JPH06126469A - Surface working method - Google Patents

Surface working method

Info

Publication number
JPH06126469A
JPH06126469A JP4308314A JP30831492A JPH06126469A JP H06126469 A JPH06126469 A JP H06126469A JP 4308314 A JP4308314 A JP 4308314A JP 30831492 A JP30831492 A JP 30831492A JP H06126469 A JPH06126469 A JP H06126469A
Authority
JP
Japan
Prior art keywords
work
irradiation
workpiece
ion beam
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4308314A
Other languages
Japanese (ja)
Other versions
JP2847175B2 (en
Inventor
Masami Ikeyama
雅美 池山
Hiroaki Niwa
博昭 丹羽
Seita Tanemura
誠太 種村
Setsuo Nakao
節男 中尾
Kazuo Saito
和雄 斎藤
Yoshiko Miyagawa
佳子 宮川
Souji Miyagawa
草児 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP4308314A priority Critical patent/JP2847175B2/en
Publication of JPH06126469A publication Critical patent/JPH06126469A/en
Application granted granted Critical
Publication of JP2847175B2 publication Critical patent/JP2847175B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form fine ruggedness on the surface of a work while maintaining the flatness and smoothness of the surface. CONSTITUTION:The irradiated region of the work formed by irradiating the region with an ion beam of several 100KeV builds up in the case of the work made of metallic or ceramic materials and recesses in the case of the glass work. The mentioned above phenomenon is utilized in this method. Namely, the building up or recessing amt. is controlled by controlling the ion species for irradiation, energy and irradiation quantity and the space distribution is controlled by making combination use of the space scanning of the ion beam and mask patterns, by which the fine ruggedness is formed in arbitrary patterns on the surface of the work while the size over the entire part of the work is maintained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば転がり軸受の転
動体の表面に微細な凹凸を形成することにより、油膜の
流れを制御し、摩擦を低下させることができるような表
面加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface processing method capable of controlling the flow of an oil film and reducing friction by forming fine irregularities on the surface of a rolling element of a rolling bearing.

【0002】[0002]

【従来の技術】摩擦は工作物の材質ばかりでなく表面形
状にも大きく左右される。そして、一般的にこの工作物
の表面形状を変える方法として種々の研磨法を採用する
ことが多い。また、マスクパターンとエッチング技術と
を組み合わて工作物の表面形状を変える方法も知られて
いる。さらに、特殊な方法としては、高エネルギーのイ
オンビームを利用したイオン注入法により表面を改質
し、摩擦特性の良い材料を表面につくることにより工作
物の摩擦特性を改善する方法、或いは低エネルギーのイ
オンビームを利用したエッチングにより工作物の表面形
状を変える方法も知られている。
Friction greatly depends not only on the material of the workpiece but also on the surface shape. In general, various polishing methods are often adopted as a method of changing the surface shape of the workpiece. Also known is a method of changing the surface shape of a workpiece by combining a mask pattern and an etching technique. Furthermore, as a special method, a method of modifying the surface by an ion implantation method using a high-energy ion beam to improve the frictional characteristics of the workpiece by forming a material having good frictional characteristics on the surface, or a low energy method There is also known a method of changing the surface shape of a workpiece by etching using an ion beam.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
研磨方法やエッチング方法は、必要以上の処理が行われ
て工作物の表面の全体的な寸法を損なったり、目的とす
る摩擦条件を得るための制御が原理的に充分に行われな
いものであった。また、工作物表面の材質を変えてしま
うイオン注入法による表面改質には多量のイオンを注入
する必要があるために、処理時間が長く、しかも高いコ
ストがかかるものであった。
However, in the conventional polishing method and etching method, an excessive amount of treatment is performed to impair the overall size of the surface of the workpiece, and to obtain the desired friction condition. In principle, the control was insufficient. Further, the surface modification by the ion implantation method that changes the material of the surface of the workpiece requires a large amount of ions to be implanted, resulting in a long treatment time and high cost.

【0004】[0004]

【課題を解決するための手段】本発明は上記に鑑み提案
されたもので、金属、セラミックス、ガラスから選ばれ
る工作物に数100KeVの高エネルギーのイオンビー
ムを照射することにより、工作物の表面に凹凸を形成す
ることを特徴とする表面加工方法に関するものである。
The present invention has been proposed in view of the above, and the surface of a work is selected by irradiating a work selected from metal, ceramics and glass with a high energy ion beam of several 100 KeV. The present invention relates to a surface processing method characterized by forming irregularities on a surface.

