JPH06126156A - Discharge reaction device - Google Patents

Discharge reaction device

Info

Publication number
JPH06126156A
JPH06126156A JP5120868A JP12086893A JPH06126156A JP H06126156 A JPH06126156 A JP H06126156A JP 5120868 A JP5120868 A JP 5120868A JP 12086893 A JP12086893 A JP 12086893A JP H06126156 A JPH06126156 A JP H06126156A
Authority
JP
Japan
Prior art keywords
discharge
dielectric
discharge space
ground electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5120868A
Other languages
Japanese (ja)
Other versions
JP2893158B2 (en
Inventor
Ichiro Kamiya
一郎 神谷
Ryoichi Shinjo
良一 新荘
Takeshi Murakami
武司 村上
Yukiko Nishioka
由紀子 西岡
Minoru Harada
稔 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP5120868A priority Critical patent/JP2893158B2/en
Publication of JPH06126156A publication Critical patent/JPH06126156A/en
Application granted granted Critical
Publication of JP2893158B2 publication Critical patent/JP2893158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electric discharge reaction device capable of generating a clean ozone with features such as being harmless to a semi-conductor manufacturing process, high performance, long life and outstanding reliability. CONSTITUTION:A dielectric 2 is allowed to be present between a high voltage electrode 3 and a grounded electrode 4, and silent discharge and/or a creeping discharge is allowed to generate between the dielectric 2 and the high voltage electrode 3 as well as the dielectric 2 and the grounded electrode 4. Further, a substance which passage through a discharge space or is held in the space is allowed to undergo a reactive process in the discharge space. In this electric discharge device, a quartz glass(SiO2 00.99wt.%min) refined to high purity, a monocrystal sapphire of crystallized alumina refined to high purity or high- purity alumina obtained by sintering aluminum oxide refined to high purity, is used as a dielectric material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は無声放電及び/又は沿面
放電を発生させ、該放電空間内で物質を反応させる放電
反応装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge reaction device for generating silent discharge and / or creeping discharge and reacting substances in the discharge space.

【0002】[0002]

【従来技術】この種の放電反応装置はオゾン発生装置や
イオン発生装置に利用されており、特にオゾン発生装置
には最も一般的に利用されている。高圧電極と接地電極
の間に誘電体を介在させ、高圧電極又は接地電極と誘電
体の間に無声放電又は沿面放電を起させるオゾン発生装
置等に用いられる放電反応装置には下記に示すような種
々の形式及び構造のものがある。
2. Description of the Related Art This type of discharge reactor is used in ozone generators and ion generators, and is most commonly used in ozone generators. A discharge reaction device used for an ozone generator or the like that interposes a dielectric between the high-voltage electrode and the ground electrode and causes a silent discharge or a creeping discharge between the high-voltage electrode or the ground electrode and the dielectric has the following structure. There are various types and structures.

【0003】図1乃至図5はそれぞれ現在提案され、実
用化されている代表的な放電反応装置の概略構造を示す
図である。図1乃至図5において、2は誘電体、3は高
圧電極、4は接地電極、5は図1,図2,図4,図5に
おいては高圧電極3と接地電極4とを誘電体2を介して
絶縁する絶縁体であり、該絶縁体5は同時に放電部を外
部と遮断し放電空間1を形成するシール材としての作用
も果たしている。6は図3において、外部との絶縁を行
い、放電空間1を形成する絶縁・シール壁である。ま
た、7は高圧電極3と接地電極4に接続され、交流高電
圧を印加し、放電空間1内で放電を発生させるための高
電圧交流電源である。
FIGS. 1 to 5 are schematic views showing a typical structure of a typical discharge reactor which has been proposed and put into practical use. 1 to 5, 2 is a dielectric, 3 is a high voltage electrode, 4 is a ground electrode, 5 is a high voltage electrode 3 and a ground electrode 4 in FIGS. It is an insulator that insulates through the insulator 5, and at the same time, the insulator 5 also acts as a sealing material that blocks the discharge part from the outside and forms the discharge space 1. In FIG. 3, reference numeral 6 denotes an insulating / sealing wall that forms an electric discharge space 1 by performing insulation with the outside. Reference numeral 7 is a high-voltage AC power supply that is connected to the high-voltage electrode 3 and the ground electrode 4 and applies an AC high-voltage to generate a discharge in the discharge space 1.

【0004】図1の放電反応装置は、誘電体2,2を両
電極3,4の表面に配置した場合で、放電空間1におい
て両誘電体2,2の間で無声放電を発生する。ちなみ
に、図1の放電反応装置においては、高圧電極3も接地
電極4も放電空間1内に露出していない。
In the discharge reaction device of FIG. 1, when the dielectrics 2 and 2 are arranged on the surfaces of the electrodes 3 and 4, silent discharge is generated between the dielectrics 2 and 2 in the discharge space 1. By the way, in the discharge reaction device of FIG. 1, neither the high-voltage electrode 3 nor the ground electrode 4 is exposed in the discharge space 1.

【0005】図2の放電反応装置の基本的構造は、図1
と同じであるが、誘電体2を一方の接地電極4の表面に
配置し、もう一方の高圧電極3はその放電空間1内にそ
の表面を露出している。図2の放電反応装置において
は、高圧電極3と誘電体2の間で無声放電が発生する。
The basic structure of the discharge reactor of FIG. 2 is shown in FIG.
But the dielectric 2 is placed on the surface of one ground electrode 4 and the other high voltage electrode 3 exposes its surface in its discharge space 1. In the discharge reactor of FIG. 2, silent discharge is generated between the high voltage electrode 3 and the dielectric 2.

【0006】図4の放電反応装置の基本的構造は図2の
放電装置と同じであるが、誘電体2を一方の高圧電極3
の表面に配置し、もう一方の接地電極4は比較的低い電
圧で高密度の放電を達成するため、接地電極4に土手状
の突起4−1を設けている。誘電体2の表面とこの接地
電極4の突起4−1の先端との間の最小ギャップGは通
常0.5mm以下と小さくなっている。図4の放電反応
装置において、放電は無声放電であるが、突起4−1の
先端部分では沿面放電が発生し、両放電の複合放電とな
る。
The basic structure of the discharge reactor of FIG. 4 is the same as that of the discharge device of FIG.
The other ground electrode 4 is provided with a bank-shaped projection 4-1 on the ground electrode 4 in order to achieve high-density discharge at a relatively low voltage. The minimum gap G between the surface of the dielectric 2 and the tip of the protrusion 4-1 of the ground electrode 4 is usually as small as 0.5 mm or less. In the discharge reaction device of FIG. 4, the discharge is a silent discharge, but a creeping discharge is generated at the tip portion of the protrusion 4-1 and becomes a composite discharge of both discharges.

