does the property deteriorate, but the metallic luster of the solder disappears and the solder becomes brittle. In the case of (ii), if the Bi and Sb contents are less than 0.2% and 0.1%, respectively, the intended object of the present invention is not achieved, and the Bi content is more than 2%. Then, the same effect as in the case of (i) above is brought about,
If the Sb content is more than 1.0%, the spreadability of the solder is reduced. Further, in the case of (iii), if the Bi or In content is less than 0.2%, the intended object of the present invention is not achieved, and if the Bi content is more than 2%, (i) The same effect as in the case of (1) is brought about, and when the content of In exceeds 2%, not only the melting point and spread rate of the solder are lowered but also the solder becomes brittle.

【0007】本発明によるはんだの強度および広がり率
は従来の一般的なSn−Pb二元系はんだに比べてそれぞ
れ約15〜30%および約0〜2%増加する。従って、
従来の一般的なSn−Pb二元系はんだの使用に際して必
要とされるはんだ接合部の補強等の処理および被接合材
のめっき処理や酸洗処理は不要となる。
The strength and spread of the solder according to the present invention are increased by about 15 to 30% and about 0 to 2%, respectively, as compared with the conventional general Sn-Pb binary solder. Therefore,
It is not necessary to reinforce the solder joints or to perform plating or pickling of the materials to be joined, which are required when using the conventional general Sn-Pb binary solder.

【0008】本発明によるはんだの融点における固相線
温度および液相線温度は約175℃〜約185℃、好ま
しくは約178℃〜約183℃の範囲にあり、両者の差
は約5℃以下、好ましくは約2℃以下である。このた
め、はんだ付けに際して、はんだが半溶融状態で存在す
る時間が非常に短くなり、作業能率や歩留りが改良され
る。
The solidus temperature and liquidus temperature at the melting point of the solder according to the present invention are in the range of about 175 ° C to about 185 ° C, preferably about 178 ° C to about 183 ° C, and the difference between the two is about 5 ° C or less. , Preferably about 2 ° C. or lower. Therefore, in soldering, the time during which the solder exists in a semi-molten state is very short, and the work efficiency and the yield are improved.

【0009】本発明によるはんだの融点は従来品とほぼ
同じ温度範囲にあるため、従来のはんだ付けの装置や条
件(例えば、加熱方法、加熱温度および加熱時間等)を利
用できる。
Since the melting point of the solder according to the present invention is in the same temperature range as that of the conventional product, the conventional soldering apparatus and conditions (for example, heating method, heating temperature and heating time) can be used.

【0010】また、本発明によるはんだは、複雑な合金
系でないために、製造時の成分管理が容易である。な
お、本発明によるSn−Pb系はんだに添加する金属の量
は微量であるために、コスト的にはほとんど問題がな
い。
Further, since the solder according to the present invention is not a complex alloy system, it is easy to manage the components during manufacturing. Since the amount of metal added to the Sn-Pb-based solder according to the present invention is very small, there is almost no problem in terms of cost.

【0011】次に、本発明によるはんだの一般的な製造
法を説明する。 (i)Sn−Bi−Pb系はんだ 所定量のSnおよびPbをるつぼに入れ、350℃で加熱
溶解し撹拌する。その後、所定量のBiを添加し、溶解
撹拌した後、金型に鋳込む。このあと、必要に応じて、
棒状または糸状等に成形する。 (ii)Sn−Bi−Sb−Pb系はんだ 所定量のSnおよびPbをるつぼに入れ、350℃で加熱
溶解し撹拌する。その後、所定量のBiおよびSn−Sb
合金を添加し、溶解撹拌した後、金型に鋳込む。このあ
と、必要に応じて、棒状または糸状等に成形する。 (iii)Sn−Bi−In−Pb系はんだ 所定量のSnおよびPbをるつぼに入れ、350℃で加熱
溶解し撹拌する。その後、所定量のBiおよびInを添加
し、溶解撹拌した後、金型に鋳込む。このあと、必要に
応じて、棒状または糸状等に成形する。
Next, a general method for manufacturing the solder according to the present invention will be described. (i) Sn-Bi-Pb system solder Predetermined amounts of Sn and Pb are put in a crucible, heated and melted at 350 ° C and stirred. Then, a predetermined amount of Bi is added, and the mixture is melted and stirred, and then cast into a mold. After this, if necessary,
It is formed into a rod or thread. (ii) Sn-Bi-Sb-Pb system solder Predetermined amounts of Sn and Pb are put in a crucible, heated and melted at 350 ° C and stirred. Then, a predetermined amount of Bi and Sn-Sb
The alloy is added, melted and stirred, and then cast into a mold. Then, if necessary, it is formed into a rod shape or a thread shape. (iii) Sn-Bi-In-Pb system solder Predetermined amounts of Sn and Pb are put in a crucible, heated and melted at 350 ° C and stirred. Then, predetermined amounts of Bi and In are added, melted and stirred, and then cast into a mold. Then, if necessary, it is formed into a rod shape or a thread shape.

