JPH06126128A - Method and apparatus for wet desulfurization of exhaut gas - Google Patents

Method and apparatus for wet desulfurization of exhaut gas

Info

Publication number
JPH06126128A
JPH06126128A JP4274549A JP27454992A JPH06126128A JP H06126128 A JPH06126128 A JP H06126128A JP 4274549 A JP4274549 A JP 4274549A JP 27454992 A JP27454992 A JP 27454992A JP H06126128 A JPH06126128 A JP H06126128A
Authority
JP
Japan
Prior art keywords
exhaust gas
absorption
absorption tower
liquid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4274549A
Other languages
Japanese (ja)
Inventor
Kunikatsu Yoshida
邦勝 吉田
Hiroshi Kaneda
博志 金田
Hiroshi Ishizaka
浩 石坂
Naruhito Takamoto
成仁 高本
Hirobumi Yoshikawa
博文 吉川
Shigeru Nozawa
滋 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP4274549A priority Critical patent/JPH06126128A/en
Publication of JPH06126128A publication Critical patent/JPH06126128A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method and an apparatus for desulfurization of an exhaust gas wherein the exhaust gas flow is equalized in an absorption tower without producing a large increase in pressure loss and desulfurization performance is improved. CONSTITUTION:An exhaust gas flow path being located on the downstream of an exhaust gas inlet 3 provided on the side wall of an absorption tower 1 and on the upstream region of a gas absorption part 10 is divided into a number of small flow paths 26 by means of flow path dividing members 21 and an auxiliary nozzle 24 is provided on each of these small flow paths and an absorption liq. is fed into the auxiliary nozzle 24 through an auxiliary nozzle pipe 22 being branched from an absorption liq. circulation system and a flow adjusting valve 23 and is sprayed. The exhaust gas flow rate passing through each small flow path is adjusted and equalized by adjusting the amt. of spray and the flow rate distribution of the exhaust gas flowing in the absorption part 10 is equalized. It is possible thereby to prevent the exhaust gas flow from being biased in the absorption part 10 in the absorption tower without increasing pressure loss caused by passing of the exhaust gas and to improve desulfurization performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は湿式排ガス脱硫方法およ
び装置に係り、特に低い圧力損失で排ガスの偏流を防ぐ
ことができるガス吸収塔を備えた湿式排ガス脱硫方法お
よび装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet exhaust gas desulfurization method and apparatus, and more particularly to a wet exhaust gas desulfurization method and apparatus equipped with a gas absorption tower capable of preventing uneven flow of exhaust gas with low pressure loss.

【0002】[0002]

【従来の技術】ボイラ、加熱炉等の硫黄分を含む燃料を
燃焼させる装置から排出される排ガスには有害な硫黄酸
化物が含まれている。現在、排ガス中の硫黄酸化物を除
去する一般的な装置としては、湿式排ガス脱硫装置があ
る。従来の湿式排ガス脱硫装置の例を図10に示す。ガ
ス吸収塔1は、その内部にガス吸収部10を擁し、排ガ
ス入口3から流入した硫黄酸化物を含む排ガス16は、
ガス吸収部10を通る間に硫黄酸化物が除去されて、排
ガス出口4から浄化ガス17となって排出される。ガス
吸収塔1の下部は攪拌機15および空気注入管13を擁
した吸収液貯留槽2となっており、石灰石や消石灰等の
吸収剤と吸収生成物である石膏や亜硫酸カルシュウム等
との混合物からなるスラリー状の吸収液12が貯留され
ている。吸収液12は、吸収液抜き出し管5、ポンプ
6、ノズル配管34、ノズル35等からなる吸収液循環
系統によりガス吸収部10に導かれ、ノズル35から噴
霧されて、液滴11として落下する間に排ガス16中の
硫黄酸化物を吸収除去する。吸収液貯留槽2内には、吸
収生成物である亜硫酸カルシュウムを石膏に変えるため
に、酸化剤として、空気を空気注入管13から吹き込ん
でいる。また、吸収液12の一部は循環系統から脱水ラ
イン9へ送られ、石膏が分離される。また、吸収液貯留
槽内の空気注入管13の空気吹込口近傍に攪拌機15が
設けられている。
2. Description of the Related Art Exhaust gas discharged from a device for burning a fuel containing sulfur such as a boiler or a heating furnace contains harmful sulfur oxides. At present, as a general apparatus for removing sulfur oxides in exhaust gas, there is a wet exhaust gas desulfurization apparatus. An example of a conventional wet exhaust gas desulfurization apparatus is shown in FIG. The gas absorption tower 1 has a gas absorption section 10 therein, and the exhaust gas 16 containing the sulfur oxides flowing from the exhaust gas inlet 3 is
Sulfur oxides are removed while passing through the gas absorption unit 10, and the purified gas 17 is discharged from the exhaust gas outlet 4. The lower part of the gas absorption tower 1 is an absorption liquid storage tank 2 having a stirrer 15 and an air injection pipe 13, and is made of a mixture of an absorbent such as limestone or slaked lime and an absorption product such as gypsum or calcium sulfite. The absorbing liquid 12 in the form of a slurry is stored. While the absorbing liquid 12 is guided to the gas absorbing portion 10 by the absorbing liquid circulation system including the absorbing liquid withdrawing pipe 5, the pump 6, the nozzle pipe 34, the nozzle 35, etc., the absorbing liquid 12 is sprayed from the nozzle 35 and drops as the droplet 11. First, the sulfur oxides in the exhaust gas 16 are absorbed and removed. Air is blown into the absorbent storage tank 2 as an oxidant from an air injection pipe 13 in order to convert calcium sulfite, which is an absorption product, into gypsum. Further, a part of the absorbing liquid 12 is sent from the circulation system to the dehydration line 9 to separate gypsum. Further, a stirrer 15 is provided near the air inlet of the air injection pipe 13 in the absorbent storage tank.