【0007】図5の放電反応装置は誘電体2を高圧電極
3と接地電極4の間に設置し、放電空間1を高圧電極3
と誘電体2の間及び誘電体2と接地電極4の間の2個所
に設けている。図5の放電反応装置において、それぞれ
の放電空間1の高圧電極3と誘電体2の間及び接地電極
4と誘電体2の間で無声放電が発生する。
In the discharge reactor of FIG. 5, the dielectric 2 is installed between the high voltage electrode 3 and the ground electrode 4, and the discharge space 1 is set to the high voltage electrode 3.
And the dielectric 2 and between the dielectric 2 and the ground electrode 4. In the discharge reactor of FIG. 5, silent discharge is generated between the high voltage electrode 3 and the dielectric 2 and between the ground electrode 4 and the dielectric 2 in each discharge space 1.

【0008】図3の放電反応装置は、接地電極4の上面
に誘電体2を配置し、該誘電体2の上面に前記接地電極
4及び誘電体2より小さい高圧電極3を配置し、更にそ
の上に放電空間1を設けている。図3の放電反応装置に
おいて、放電は高圧電極3と誘電体2の間で放電空間1
を介して沿面放電が発生する。なお、ここで高圧電極3
と接地電極4を入れ換えたものもある。
In the discharge reactor of FIG. 3, the dielectric 2 is arranged on the upper surface of the ground electrode 4, the ground electrode 4 and the high-voltage electrode 3 smaller than the dielectric 2 are arranged on the upper surface of the dielectric 2, and A discharge space 1 is provided above. In the discharge reactor of FIG. 3, the discharge is performed between the high voltage electrode 3 and the dielectric 2 in the discharge space 1
A creeping discharge is generated via. In addition, here, the high voltage electrode 3
There is also one in which the ground electrode 4 is replaced.

【0009】また、放電反応装置に使用される誘電体の
放電空間内に露出していない側の表面に固着されている
高圧電極及び/又は接地電極には、Ag、Ag−Pd合
金、Au、又はMo−Mn合金の膜が使用されることが
多い。
Further, the high voltage electrode and / or the ground electrode fixed to the surface of the dielectric used in the discharge reactor on the side not exposed in the discharge space is made of Ag, Ag-Pd alloy, Au, Alternatively, a film of Mo-Mn alloy is often used.

【0010】なお、ここでは基本構造を平板型の断面図
として示しているが、勿論円筒型としたもの、接地電極
と高圧電極との位置を交換したものもある。また、電極
形状や配置等についても種々のものがある。
Although the basic structure is shown here as a flat plate type sectional view, of course, there are also a cylindrical type and a type in which the positions of the ground electrode and the high voltage electrode are exchanged. There are various electrode shapes and arrangements.

【0011】同一形状、同一寸法(放電面積も一定)の
放電反応装置において、その性能の向上、例えばオゾン
発生量と濃度を上げるには、投入電力密度(単位放電面
積当たりの投入電力量)を上げて高密度な無声放電又は
沿面放電(以下無声放電で代表する)を発生させる必要
がある。その電気的因子として種々のものがあるが特に
放電反応装置の静電容量の値が重要であり、とりわけ高
密度な無声放電を発生させるには誘電体の静電容量Cが
大きいほどよい。
In order to improve the performance of the discharge reactor having the same shape and the same size (the discharge area is constant), for example, to increase the ozone generation amount and the concentration, the input power density (input power amount per unit discharge area) is set. It is necessary to raise a high-density silent discharge or a creeping discharge (hereinafter represented by silent discharge). There are various electric factors, but the value of the electrostatic capacity of the discharge reaction device is particularly important, and the larger the electrostatic capacity C of the dielectric material is, the better in order to generate a high density silent discharge.

【0012】誘電体の単位面積当たりの静電容量Cは次
式で表される。 C=ε/t ここで、ε:誘電体の誘電率、t:誘電体の厚さ 上式からもわかるように静電容量Cを大きくするには、
誘電体の誘電率を大きくするか又は誘電体の厚さtを薄
くする必要がある。誘引率εは誘電体固有のものであり
現在多く用いられているセラミックは9以上の値を示
し、実用上これに勝るものはないと言える。この為、厚
さtを薄くすることにより、電力密度を上げる方法がと
られるが、厚さを薄くすると耐電圧の減少、強度不足、
製作上の困難、更には放電スパッタリング現象等による
減肉が生じ、誘電体の寿命を短くする等の問題があり、
実用上は0.1mm〜1mmの厚さが考えられるが、一
般的には0.5mm以上の最低厚さを必要とする。
The capacitance C per unit area of the dielectric is expressed by the following equation. C = ε / t where ε is the permittivity of the dielectric, and t is the thickness of the dielectric.
It is necessary to increase the dielectric constant of the dielectric or reduce the thickness t of the dielectric. The attraction rate ε is peculiar to the dielectric material, and the ceramics that are often used at present show a value of 9 or more, which can be said to be practically superior to this. For this reason, a method of increasing the power density by reducing the thickness t is used. However, decreasing the thickness decreases the withstand voltage, causes insufficient strength,
There is a problem in that it is difficult to manufacture, and further, thinning occurs due to the discharge sputtering phenomenon and the life of the dielectric is shortened.
In practice, a thickness of 0.1 mm to 1 mm is conceivable, but generally a minimum thickness of 0.5 mm or more is required.

【0013】上記図1乃至図5に示す構造の放電反応装
置において、誘電体2は高い絶縁性と耐電圧性を有し、
反応生成物、例えばオゾンの侵蝕に耐える必要があるこ
とから従来ガラス材を使用していたが、オゾン生成性能
の向上及び高濃度化を図るため現在では誘電率の比較的
大きいセラミックスを使用しており、これによりオゾン
の高濃度化と生成性能の向上が図られている。
In the discharge reactor having the structure shown in FIGS. 1 to 5, the dielectric 2 has high insulation and withstand voltage,
Conventionally, glass materials were used because it is necessary to withstand the erosion of reaction products such as ozone, but nowadays ceramics with a relatively large dielectric constant are used to improve ozone generation performance and increase the concentration. As a result, the concentration of ozone is increased and the generation performance is improved.