【0005】上記のように本発明の対象となる工作物の
材料は、金属、セラミックス、ガラスのいずれでも良
い。本発明者等は、数100KeVのイオンビームと材
料との相互作用について鋭意研究を重ねた結果、イオン
ビーム照射により材料の表面がその全体寸法を維持した
まま、金属、セラミックスの場合は隆起し、ガラスの場
合は陥没すること、そしてこの隆起量、陥没量は照射す
るイオン種、イオンエネルギー及び照射量によって精密
に制御できることを見い出した。
As described above, the material of the work object of the present invention may be any of metal, ceramics and glass. As a result of intensive studies on the interaction between an ion beam of several 100 KeV and a material, the present inventors have found that the surface of the material is raised by the ion beam irradiation while maintaining its overall size, and in the case of metal or ceramics, It was found that in the case of glass, it is depressed, and that the amount of protrusion and the amount of depression can be precisely controlled by the ion species to be irradiated, the ion energy and the irradiation amount.

【0006】このイオンビーム照射による表面の隆起又
は陥没は、イオンビーム照射によって誘起される材料中
の格子欠陥の生成、集積に密接に関連しており、このた
め、照射するイオン種や、エネルギー及び照射量によっ
て格子欠陥の生成、集積の様相の変化に合わせて隆起量
や陥没量が変化すると推測される。また、照射時の工作
物の温度もこの隆起、陥没に関連するが、このことも生
成する格子欠陥が高温では解消され易いために隆起量や
陥没量は工作物の温度が高いほど相対的に小さくなると
考えられる。
The surface ridge or depression caused by the ion beam irradiation is closely related to the generation and accumulation of lattice defects in the material induced by the ion beam irradiation, and therefore the ion species to be irradiated, the energy and It is estimated that the amount of irradiation changes the amount of uplift and the amount of depression that accompanies changes in the generation and accumulation of lattice defects. Also, the temperature of the workpiece during irradiation is also related to this bulge and depression, but this also causes the lattice defects that are generated to be easily eliminated at high temperatures, so the amount of bulge and depression is relatively high as the temperature of the workpiece is high. It will be smaller.

【0007】本発明によれば、工作物に数100KeV
のイオンビームを照射することにより、工作物が金属或
いはセラミックスの場合にはイオンビームを照射した領
域が隆起し、ガラスの場合には照射した領域が陥没する
ことにより、工作物表面に表面全体寸法を維持したまま
極微細な、高さ数nm〜数100nmの凹凸をつけるこ
とができる。
According to the present invention, several hundred KeV is applied to the workpiece.
When the workpiece is made of metal or ceramics, the area irradiated by the ion beam rises when the workpiece is made of metal or ceramics, and when the workpiece is made of glass, the irradiated area is depressed, so that the entire surface of the workpiece is dimensioned. It is possible to form ultrafine unevenness having a height of several nm to several 100 nm while maintaining the above.

【0008】そして、工作物への数100KeVのイオ
ンビームの照射量は、イオン注入法によって表面改質す
る場合(1016〜1017イオン/cm2 またはそれ以
上)の1/10〜1/1000(1013〜1015イオン
/cm2 )程度で良い。
The dose of the ion beam of several 100 KeV to the workpiece is 1/10 to 1/1000 of the case of surface modification by the ion implantation method (10 16 to 10 17 ions / cm 2 or more). It may be about (10 13 to 10 15 ions / cm 2 ).

【0009】また、照射するイオンビームの空間操作制
御と適当なマスクパターンの併用により、生じる隆起あ
るいは陥没域の大きさ及びそれらの空間分布を制御する
ことができる。そして、この空間分布及び高さそれぞれ
についての高い制御性を利用して、工作物表面に目的と
する摩擦条件にあう任意の微細な凹凸を形成させること
ができる。
Further, by controlling the spatial operation of the ion beam to be irradiated and an appropriate mask pattern in combination, it is possible to control the size of the raised or depressed regions and the spatial distribution thereof. Then, by utilizing the high controllability of each of the spatial distribution and the height, it is possible to form arbitrary fine unevenness on the surface of the work piece that meets the desired friction condition.