【0012】[0012]

【実施例】以下、本発明を実施例によって説明する。実施例1〜3 以下の表1に示す配合処方により、前述の製造法に準拠
してはんだ1〜3を製造した。はんだ1〜3の融点、引
張強度および広がり率を次の方法によって測定し、結果
を表1に示す。 (i)融点の測定 被験はんだを液相線温度以上の温度に加熱した後、空冷
固化する過程の温度変化を熱電対で追跡し、温度の経時
変化曲線を作成し、該曲線から固相線と液相線の温度
(℃)を求めた。 (ii)引張強さの測定 図1に示す形状の被験はんだを室温下、引張速度10mm
/分の条件下で引張り、引張強さ(N/mm2)を測定し
た。図1において(1)は標点を示す。 (iii)広がり率の測定 JIS Z 3197に準拠し、図2に示すように、未溶
融状態の球状被験はんだ(2)および溶融して広がったは
んだ(3)の酸化銅板(150℃で1時間の酸化処理に付
した銅板)(4)の表面からの高さDおよびHを測定し、
次式から広がり率(%)を求めた: 広がり率(%)={(D−H)/D}×100 なお、試験時には液状の活性化ロジン系フラックスを使
用し、酸化銅板は250℃で10秒間加熱した。
EXAMPLES The present invention will be described below with reference to examples. Examples 1 to 3 Solders 1 to 3 were manufactured according to the above-described manufacturing method by the formulation shown in Table 1 below. The melting points, the tensile strengths, and the spreading rates of the solders 1 to 3 were measured by the following methods, and the results are shown in Table 1. (i) Measurement of melting point After heating the test solder to a temperature above the liquidus temperature, the temperature change in the process of air-cooling and solidification is followed by a thermocouple, and a time-dependent curve of temperature is created, and the solidus line is drawn from the curve. And liquidus temperature
(° C) was determined. (ii) Measurement of tensile strength The test solder having the shape shown in FIG.
Tensile strength (N / mm 2 ) was measured under the condition of / min. In FIG. 1, (1) indicates the reference point. (iii) Measurement of Spreading Rate According to JIS Z 3197, as shown in FIG. 2, a copper oxide plate of a spherical test solder (2) in an unmelted state and a solder (3) spread by melting (at 150 ° C. for 1 hour The height D and H from the surface of the copper plate (4) subjected to the oxidation treatment of (4) are measured,
The spread rate (%) was calculated from the following formula: Spread rate (%) = {(D−H) / D} × 100 At the time of the test, a liquid activated rosin-based flux was used, and the copper oxide plate was at 250 ° C. Heated for 10 seconds.

【0013】比較例1〜6 表1に示す配合処方により、前述の製造法に準拠しては
んだ1'〜6'を製造し、これらの融点等を前述のように
して測定し、結果を表1に示す。
Comparative Examples 1 to 6 Solders 1'to 6'were manufactured according to the above-mentioned manufacturing method according to the formulation shown in Table 1, and their melting points and the like were measured as described above. Shown in 1.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【発明の効果】強度および広がり率が高く、融点におけ
る固相線と液相線の温度差が小さい本発明によるSn−
Pb系はんだを使用することによって、はんだ接合部の
補強等の処理および被接合材のめっき処理や酸洗処理は
不要となり、また、作業能率や歩留りが改良される。
EFFECT OF THE INVENTION Sn-according to the present invention has a high strength and a high spread rate, and has a small temperature difference between the solidus and liquidus at the melting point.
The use of Pb-based solder eliminates the need for treatment such as reinforcement of solder joints, plating treatment and pickling treatment for materials to be joined, and improves work efficiency and yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】 はんだの引張強さ測定用試験片の説明図であ
る。
FIG. 1 is an explanatory view of a test piece for measuring the tensile strength of solder.

【図2】 はんだの広がり率測定法の説明図である。FIG. 2 is an explanatory diagram of a method for measuring a solder spread rate.