【0014】また、誘電体2として使用されるセラミッ
クスは上記の通り、高絶縁性、高耐電圧性及び耐蝕性に
優れた比較的誘電率の高いものを使用しているが、これ
らは通常独立にセラミックス板として焼成されたもの
か、或るいは高圧電極3又は接地電極4に焼付けるか、
溶射されたものである。いずれの場合においても誘電体
2の内外にピンホールの様な空孔、空隙等の材料欠陥が
発生することは避けがたく、またセラミックス原料自体
やその構成成分及びその混練、成形及び焼成工程におい
て不純物の混入やガス成分の混入が避けがたく、相当量
の不純物を含んでいる。
As described above, the ceramic used as the dielectric 2 has a relatively high dielectric constant, which is excellent in high insulation, high withstand voltage and corrosion resistance, but these are usually independent. Is fired as a ceramics plate, or is fired on the high-voltage electrode 3 or the ground electrode 4,
It has been sprayed. In any case, it is unavoidable that material defects such as holes and voids such as pinholes are generated inside and outside the dielectric body 2, and in the ceramic raw material itself and its constituent components and their kneading, molding and firing steps. It is unavoidable to mix impurities and gas components, and contains a considerable amount of impurities.

【0015】[0015]

【発明が解決しようとする課題】無声放電状態において
は、数10μm以下の微小ピンホールでもその近傍で
は、異常放電やボイド放電(誘電体内の微小空洞内で発
生する放電)が発生し、誘電体2の劣化や損壊を生じ
る。また、高濃度化による酸化力の強い高濃度オゾンに
よる侵蝕、更に生成性能の向上に伴う高密度放電により
スパッタリング現象が増加し、セラミックス(誘電体
2)の表面が削られると同時に有害となるボイド放電も
加速される。
In the silent discharge state, an abnormal discharge or a void discharge (a discharge generated in a minute cavity in a dielectric body) is generated in the vicinity of a pinhole having a size of several tens of μm or less. 2. Deterioration or damage occurs. In addition, erosion by high-concentration ozone having strong oxidizing power due to high concentration, and sputtering phenomenon due to high-density discharge accompanying improvement in generation performance, the surface of ceramics (dielectric 2) is scraped, and at the same time harmful The discharge is also accelerated.

【0016】これにより誘電体2の寿命を短くし、生成
性能の低下を引き起こす。また、誘電体2自体が侵蝕、
削られることによりセラミックスに含まれる有害な構成
成分、不純物、有害ガス等の成分も発生し、反応生成物
(オゾンガス)を汚染する。この対策として誘電体2
(セラミックス)の表面に、下記の,の処理を施し
たものがある。
As a result, the life of the dielectric 2 is shortened and the production performance is deteriorated. In addition, the dielectric 2 itself is eroded,
By the scraping, harmful constituent components, impurities, harmful gas and the like contained in the ceramics are also generated and pollute reaction products (ozone gas). As a countermeasure against this, dielectric 2
Some of the (ceramics) surfaces have been subjected to the following treatments.

【0017】流動性の良い絶縁性上薬を塗布焼成し、
表面を連通した材料欠陥を埋め誘電体強度を高め、異常
放電の発生を抑制する。 スパッタリング耐性が強い純度の高いアルミナ(Al
23)や石英(SiO2)をCVD、スパッタリング、
イオンプレーティング等の手法を用いて極薄い被膜を形
成する。
[0017] An insulating superior drug having good fluidity is applied and baked,
It fills the material defects communicating with the surface to increase the dielectric strength and suppress the occurrence of abnormal discharge. Highly pure alumina (Al with high sputtering resistance)
2 O 3 ) and quartz (SiO 2 ) by CVD, sputtering,
An ultra-thin film is formed using a technique such as ion plating.

【0018】しかしながら、上記においては、塗布膜
を厚くでき材料欠陥を補い、異常放電発生の抑制には非
常に効果的であるが、塗布焼成膜の不純物を除く事は避
けがたく、放電によるスパッタリング現象等により表面
が荒れるため、高純度の反応生成物(オゾンガス等)を
必要とする場合はその不純物で汚染を引き起こす原因に
なる。
However, in the above, although it is very effective to thicken the coating film to compensate for material defects and suppress the occurrence of abnormal discharge, it is unavoidable to remove impurities from the coating firing film, and sputtering by discharge is inevitable. Since the surface becomes rough due to a phenomenon or the like, when a high-purity reaction product (ozone gas or the like) is required, the impurities cause contamination.

【0019】また、上記においては、純度を高くし無
欠陥とするためには、被覆形成される膜が数μm程度の
極薄い膜しか形成できず、この場合は数十〜百数十時間
で被膜が剥離損傷を生じ、被膜の作用をなさなかった。
また、CVD、スパッタリング、イオンプレーティング
等の手法は工程数も多く被膜を形成するのに多くの時間
を要し、又費用も高くなる等の問題があった。
Further, in the above, in order to increase the purity and make the film defect-free, the film to be formed can be formed only as an extremely thin film of about several μm. In this case, it takes several tens to hundreds of tens hours. The coating caused peeling damage and did not function.
Further, the methods such as CVD, sputtering, and ion plating have a number of steps, and it takes a lot of time to form a film, and the cost is high.

【0020】なお、図1の放電反応装置は2枚の誘電体
2を両電極に配置しているため厚さtが2倍となる。こ
のため誘電体2の静電容量は半分となり投入電力密度を
容易に上げることが難しくなる。従って、小型で高性能
の放電反応装置は望めない。しかしながら、図1の放電
反応装置は両金属電極の放電空間に接している表面が誘
電体2で覆われているため、金属電極が腐食性の反応に
曝される放電反応装置においては利用できる。
In the discharge reaction device of FIG. 1, since the two dielectrics 2 are arranged on both electrodes, the thickness t is doubled. For this reason, the capacitance of the dielectric 2 becomes half, and it becomes difficult to easily increase the input power density. Therefore, a compact and high-performance discharge reactor cannot be expected. However, the discharge reactor of FIG. 1 can be used in a discharge reactor in which the metal electrodes are exposed to a corrosive reaction because the surfaces of both metal electrodes in contact with the discharge space are covered with the dielectric 2.

【0021】また、特に近年、オゾン発生装置の性能向
上に伴い、オゾンの半導体製造プロセスへの利用が広ま
りつつあるが、長寿命で信頼性があり、高濃度で不純物
を含まないクリーンなオゾンが得られるオゾン発生装置
の要望が高まっている。
Further, particularly in recent years, as the performance of ozone generators has been improved, the use of ozone in semiconductor manufacturing processes has become widespread. However, clean ozone that has a long life, is reliable, and has a high concentration and does not contain impurities has been developed. The demand for the obtained ozone generator is increasing.