【0010】[0010]

【実施例】以下、本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0011】工作物としてシリコンウェハー、窒化珪素
焼結体、アルミナ焼結体、サファイヤ、水晶、ステンレ
ス、石英ガラス及びパイレックスガラスに、400〜4
200KeVのイオンビームを照射したときの表面の隆
起量または陥没量とイオン照射量との関係を表1〜11
に示した。
As a workpiece, a silicon wafer, a silicon nitride sintered body, an alumina sintered body, sapphire, quartz, stainless steel, quartz glass, and Pyrex glass, 400 to 4
Tables 1 to 11 show the relationship between the amount of surface irradiation and the amount of ion irradiation when an ion beam of 200 KeV was applied.
It was shown to.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】[0014]

【表3】 [Table 3]

【0015】[0015]

【表4】 [Table 4]

【0016】[0016]

【表5】 [Table 5]

【0017】[0017]

【表6】 [Table 6]

【0018】[0018]

【表7】 [Table 7]

【0019】[0019]

【表8】 [Table 8]

【0020】[0020]

【表9】 [Table 9]

【0021】[0021]

【表10】 [Table 10]

【0022】[0022]

【表11】 [Table 11]

【0023】イオンビームを照射される工作物の材質に
よって異なるが、1013〜1014イオン/cm2 程度で
隆起または陥没が生じはじめ、照射量を変えることによ
り数nm〜数100nmまで変化させることができる。
そして、一般に金属やセラミックスでは、照射するイオ
ンが重いほどまたイオンのエネルギーが高いほど同じ高
さの隆起を得るのに、少ない照射量で良く、ガラスへの
照射の場合には軽いイオンをより高エネルギーで照射す
ると、同じ照射量でもより大きな陥没量を得ることがで
きる。したがって、注入するイオン種、エネルギー及び
照射量の制御により、高さが数nm〜数100nmの範
囲の任意の凸または凹部を、再現性良くつくることがで
きる。また、この隆起量及び陥没量は、イオン照射する
際の工作物の温度にも依存し、水晶以外はより低温ほど
大きな隆起量または陥没量が得られる。このため、10
0nmを越えるような隆起または陥没を得る場合には、
工作物を液体窒素温度程度にまで冷却することが望まし
い。
Depending on the material of the workpiece to be irradiated with the ion beam, ridges or depressions start to occur at about 10 13 to 10 14 ions / cm 2 , and the irradiation amount can be changed to several nm to several 100 nm. You can
In general, with metals and ceramics, the heavier the ions to be irradiated and the higher the energy of the ions, the smaller the amount of irradiation required to obtain the bumps of the same height. When irradiation is performed with energy, a larger amount of depression can be obtained with the same irradiation amount. Therefore, by controlling the ion species to be implanted, the energy, and the irradiation dose, it is possible to reproducibly form an arbitrary convex or concave portion having a height in the range of several nm to several 100 nm. Further, the amount of protrusion and the amount of depression depend on the temperature of the workpiece during ion irradiation, and a higher amount of protrusion or depression can be obtained at lower temperatures other than quartz. Therefore, 10
If you get a bump or depression that exceeds 0 nm,
It is desirable to cool the workpiece to about liquid nitrogen temperature.

【0024】照射量が1016ions/cm2 オーダー
以上になると、照射したイオンが工作物中に蓄積する効
果が無視できなくなるが、例えば珪素イオンを1×10
16ions/cm2 照射したとき、照射した珪素イオン
の蓄積による表面隆起は約2nmと見積られ、珪素より
もイオン半径の小さい元素では蓄積効果はさらに小さ
く、イオン半径の大きい元素でも高々数倍にしかならな
い。数100KeV以上のエネルギーのイオンビームを
照射することによって生ずる隆起の大部分は照射したイ
オンの蓄積以外の要因によるものと言える。
When the irradiation dose is 10 16 ions / cm 2 or more, the effect of accumulated irradiated ions in the workpiece cannot be ignored. For example, silicon ions of 1 × 10
When irradiated with 16 ions / cm 2, the surface bulge due to the accumulation of irradiated silicon ions is estimated to be about 2 nm, and the accumulation effect is even smaller for elements with a smaller ionic radius than silicon, and several times at most even for elements with a large ionic radius. It only happens. It can be said that most of the bumps generated by irradiation with an ion beam having an energy of several hundreds of KeV or higher are due to factors other than the accumulation of irradiated ions.