【符号の説明】[Explanation of symbols]

1 標点 2 未溶融被験はんだ 3 広がったはんだ 4 酸化銅板 1 Mark 2 Unmelted test solder 3 Spread solder 4 Copper oxide plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Sn 55〜65%および下記(i)、(ii)
または(iii)の所定量の添加金属を含有し、残部がPbか
ら成るはんだ: (i) Bi 1〜3% (ii) Bi 0.2〜2%およびSb 0.1〜1.0% (iii)Bi 0.2〜2%およびIn 0.2〜2%
1. Sn 55 to 65% and the following (i) and (ii)
Or (iii) a solder containing a predetermined amount of added metal and the balance Pb: (i) Bi 1-3% (ii) Bi 0.2-2% and Sb 0.1-1.0% ( iii) Bi 0.2-2% and In 0.2-2%
JP27976692A 1992-10-19 1992-10-19 Solder Pending JPH06126484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27976692A JPH06126484A (en) 1992-10-19 1992-10-19 Solder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27976692A JPH06126484A (en) 1992-10-19 1992-10-19 Solder

Publications (1)

Publication Number Publication Date
JPH06126484A true JPH06126484A (en) 1994-05-10

Family

ID=17615612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27976692A Pending JPH06126484A (en) 1992-10-19 1992-10-19 Solder

Country Status (1)

Country Link
JP (1) JPH06126484A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007442A1 (en) * 1987-03-30 1988-10-06 Fanuc Ltd Robot controller
EP3290147A1 (en) * 2016-08-31 2018-03-07 Hojin Platech Co. Ltd. Tin-bismuth-lead ternary alloy solder composition using electroplating
CN108161271A (en) * 2017-12-27 2018-06-15 北京康普锡威科技有限公司 A kind of SnPbBiSb systems low temperature enhancing solder and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988007442A1 (en) * 1987-03-30 1988-10-06 Fanuc Ltd Robot controller
EP3290147A1 (en) * 2016-08-31 2018-03-07 Hojin Platech Co. Ltd. Tin-bismuth-lead ternary alloy solder composition using electroplating
CN107779664A (en) * 2016-08-31 2018-03-09 互进电镀科技有限公司 Utilize the tin bismuth lead ternary alloy three-partalloy solder composition of plating
CN108161271A (en) * 2017-12-27 2018-06-15 北京康普锡威科技有限公司 A kind of SnPbBiSb systems low temperature enhancing solder and preparation method thereof
CN108161271B (en) * 2017-12-27 2021-06-01 北京康普锡威科技有限公司 SnPbBiSb series low-temperature reinforced solder and preparation method thereof

Similar Documents

Publication Publication Date Title
US5378294A (en) Copper alloys to be used as brazing filler metals
CN100534699C (en) Lead-free welding flux alloy
US6156132A (en) Solder alloys
JP2019527145A (en) SnBiSb low-temperature lead-free solder
CN108971793B (en) Low-temperature lead-free solder
CN100462183C (en) Lead-free anti-oxidation rare-earth-contg. type SnZn alloy welding flux, and its prepn. method
JPH0970687A (en) Leadless solder alloy
CN108994480A (en) A kind of SnBiAgCu high-reliability lead-free solder alloy
US4241148A (en) Composite aluminum-containing workpieces
US6299835B1 (en) Cadmium-free silver alloy as low-melting brazing filler material
US20070172381A1 (en) Lead-free solder with low copper dissolution
JP3736819B2 (en) Lead-free solder alloy
JP3081230B2 (en) Copper alloy used as brazing filler metal
WO2007082459A1 (en) Lead-free solder and its preparation method
CN101733575A (en) Tin-zinc-bismuth-copper leadless solder with low cost and welding spot thereof
JP2001287082A (en) Solder
CN114227057B (en) Lead-free solder alloy and preparation method and application thereof
EP3369520B1 (en) Solder alloy for preventing fe erosion, resin flux cored solder, wire solder, resin flux cored wire solder, flux coated solder, solder joint and soldering method
JPH06126484A (en) Solder
JP2012121047A (en) Lead-free solder alloy
JPH10230384A (en) Solder material
JPH06126483A (en) Sn-pb solder
CN1325680C (en) Sn-Ag-Cu-Cr alloy lead-free solder preparation method
US5178827A (en) Copper alloys to be used as brazing filler metals
JPH10249579A (en) Solder material