【0022】半導体製造プロセスにおいては特にアルカ
リ金属やアルカリ土類金属や重金属による汚染を嫌う。
しかしながら、オゾン発生装置に使用される誘電体材料
には比較的多くのアルカリ金属やアルカリ土類金属(例
えばNa,K,Mg)や重金属(例えばFe,Cu,C
r,Ni)を含んでいる。それゆえ誘電体の消耗により
発生するオゾンガスが汚染され、使用するのに適しない
ものとなる。
In the semiconductor manufacturing process, contamination by alkali metals, alkaline earth metals and heavy metals is especially disliked.
However, the dielectric materials used in the ozone generator include relatively large amounts of alkali metals and alkaline earth metals (eg, Na, K, Mg) and heavy metals (eg, Fe, Cu, C).
r, Ni). Therefore, ozone gas generated due to the consumption of the dielectric is contaminated and becomes unsuitable for use.

【0023】アルミニウムは不純物としてはアルカリ金
属やアルカリ土類金属に比較して、半導体製造プロセス
において、比較的問題とならないが、発生するオゾンガ
ス中のアルミニウムの量はアルミニウムを基材とする電
極の侵蝕を観測のため分析している。この分析の結果、
検出されるアルミニウムの量が少なければ、アルミニウ
ム電極及びその表面の陽極酸化被膜を高純度のアルミニ
ウム材及びその陽極酸化材で構成することにより、オゾ
ンガス中に含まれる不純物(アルミニウム材中に含まれ
ている不純物)は更に少なくなり、該不純物による汚染
は問題にならない。
Although aluminum is relatively less problematic in the semiconductor manufacturing process as an impurity as compared with alkali metals and alkaline earth metals, the amount of aluminum in the ozone gas generated corrodes the electrodes based on aluminum. Is being analyzed for observation. As a result of this analysis,
If the amount of aluminum detected is small, the impurities contained in the ozone gas (contained in the aluminum material) can be obtained by configuring the aluminum electrode and the anodized film on the surface of the aluminum material and the anodized material of high purity. Impurities) are further reduced, and contamination by the impurities is not a problem.

【0024】本発明は寿命が長く、検出されるNa,
K,Mg,Fe,Cu,Cr及びNi等がppbオーダ
以下のクリーンなオゾンが生成できる放電反応装置を提
供することを目的とする。
The present invention has a long life and is capable of detecting Na,
An object of the present invention is to provide a discharge reactor capable of producing clean ozone in which K, Mg, Fe, Cu, Cr, Ni, etc. are in the order of ppb or less.

【0025】また、本発明は寿命が長く且つ集積度が6
4Mビット又はそれ以上の256Mビットの半導体製造
プロセスに使用するクリーンなオゾン、即ち検出される
Na,K,Mg,Fe,Cu,Cr及びNi等がppt
以下のオゾンが生成できる放電反応装置を提供すること
を目的とする。
Further, the present invention has a long life and an integration degree of 6
Clean ozone used in the semiconductor manufacturing process of 4M bits or more of 256M bits, that is, detected Na, K, Mg, Fe, Cu, Cr, Ni, etc. is ppt.
An object of the present invention is to provide a discharge reaction device capable of producing the following ozone.

【0026】[0026]

【課題を解決するための手段】上記課題を解決するため
本発明は、高圧電極と接地電極の間に誘電体を介在さ
せ、該誘電体と高圧電極及び/又は接地電極の間に無声
放電及び/又は沿面放電を発生させ、該放電空間内で、
該放電空間内を通過又は該放電空間内に保有する物質を
反応させる放電反応装置において、誘電体材料に99.
99重量%以上の高純度に精製製造された石英ガラス
(SiO2)を使用したことを特徴とする。
In order to solve the above problems, the present invention provides a dielectric between a high voltage electrode and a ground electrode, and a silent discharge between the dielectric and the high voltage electrode and / or the ground electrode. / Or generate a creeping discharge, in the discharge space,
In a discharge reaction device for reacting a substance passing through the discharge space or held in the discharge space, the dielectric material is 99.
A feature is that quartz glass (SiO 2 ) refined and manufactured to a high purity of 99% by weight or more is used.

【0027】高圧電極と接地電極の間に誘電体を介在さ
せ、該誘電体と高圧電極及び/又は接地電極の間に無声
放電及び/又は沿面放電を発生させ、該放電空間内で、
該放電空間内を通過又は該放電空間内に保有する物質を
反応させる放電反応装置において、誘電体材料に高純度
に精製された結晶化したアルミナである結晶サファイア
を使用したことを特徴とする。
A dielectric is interposed between the high voltage electrode and the ground electrode, and silent discharge and / or creeping discharge is generated between the dielectric and the high voltage electrode and / or the ground electrode, and in the discharge space,
In a discharge reaction device for reacting a substance passing through the discharge space or holding a substance held in the discharge space, crystalline sapphire which is highly purified crystallized alumina is used as a dielectric material.

【0028】高圧電極と接地電極の間に誘電体を介在さ
せ、該誘電体と前記高圧電極及び/又は接地電極の間に
無声放電及び/又は沿面放電を発生させ、該放電空間内
で、該放電空間内を通過又は該放電空間内に保有する物
質を反応させる放電反応装置において、誘電体材料に9
9.7重量%以上の高純度に精製された酸化アルミニウ
ムを焼結してなる高純度アルミナセラミックスを使用し
たことを特徴とする。
A dielectric is interposed between the high-voltage electrode and the ground electrode, and a silent discharge and / or a creeping discharge is generated between the dielectric and the high-voltage electrode and / or the ground electrode, and in the discharge space, In a discharge reaction device for reacting a substance passing through the discharge space or held in the discharge space, a dielectric material is used.
A high-purity alumina ceramic obtained by sintering aluminum oxide purified to a high purity of 9.7% by weight or more is used.

【0029】[0029]

【作用】本発明によれば、放電反応装置の誘電体材料に
不純物を全く含まないか或るいは極力減少させた高純度
の石英ガラス(SiO2)又は結晶サファイア又は焼成
した高純度アルミナセラミックス等を用いるので、後に
詳述するように高濃度で安定したオゾン等の反応生成物
が得られる。
According to the present invention, high purity quartz glass (SiO 2 ) or crystalline sapphire or calcined high purity alumina ceramics, in which the dielectric material of the discharge reactor contains no impurities or the impurities are reduced as much as possible, etc. As described in detail later, a stable reaction product such as ozone can be obtained at a high concentration as will be described later.