【0003】[0003]

【発明が解決しようとする課題】排ガス入口3は、吸収
液貯留槽2の液面より上部に位置する吸収塔1の側壁に
設けるのが普通である。そのため、排ガス入口3から吸
収塔内ガス吸収部10に至る間に、排ガスはその流動方
向を転じることになり、ガス吸収部10のガス流量分布
は図11および図12に示すように著しく偏ったものに
なる。通常は排ガス入口3に対向する吸収塔壁面側の流
量が多く、排ガス入口側の壁面近傍では逆流を生ずるこ
ともある。排ガス流量と排ガス中の硫黄酸化物濃度に応
じて、吸収液の噴霧流量が決定されるため、上記のよう
な処理ガス流量の偏りは、吸収塔における吸収性能すな
わち脱硫性能の低下、または噴霧流量の増加に伴うポン
プ等の設備費、運転費の増加となって現れる。
The exhaust gas inlet 3 is usually provided on the side wall of the absorption tower 1 located above the liquid surface of the absorbent storage tank 2. Therefore, the exhaust gas changes its flow direction from the exhaust gas inlet 3 to the gas absorption section 10 in the absorption tower, and the gas flow rate distribution of the gas absorption section 10 is significantly biased as shown in FIGS. 11 and 12. It becomes a thing. Normally, the flow rate on the wall surface side of the absorption tower facing the exhaust gas inlet 3 is large, and backflow may occur near the wall surface on the exhaust gas inlet side. Since the spray flow rate of the absorbing liquid is determined according to the exhaust gas flow rate and the sulfur oxide concentration in the exhaust gas, the deviation of the process gas flow rate as described above may be caused by the deterioration of the absorption performance in the absorption tower, that is, the desulfurization performance, or the spray flow rate. This will be accompanied by an increase in equipment costs such as pumps and operating costs associated with the increase in

【0004】かかる事態を防ぐための従来技術として、
図13に示すように、排ガスの平均的な流動方向よりみ
て、排ガス入口3の下流で、かつガス吸収部10の上流
に位置する部分に多孔板20を配置したものがある。し
かしながら、多孔板20により前記のような排ガスの偏
流を防止するためには、多孔板20の開口率を自ずと下
げざるを得ず、必然的に大幅な圧力損失の増加を招くこ
とになる。圧力損失の増加は、設備費、運転費の増加に
つながる。また、ノズル35から噴霧された吸収液12
の一部が多孔板20上に偏って滞留し、排ガスの偏流を
助長することもある。さらに、該滞留場所が不規則に移
動することもあり、排ガス流は不規則な変動を伴なうこ
とになる。このように、従来技術では吸収塔内における
排ガスの偏流を十分防ぐことができない。
As a conventional technique for preventing such a situation,
As shown in FIG. 13, there is one in which a perforated plate 20 is arranged in a portion located downstream of the exhaust gas inlet 3 and upstream of the gas absorption portion 10 when viewed from the average flow direction of the exhaust gas. However, in order to prevent the uneven flow of exhaust gas by the perforated plate 20, the aperture ratio of the perforated plate 20 is inevitably decreased, which inevitably causes a large increase in pressure loss. An increase in pressure loss leads to an increase in equipment cost and operating cost. Further, the absorbing liquid 12 sprayed from the nozzle 35
There is a case in which a part of the gas stays on the perforated plate 20 in an unbalanced manner, which promotes uneven flow of the exhaust gas. Further, the staying place may move irregularly, and the exhaust gas flow will be accompanied by irregular fluctuations. As described above, the conventional technique cannot sufficiently prevent the drift of the exhaust gas in the absorption tower.