【0025】図1は窒化珪素焼結体に1000KeVの
珪素イオンを1×10ions/cm2 照射したときの
窒化珪素表面の三次元プロファイル例、図2は石英ガラ
スに2000KeV珪素イオンを1×1014ions/
cm2 照射したときの石英ガラスの三次元プロファイル
例である。両図共に1は未照射域、2はイオン照射域を
示す。図1ではイオン照射域が約70nm隆起してお
り、巾約200μmの未照射域が溝底部を形成してい
る。図2ではイオン照射域が約80nm陥没しており、
約120μmの幅の未照射域はイオン照射の影響を受け
てない。これらは、四角形のマスクパターンとビームの
空間操作を併用して得られたものであるが、マスクパタ
ーンとしてより微細なものを利用すれば、より複雑且つ
微細な表面形状を工作物にパターン付けできる。また、
イオン照射領域の表面は未照射域とほぼ同程度であり、
平面の平滑性を維持したまま形状変化させることができ
ることを示している。
FIG. 1 shows an example of a three-dimensional profile of a silicon nitride surface when a silicon nitride sintered body is irradiated with 1000 keV silicon ions at 1 × 10 ions / cm 2 , and FIG. 2 shows 2000 keV silicon ions at 1 × 10 14 on quartz glass. ions /
It is an example of a three-dimensional profile of quartz glass when irradiated with cm 2 . In both figures, 1 indicates an unirradiated area and 2 indicates an ion irradiated area. In FIG. 1, the ion-irradiated area is raised by about 70 nm, and the unirradiated area having a width of about 200 μm forms the groove bottom. In Figure 2, the ion irradiation area is depressed by about 80 nm,
The unirradiated area having a width of about 120 μm is not affected by the ion irradiation. These are obtained by using the square mask pattern and the spatial operation of the beam together, but if a finer mask pattern is used, a more complicated and fine surface shape can be patterned on the workpiece. . Also,
The surface of the ion irradiation area is about the same as the unirradiated area,
It shows that the shape can be changed while maintaining the smoothness of the plane.

【0026】[0026]

【発明の効果】以上説明したように、本発明の表面加工
方法は、数100KeVのイオンビームを照射すること
により、工作物の表面の全体寸法を維持したまま、表面
に任意のパターンで微少な凹凸を形成させることができ
る。
As described above, according to the surface processing method of the present invention, by irradiating an ion beam of several hundreds of KeV, the surface of the workpiece can be kept in the desired size while maintaining the overall size of the surface. Unevenness can be formed.

【0027】したがって、例えば、転がり軸受けの転動
体の表面に微少な凹凸をつけることにより、油膜の流れ
を制御し、摩擦を低下させることができる。また、摩擦
低減以外に、平坦且つ平滑なガラス基板磁気ディスクの
表面に高さ数10nmの凹凸を付けることにより、磁気
ヘッドの吸着を防ぐことができる。この際、ハードウェ
ア・フォーマティング用の磁気ディスクの場合には、適
切なマスクパターンを用いることにより、信号記録部分
を避けて凹凸をつけることができ、凹凸による信号変調
を避けることができる。
Therefore, for example, by forming minute irregularities on the surface of the rolling element of the rolling bearing, the flow of the oil film can be controlled and the friction can be reduced. In addition to the reduction of friction, it is possible to prevent the magnetic head from being attracted by forming irregularities having a height of several tens nm on the surface of a flat and smooth glass substrate magnetic disk. At this time, in the case of a magnetic disk for hardware formatting, by using an appropriate mask pattern, it is possible to make a concavo-convex portion avoiding the signal recording portion, and to avoid signal modulation due to the concavity and convexity portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化珪素焼結体表面の三次元プロファイルであ
る。
FIG. 1 is a three-dimensional profile of the surface of a silicon nitride sintered body.

【図2】石英ガラス表面の三次元次元プロファイルであ
る。
FIG. 2 is a three-dimensional profile of a quartz glass surface.