【0030】[0030]

【実施例】以下、本発明の実施例を説明する。 〔実施例1〕本実施例の放電反応装置の構造は、図1乃
至図5に示す放電反応装置と同一であるのでその説明は
省略する。接地電極4はアルミニウム材(A5052p
JIS、純度95.75〜96.55wt%)を用
い、その放電空間1内に露出する表面に陽極酸化被膜形
成している。そして高圧電極3には誘電体2の放電空間
1に露出する反対側の表面に固着した厚さ約10μmの
Ag膜をメタライズにより形成しこれを高圧電極3とし
て用いている。
EXAMPLES Examples of the present invention will be described below. [Embodiment 1] The structure of the discharge reaction device of this embodiment is the same as that of the discharge reaction device shown in FIGS. The ground electrode 4 is made of an aluminum material (A5052p
JIS, purity 95.75 to 96.55 wt%) is used to form an anodized film on the surface exposed in the discharge space 1. On the high voltage electrode 3, an Ag film having a thickness of about 10 μm adhered to the opposite surface of the dielectric 2 exposed in the discharge space 1 is formed by metallization, and this is used as the high voltage electrode 3.

【0031】誘電体2として、高純度の無水珪酸を高温
で溶融して製造した厚さ0.65mmの高純度の石英ガ
ラス(SiO2)を用いた。なお、該石英ガラスの厚さ
は通常0.1〜1mmの厚さが考えられるが、加工、強
度等の問題等を考慮すると0.5mm以上、最適値は
0.6〜0.7mmにするのが良い。この石英ガラス純
度は99.99%以上で特に半導体製造プロセスで有害
なアルカリ金属やアルカリ土類金属及び重金属の含有量
を極めて少なくしており、本実施例で用いた石英ガラス
の内2件について不純物の分析結果例を下記に示す。
As the dielectric 2, a high-purity silica glass (SiO 2 ) having a thickness of 0.65 mm produced by melting high-purity silicic acid anhydride at a high temperature was used. The thickness of the quartz glass is usually considered to be 0.1 to 1 mm, but considering the problems such as processing and strength, it is 0.5 mm or more, and the optimum value is 0.6 to 0.7 mm. Is good. The silica glass has a purity of 99.99% or more, and the contents of alkali metals, alkaline earth metals, and heavy metals, which are harmful in the semiconductor manufacturing process, are extremely small. Two of the silica glasses used in this example are An example of the analysis result of impurities is shown below.

【0032】例1 Al:8.00ppm Fe:0.40ppm Na:0.80ppm K :0.80ppm Ca:0.02ppm F :0.30ppm 例2 Al:0.10ppm Fe:0.05ppm Na:0.05ppm K :0.05ppm Ca:0.01ppm以下 F :0.01ppm以下Example 1 Al: 8.00 ppm Fe: 0.40 ppm Na: 0.80 ppm K: 0.80 ppm Ca: 0.02 ppm F: 0.30 ppm Example 2 Al: 0.10 ppm Fe: 0.05 ppm Na: 0 0.05 ppm K: 0.05 ppm Ca: 0.01 ppm or less F: 0.01 ppm or less

【0033】上記例2のものは超高純度となっている。
上記例1,2の石英ガラスを誘電体2に用いて、そして
誘電体2におよそ10KW/m2と高密度の無声放電を
させ、原料酸素を放電空間1内に供給した。その結果、
上記例1及び例2とも10vol%以上の濃度のオゾン
が安定して生成された。この生成されたオゾンガスを主
にアルカリ金属やアルカリ土類金属や重金属であるN
a,K,Mg,Fe,Cu,Cr,NiとAlの各元素
について原子吸光分析を行ったところAlを除いてpp
tオーダでは検出限界以下で検出できない小さい値とな
った。Alの分析を同時に行ったのは接地電極4の材質
の影響をみるためである。
The above example 2 has an ultrahigh purity.
The quartz glass of Examples 1 and 2 above was used for the dielectric 2, and the dielectric 2 was subjected to a silent discharge with a high density of about 10 KW / m 2, and the raw material oxygen was supplied into the discharge space 1. as a result,
In each of Examples 1 and 2, ozone having a concentration of 10 vol% or more was stably generated. The generated ozone gas is mainly N, which is an alkali metal, an alkaline earth metal or a heavy metal.
Atomic absorption spectrophotometry was performed on each element of a, K, Mg, Fe, Cu, Cr, Ni and Al.
On the order of t, the value was too small to be detected below the detection limit. The reason why Al was analyzed at the same time was to see the influence of the material of the ground electrode 4.

【0034】Alが数十pptのオーダで検出された
が、これはアルミニウムが接地電極4側から主に発生し
たものと想像される。次に、数百時間連続運転後、放電
空間1を開放して誘電体2の表面を観察したところ接地
電極4の上の土手状突起4−1の先端に相対する誘電体
2の上表面上の位置に極僅かに凹みが観察されたが、表
面粗さ計で測定しても検出できず、問題にならない量と
推測できる。この凹みができた原因は石英ガラスの硬度
がモースで6と若干低いため放電により形成されたもの
と推測できる。放電空間1内の各露出面には、全く汚れ
が見つからなかった。
Although Al was detected in the order of several tens of ppt, it is supposed that aluminum was mainly generated from the ground electrode 4 side. Next, after continuous operation for several hundred hours, the discharge space 1 was opened and the surface of the dielectric 2 was observed. As a result, on the upper surface of the dielectric 2 facing the tip of the bank-shaped protrusion 4-1 on the ground electrode 4. Although a slight dent was observed at the position of, it could not be detected even if measured with a surface roughness meter, and it can be inferred that the amount is not a problem. It can be presumed that the cause of this dent was formed by discharge because the hardness of the quartz glass was slightly low at 6 Mohs. No dirt was found on each exposed surface in the discharge space 1.

【0035】また、運転中の放電波形を観察しても全く
異常がなく上記の通りの放電空間1の開放状態の観察に
おいても異常放電の痕跡は全く見られなかった。このこ
とは誘電体2が石英ガラスからできており、アモルファ
ス状態のためピンホールとなる空隙がなく欠陥もなかっ
たためである。なお、他の構造の放電反応装置、即ち図
1,2,3,5においても、略同じ結果が得られる。
Further, when the discharge waveform during operation was observed, there was no abnormality at all, and no trace of abnormal discharge was observed in the observation of the open state of the discharge space 1 as described above. This is because the dielectric 2 is made of quartz glass, and because it is in an amorphous state, there are no voids that serve as pinholes and there are no defects. It should be noted that substantially the same result can be obtained also in the discharge reactor having another structure, that is, in FIGS.

【0036】〔実施例2〕上記構成の放電反応装置にお
いて、高圧電極3と接地電極4をつなぎ替え(即ち、高
圧電極3を接地し高圧電極3と接地電極4の間に高電交
流電源7を接続)て、誘電体と接地電極4の間で上記と
同様の無声放電を発生させ、放電空間1内に酸素原料を
供給した場合も、発生したオゾンガスの純度と濃度は上
記実施例1と同一であった。
[Embodiment 2] In the discharge reactor having the above structure, the high-voltage electrode 3 and the ground electrode 4 are reconnected (that is, the high-voltage electrode 3 is grounded, and the high-voltage AC power supply 7 is placed between the high-voltage electrode 3 and the ground electrode 4). Connection) to generate a silent discharge similar to the above between the dielectric and the ground electrode 4 and supply an oxygen raw material into the discharge space 1, the purity and concentration of the generated ozone gas are the same as those in the first embodiment. It was the same.

【0037】〔実施例3〕本実施例の放電反応装置の構
造は、図1乃至図5に示す放電反応装置と同一であるの
でその説明は省略する。本実施例では接地電極4はアル
ミニウム材(A5052p JIS、純度95.75〜
96.55wt%)を用い、その放電空間1内に露出す
る表面に陽極酸化被膜形成している。そして高圧電極3
には誘電体2の放電空間1に露出する反対側の表面に固
着した厚さ約10μmのAg膜をメタライズにより形成
しこれを高圧電極3として用いている。そして厚さ0.
65mmの高純度の単結晶サファイアを誘電体2として
使用した。
[Embodiment 3] Since the structure of the discharge reactor of this embodiment is the same as that of the discharge reactor shown in FIGS. 1 to 5, its description is omitted. In this embodiment, the ground electrode 4 is made of an aluminum material (A5052p JIS, purity 95.75-
96.55 wt%), and an anodic oxide film is formed on the surface exposed in the discharge space 1. And high voltage electrode 3
In this case, an Ag film having a thickness of about 10 μm adhered to the opposite surface of the dielectric 2 exposed in the discharge space 1 is formed by metallization and is used as the high voltage electrode 3. And thickness 0.
A 65 mm high-purity single crystal sapphire was used as the dielectric 2.

【0038】なお、該単結晶サファイアの厚さは通常
0.1〜1mmの厚さが考えられるが、加工等の問題等
を考慮すると0.5mm以上、最適値は0.6〜0.7
mmにするのが良い。純度は99.999%以上の単結
晶サファイアで超高純度となっている。本実施例におい
て、上記石英ガラスに替えて高純度の単結晶サファイア
を使用した目的は、誘電率εが石英ガラスがおよそ3.
6に対して単結晶サファイアが9以上と倍以上であり、
更に高密度の無声放電をさせることが可能で倍以上の発
生性能を得ることができるためである。同時に硬度もモ
ースで9と(ちなみにダイヤモンドは10)非常に硬
く、高密度放電にも充分耐え長寿命が図れるからであ
る。
The thickness of the single crystal sapphire is usually considered to be 0.1 to 1 mm, but considering the problems such as processing, it is 0.5 mm or more, and the optimum value is 0.6 to 0.7.
It is good to set to mm. Single crystal sapphire with a purity of 99.999% or higher has an ultrahigh purity. In the present embodiment, the purpose of using high-purity single crystal sapphire instead of the quartz glass is that the quartz glass having a dielectric constant ε is about 3.
Single crystal sapphire is more than 9 times as many as 6 times,
This is because it is possible to generate a high-density silent discharge and obtain a generation performance more than double. At the same time, the hardness is also very high, 9 at the Mohs (by the way, diamond is 10), and it can withstand high-density discharge and has a long life.

【0039】上記超高純度の単結晶サファイアを誘電体
2とし、図4に示す構造の放電反応装置において、およ
そ15〜20KW/m2の高密度の放電をさせたところ
10vol%以上の濃度のオゾンが上記実施例1の2〜
2.5倍の発生量で安定して得られた。生成されたオゾ
ンガスを実施例1と同様にNa,K,Mg,Fe,C
u,Cr,NiとAlの各元素について原子吸光分析を
行ったところAlを除いてpptオーダでは検出限界以
下で検出できない小さい値となった。また、数百時間連
続運転を行なっても放電波形には何ら異常もなく、その
後放電空間1を開放して観察したが全く異常は見られ
ず、また放電空間1内に露出した部分にも全く汚れが観
察できなかった。なお、他の構造の放電反応装置、即ち
図1,2,3,5においても、略同じ結果が得られる。
When the above-mentioned ultra-high-purity single crystal sapphire was used as the dielectric 2 and a high-density discharge of about 15 to 20 KW / m 2 was performed in a discharge reactor having the structure shown in FIG. 4, a concentration of 10 vol% or more was obtained. Ozone is 2 to in the above-mentioned Example 1.
It was stably obtained with a generation amount of 2.5 times. The generated ozone gas is treated with Na, K, Mg, Fe, C in the same manner as in Example 1.
When atomic absorption spectrometry was carried out for each element of u, Cr, Ni and Al, it was a small value that could not be detected below the detection limit by ppt order except Al. In addition, there was no abnormality in the discharge waveform even after continuous operation for several hundred hours. After that, the discharge space 1 was opened and observed, but no abnormality was observed, and no part of the exposed portion in the discharge space 1 was observed. No dirt could be observed. It should be noted that substantially the same result can be obtained also in the discharge reactor having another structure, that is, in FIGS.

【0040】〔実施例4〕上記構成の放電反応装置にお
いて、高圧電極3と接地電極4をつなぎ替えて、誘電体
と接地電極4の間で上記と同様の無声放電を発生させ、
放電空間1内に酸素原料を供給した場合も、発生したオ
ゾンガスの純度と濃度は上記実施例3と同一であった。
[Embodiment 4] In the discharge reactor having the above structure, the high voltage electrode 3 and the ground electrode 4 are reconnected to generate the same silent discharge as described above between the dielectric and the ground electrode 4.
Even when the oxygen raw material was supplied into the discharge space 1, the purity and concentration of the ozone gas generated were the same as in Example 3 above.

【0041】〔実施例5〕本実施例の放電反応装置の構
造は、図1乃至図5に示す放電反応装置と同一であるの
でその説明は省略する。本実施例では接地電極4はアル
ミニウム材(A5052p JIS、純度95.75〜
96.55wt%)を用い、その放電空間1内に露出す
る表面に陽極酸化被膜形成している。そして高圧電極3
には誘電体2の放電空間1に露出する反対側の表面に固
着した厚さ約10μmのAg膜をメタライズにより形成
しこれを高圧電極3として用いている。そして厚さ0.
65mmの高純度に精製され焼成した純度99.7重量
%以上の高純度アルミナセラミックスを誘電体2として
使用し、図4に示す構造の放電反応装置において、およ
そ15〜20KW/m2の高密度の放電、即ち上記実施
例3と全く同じ条件で試験を行った。
[Embodiment 5] Since the structure of the discharge reactor of this embodiment is the same as that of the discharge reactor shown in FIGS. 1 to 5, its description is omitted. In this embodiment, the ground electrode 4 is made of an aluminum material (A5052p JIS, purity 95.75-
96.55 wt%), and an anodic oxide film is formed on the surface exposed in the discharge space 1. And high voltage electrode 3
In this case, an Ag film having a thickness of about 10 μm adhered to the opposite surface of the dielectric 2 exposed in the discharge space 1 is formed by metallization and is used as the high voltage electrode 3. And thickness 0.
The high purity purified calcined purity of 99.7% or more by weight of high-purity alumina ceramics 65mm was used as the dielectric 2, the discharge reaction device having the structure shown in FIG. 4, approximately 15~20KW / m 2 density Test, that is, the same conditions as in Example 3 above.