【符号の説明】[Explanation of symbols]

1 未照射域 2 イオン照射域 1 Unirradiated area 2 Ion irradiated area

フロントページの続き (72)発明者 中尾 節男 愛知県名古屋市北区八代町2−109 八代 寮201号 (72)発明者 斎藤 和雄 愛知県名古屋市中村区稲西町183番地 コ ープ野村稲西413号 (72)発明者 宮川 佳子 愛知県名古屋市千種区鹿子殿6番15号 (72)発明者 宮川 草児 愛知県名古屋市千種区鹿子殿6番15号Front page continuation (72) Inventor Setsuo Nakao 2-109 Yatsushiro Dormitory, Kita-ku, Nagoya-shi, Aichi No. 201 Dormitory, Yatsushiro (72) Inventor Kazuo Saito 183 Inasai-cho, Nakamura-ku, Nagoya-shi Aichi Prefecture No. 413 Inasai, Nomura (72) Inventor Yoshiko Miyagawa 6-15 No. Kago, Chikusa-ku, Nagoya, Aichi Prefecture (72) Inventor Sogo Miyakawa 6-15 No. Kago, Chikusa-ku, Nagoya City, Aichi Prefecture

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属、セラミックス、ガラスから選ばれ
る工作物に数100KeVの高エネルギーのイオンビー
ムを照射することにより、工作物の表面に凹凸を形成す
ることを特徴とする表面加工方法。
1. A surface processing method which comprises forming irregularities on the surface of a workpiece by irradiating the workpiece selected from metal, ceramics and glass with a high energy ion beam of several 100 KeV.
JP4308314A 1992-10-22 1992-10-22 Surface processing method Expired - Lifetime JP2847175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4308314A JP2847175B2 (en) 1992-10-22 1992-10-22 Surface processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4308314A JP2847175B2 (en) 1992-10-22 1992-10-22 Surface processing method

Publications (2)

Publication Number Publication Date
JPH06126469A true JPH06126469A (en) 1994-05-10
JP2847175B2 JP2847175B2 (en) 1999-01-13

Family

ID=17979563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4308314A Expired - Lifetime JP2847175B2 (en) 1992-10-22 1992-10-22 Surface processing method

Country Status (1)

Country Link
JP (1) JP2847175B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131462A (en) * 1984-11-30 1986-06-19 Fujitsu Ltd Ion beam processing method
JPH03243203A (en) * 1990-02-21 1991-10-30 Kawasaki Steel Corp Dull working method for rolling roll
JPH0470279U (en) * 1990-10-24 1992-06-22

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131462A (en) * 1984-11-30 1986-06-19 Fujitsu Ltd Ion beam processing method
JPH03243203A (en) * 1990-02-21 1991-10-30 Kawasaki Steel Corp Dull working method for rolling roll
JPH0470279U (en) * 1990-10-24 1992-06-22

Also Published As

Publication number Publication date
JP2847175B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
KR101161015B1 (en) Cmp pad conditioner and its manufacturing method
Barna Topographic kinetics and practice of low angle ion beam thinning
Vorobyev et al. Femtosecond laser structuring of titanium implants
Ross et al. Nanometer-scale characteristics of polycrystalline YAG ceramic polishing
US4522656A (en) Method of making reference surface markings on semiconductor wafers by laser beam
US4670806A (en) Self loading slider for magnetic recording heads
JP2017537480A (en) Manufacture and repair of wafer pin chuck
JPH06126469A (en) Surface working method
JP7165719B2 (en) Microreplicated polished surface with improved flatness
KR102067202B1 (en) Method of marking material and system therefore, and material marked according to same method
JP6096065B2 (en) Manufacturing method of sliding member
JPS63136618A (en) Energy irradiation
Nindi et al. Cone formation and transformation on diamond microparticle contaminated silver surface: semidynamic studies
US6906895B2 (en) Method of marking sintered body and method for manufacturing magnetic head wafer
JPS61204384A (en) Magnetic head and processing method
JPH04344887A (en) Laser beam machining method
US6747845B1 (en) Modified strain region of strain reactive slider with implanted ions, electrons or neutral atoms
TWI462799B (en) Cmp pad conditioner and method for manufacturing the same
JP2706986B2 (en) Focus adjustment method
JPH07113421A (en) Sliding member having good abrasion resistance and lubricating performance and manufacture thereof
JPS60118400A (en) Production of member for heat absorber or heat exchanger
KR100327306B1 (en) Polishing pad with various groove-pattern
JPS591163A (en) Method of working base plate
O’Donnell et al. Characterization of focused-ion-beam induced defect structures in graphite for the future guided self-assembly of molecules
TW202140179A (en) Method of surface treatment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term