【0042】その結果、この高純度アルミナセラミック
スは誘電率εはおよそ9.5、硬度もモースでおよそ9
と単結晶サファイアと殆ど同じであるため、実施例3と
全く同じ試験結果が得られた。なお、他の構造の放電反
応装置、即ち図1,2,3,5においても、略同じ結果
が得られる。なお、上記高純度アルミナセラミックスの
厚さは通常0.1〜1mmの厚さが考えられるが、加
工、強度等の問題等を考慮すると0.5mm以上、最適
値は0.6〜0.7mmにするのが良い。
As a result, the high-purity alumina ceramics has a dielectric constant ε of about 9.5 and a hardness of about 9 at Mohs.
Since it is almost the same as that of single crystal sapphire, the same test results as in Example 3 were obtained. It should be noted that substantially the same result can be obtained also in the discharge reactor having another structure, that is, in FIGS. The thickness of the high-purity alumina ceramics is usually considered to be 0.1 to 1 mm, but considering the problems such as processing and strength, the thickness is 0.5 mm or more, and the optimum value is 0.6 to 0.7 mm. It is good to

【0043】〔実施例6〕上記構成の放電反応装置にお
いて、高圧電極3と接地電極4をつなぎ替えて、誘電体
と接地電極4の間で上記と同様の無声放電を発生させ、
放電空間1内に酸素原料を供給した場合も、発生したオ
ゾンガスの純度と濃度は上記実施例5と同一であった。
[Embodiment 6] In the discharge reactor having the above structure, the high-voltage electrode 3 and the ground electrode 4 are reconnected to generate the same silent discharge as described above between the dielectric and the ground electrode 4.
Even when the oxygen source was supplied into the discharge space 1, the purity and concentration of the generated ozone gas were the same as in Example 5 above.

【0044】なお、上記実施例1乃至6では、いずれも
図1乃至図5に示す平板型構造の放電反応装置を例に説
明したが、本発明の放電反応装置はこれに限定されるも
のではなく、勿論円筒型でもよく、また接地電極、高圧
電極の位置を変換してもよい。更に、電極形状、配置等
についても適宜組み合わせてもよい。
In each of Examples 1 to 6 described above, the discharge reactor having the flat plate structure shown in FIGS. 1 to 5 was described as an example, but the discharge reactor of the present invention is not limited to this. Of course, it may be a cylindrical type, and the positions of the ground electrode and the high voltage electrode may be changed. Further, the electrode shape, arrangement, etc. may be appropriately combined.

【0045】[0045]

【発明の効果】以上説明したように本発明によれば下記
のような優れた効果が得られる。 (1)放電反応装置の誘電体材料に不純物を全く含まな
いか或るいは極力減少させた高純度の石英ガラス(Si
2)又は単結晶サファイア又は焼成した高純度アルミ
ナセラミックスを用いるので、高濃度で安定したオゾン
等の反応生成物が得られる。
As described above, according to the present invention, the following excellent effects can be obtained. (1) The dielectric material of the discharge reactor does not contain impurities at all, or has a high purity silica glass (Si) which is reduced as much as possible.
Since O 2 ), single crystal sapphire or fired high-purity alumina ceramics is used, a stable reaction product such as ozone can be obtained at a high concentration.

【0046】(2)また、異物を含まないか或るいは極
めて少ないオゾン等の生成物を得ることができるので、
例えばこの放電反応装置で発生したオゾンガスは半導体
製造プロセスで用いるオゾンガス、即ち検出されるN
a,K,Mg,Fe,Cu,Cr及びNi等がppt以
下のオゾンガスが生成できる。また、異物の発生も殆ど
問題とならないため、放電反応装置の放電空間内の放電
面は常にきれいに保つことができ、誘電体の減量も同様
に少ないため性能も常に当初と同じに安定したものを長
時間に渡り得られる。特に実施例1及び実施例2におい
ては誘電体の材料自体がアモルファス又は結晶化してい
るため、更に信頼性が高く長寿命となる。
(2) Further, since products such as ozone containing no foreign matter or very little can be obtained,
For example, the ozone gas generated in this discharge reactor is the ozone gas used in the semiconductor manufacturing process, that is, the detected N
Ozone gas in which a, K, Mg, Fe, Cu, Cr, Ni and the like are ppt or less can be generated. In addition, since the generation of foreign matter is hardly a problem, the discharge surface in the discharge space of the discharge reactor can be kept clean at all times, and since the amount of dielectric loss is also small, the performance should always be stable as it was initially. It can be obtained for a long time. In particular, in Examples 1 and 2, since the dielectric material itself is amorphous or crystallized, the reliability is higher and the life is longer.

【0047】(3)また、誘電体に誘電体母体をそのま
ま使用できる為、放電反応装置全体の製造工程が簡単に
でき、CVD、スパッタリング、イオンプレーティング
等の難しい工程を経ないので全体として安価に製品を供
給できる。
(3) Further, since the dielectric base material can be used as it is for the dielectric material, the manufacturing process of the entire discharge reaction device can be simplified, and difficult processes such as CVD, sputtering, and ion plating are not performed, so that it is inexpensive as a whole. Can supply the product to.

【図面の簡単な説明】[Brief description of drawings]

【図1】放電反応装置の概略構造例を示す図である。FIG. 1 is a diagram showing a schematic structural example of a discharge reactor.

【図2】放電反応装置の概略構造例を示す図である。FIG. 2 is a diagram showing a schematic structural example of a discharge reactor.

【図3】放電反応装置の概略構造例を示す図である。FIG. 3 is a diagram showing a schematic structural example of a discharge reactor.

【図4】放電反応装置の概略構造例を示す図である。FIG. 4 is a diagram showing a schematic structural example of a discharge reactor.

【図5】放電反応装置の概略構造例を示す図である。FIG. 5 is a diagram showing a schematic structural example of a discharge reactor.

【符号の説明】[Explanation of symbols]

1 放電空間 2 誘電体 3 高圧電極 4 接地電極 5 絶縁体 6 絶縁・シール壁 7 高電圧交流電源 1 Discharge space 2 Dielectric 3 High voltage electrode 4 Grounding electrode 5 Insulator 6 Insulation / seal wall 7 High voltage AC power supply

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 由紀子 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 原田 稔 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yukiko Nishioka 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Ebara Corporation (72) Inventor Minoru Harada 11-1 Haneda-asaka, Ota-ku, Tokyo Inside the EBARA CORPORATION

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧電極と接地電極の間に誘電体を介在
させ、該誘電体と前記高圧電極及び/又は前記接地電極
の間に無声放電及び/又は沿面放電を発生させ、該放電
空間内で、該放電空間内を通過又は該放電空間内に保有
する物質を反応させる放電反応装置において、 前記誘電体材料に99.99重量%以上の高純度に精製
製造された石英ガラス(SiO2)を使用したことを特
徴とする放電反応装置。
1. A dielectric is interposed between a high-voltage electrode and a ground electrode, and a silent discharge and / or a creeping discharge is generated between the dielectric and the high-voltage electrode and / or the ground electrode to generate a discharge space in the discharge space. In a discharge reaction device for reacting a substance passing through the discharge space or a substance held in the discharge space, silica glass (SiO 2 ) refined and manufactured to a high purity of 99.99% by weight or more in the dielectric material. Discharge reactor characterized by using.
【請求項2】 高圧電極と接地電極の間に誘電体を介在
させ、該誘電体と前記高圧電極及び/又は前記接地電極
の間に無声放電及び/又は沿面放電を発生させ、該放電
空間内で、該放電空間内を通過又は該放電空間内に保有
する物質を反応させる放電反応装置において、 前記誘電体材料に高純度に精製された結晶化したアルミ
ナである結晶サファイアを使用したことを特徴とする放
電反応装置。
2. A dielectric is interposed between the high-voltage electrode and the ground electrode, and silent discharge and / or creeping discharge is generated between the dielectric and the high-voltage electrode and / or the ground electrode to generate a discharge space in the discharge space. In the discharge reaction device for reacting a substance passing through the discharge space or a substance held in the discharge space, crystalline sapphire which is crystallized alumina purified to high purity is used as the dielectric material. Discharge reactor.
【請求項3】 高圧電極と接地電極の間に誘電体を介在
させ、該誘電体と前記高圧電極及び/又は前記接地電極
の間に無声放電及び/又は沿面放電を発生させ、該放電
空間内で、該放電空間内を通過又は該放電空間内に保有
する物質を反応させる放電反応装置において、 前記誘電体材料に99.7重量%以上の高純度に精製さ
れた酸化アルミニウムを焼結してなる高純度アルミナセ
ラミックスを使用したことを特徴とする放電反応装置。
3. A dielectric is interposed between the high-voltage electrode and the ground electrode, and silent discharge and / or creeping discharge is generated between the dielectric and the high-voltage electrode and / or the ground electrode to generate a discharge space in the discharge space. Then, in a discharge reaction device for reacting a substance passing through the discharge space or holding a substance held in the discharge space, the dielectric material is sintered with aluminum oxide purified to a high purity of 99.7% by weight or more. Discharge reactor characterized by using the following high-purity alumina ceramics.
JP5120868A 1992-04-23 1993-04-22 Discharge reactor Expired - Lifetime JP2893158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5120868A JP2893158B2 (en) 1992-04-23 1993-04-22 Discharge reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-130171 1992-04-23
JP13017192 1992-04-23
JP5120868A JP2893158B2 (en) 1992-04-23 1993-04-22 Discharge reactor

Publications (2)

Publication Number Publication Date
JPH06126156A true JPH06126156A (en) 1994-05-10
JP2893158B2 JP2893158B2 (en) 1999-05-17

Family

ID=26458369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5120868A Expired - Lifetime JP2893158B2 (en) 1992-04-23 1993-04-22 Discharge reactor

Country Status (1)

Country Link
JP (1) JP2893158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029705A (en) * 2008-09-08 2009-02-12 Kyocera Corp Electrode member for discharge and ozonizer using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167059A (en) * 1984-09-10 1986-04-07 Sharp Corp Corona discharging device
JPS6291406A (en) * 1985-10-17 1987-04-25 Nippon Ozon Kk Ozonizer
JPH01144560A (en) * 1987-10-23 1989-06-06 Asea Brown Boveri Ag High output emitter
JPH02284396A (en) * 1989-04-25 1990-11-21 Senichi Masuda Electricity eliminating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167059A (en) * 1984-09-10 1986-04-07 Sharp Corp Corona discharging device
JPS6291406A (en) * 1985-10-17 1987-04-25 Nippon Ozon Kk Ozonizer
JPH01144560A (en) * 1987-10-23 1989-06-06 Asea Brown Boveri Ag High output emitter
JPH02284396A (en) * 1989-04-25 1990-11-21 Senichi Masuda Electricity eliminating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029705A (en) * 2008-09-08 2009-02-12 Kyocera Corp Electrode member for discharge and ozonizer using the same

Also Published As

Publication number Publication date
JP2893158B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5549874A (en) Discharge reactor
KR100368200B1 (en) Electrode for plasma generation, plasma treatment apparatus using the electrode, and plasma treatment with the apparatus
KR100268052B1 (en) Electrostatic chuck member and a method of producing the same
TW585934B (en) Surface-treated shower head for use in a substrate processing chamber
KR20040048272A (en) Apparatus for treating the surface of a substrate with atmospheric pressure plasma
US7648582B2 (en) Cleaning of electrostatic chucks using ultrasonic agitation and applied electric fields
KR20010034878A (en) Plasma-resistant member and plasma treatment apparatus using the same
JP3740254B2 (en) Discharge cell for ozone generator
JP2005191537A (en) Method and apparatus for protection of conductive surfaces in plasma processing reactor
TW201717709A (en) Plasma processing device and shower head
JP4069990B2 (en) Ozone generation method
JPH06126156A (en) Discharge reaction device
JPH10279349A (en) Alumina ceramic excellent in plasma resistance
JP3267742B2 (en) Discharge reactor
JP3116723B2 (en) Quartz glass material for microwave plasma equipment
JP2799541B2 (en) Discharge reactor
JP4093902B2 (en) Ozone generator
CN1230044C (en) Plasma processing apparatus
JPH0322051B2 (en)
JP2005220019A (en) Discharge cell for ozone generator
CN1230045C (en) Plasma processing apparatus
CN218735116U (en) Improved dry etching machine
JP2000129388A (en) Corrosion resisting member
JP2005154262A (en) Discharge generating member
JP2006253599A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 15

EXPY Cancellation because of completion of term