【0005】本発明の目的は、圧力損失の大幅な増加を
招くことなく吸収塔内における排ガスの流れを均等化し
て、脱硫性能を向上させることができる湿式排ガス脱硫
方法および装置を提供することにある。
An object of the present invention is to provide a wet exhaust gas desulfurization method and apparatus capable of improving the desulfurization performance by equalizing the flow of exhaust gas in the absorption tower without causing a large increase in pressure loss. is there.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本願の第1の発明は、吸収塔側壁に設けた導入口より排
ガスを導入し、導入された排ガスを吸収塔内吸収部に導
き、これに吸収液を噴霧して気液接触させ排ガス中の硫
黄酸化物を吸収液中に吸収し、処理された排ガスを吸収
塔排出口より排出し、吸収液は貯留槽に回収して、回収
した吸収液を前記吸収部に再循環して噴霧する湿式排ガ
ス脱硫方法において、前記排ガス導入口より下流で、か
つ吸収部より上流域の吸収塔内排ガス通路を分割部材に
より複数個の小流路に分割して排ガスを分流させ、各小
流路内には流体を噴霧して、この噴霧流体流量を調整す
ることにより小流路内排ガス流量を調整することを特徴
とする湿式排ガス脱硫方法に関する。
In order to achieve the above object, a first invention of the present application is to introduce exhaust gas from an inlet provided on a side wall of an absorption tower and guide the introduced exhaust gas to an absorption section in the absorption tower, Absorbing liquid is sprayed on this to bring it into gas-liquid contact to absorb the sulfur oxides in the exhaust gas into the absorbing liquid, and the treated exhaust gas is discharged from the absorption tower discharge port, and the absorbing liquid is collected in a storage tank and collected. In the wet exhaust gas desulfurization method in which the absorbed liquid is recirculated and sprayed to the absorption part, a plurality of small flow paths are formed in the absorption tower exhaust gas passage downstream of the exhaust gas inlet and upstream of the absorption part by a dividing member. The present invention relates to a wet exhaust gas desulfurization method characterized in that the exhaust gas is divided into two parts, the fluid is sprayed in each small channel, and the flow rate of the exhaust gas in the small channel is adjusted by adjusting the flow rate of the sprayed fluid. .

【0007】第2の発明は、排ガス導入口と排出口とを
備え導入口より導入された排ガスに吸収液を噴霧して排
ガス中の硫黄酸化物を吸収除去する吸収部を有する吸収
塔と、前記吸収部で噴霧した吸収液を回収して貯留する
吸収塔内または吸収塔外に設けられた吸収液貯留槽と、
貯留槽内の吸収液を前記吸収部に再循環する吸収液循環
系とを備えた湿式排ガス脱硫装置において、吸収塔内の
排ガス導入口下流で、かつ吸収部上流域に、吸収塔内排
ガス通路を複数の小流路に分割する部材と、分割された
小流路内に流体を噴霧する補助ノズルとを設けたことを
特徴とする湿式排ガス脱硫装置に関する。
A second aspect of the present invention is an absorption tower having an exhaust gas inlet and an exhaust port, which has an absorption section for spraying an absorbing liquid to the exhaust gas introduced through the inlet to absorb and remove sulfur oxides in the exhaust gas. An absorption liquid storage tank provided inside or outside the absorption tower for collecting and storing the absorption liquid sprayed in the absorption section,
In a wet exhaust gas desulfurization apparatus having an absorbent circulation system that recirculates the absorbent in a storage tank to the absorption section, in the absorption tower exhaust gas passage downstream of the exhaust gas introduction port in the absorption tower and upstream of the absorption section. The present invention relates to a wet exhaust gas desulfurization device, characterized in that a member for dividing the fuel cell into a plurality of small channels and an auxiliary nozzle for spraying a fluid are provided in the divided small channels.

【0008】[0008]

【作用】本発明によれば、分割された小流路内を流れる
排ガス流は、図6に示すように、補助ノズル24からガ
ス流に略対向するように噴霧された液滴に引きずられ
て、その速やかな流動が阻害される。補助ノズル24か
ら噴霧された直後の液滴は高速であり、その運動量も大
きいため、排ガスは液滴と同方向に流動せしめられ、補
助ノズル24の近傍に渦流域を生ずるのが普通である。
流動阻害の大きさは噴霧流の運動量すなわち流量、流速
と密接に関係しており、補助ノズル24からの噴霧流量
を変化させることにより、各小流路26を流れる排ガス
の流量を変化させることができる。換言すれば、小流路
内の補助ノズルの噴霧流量を制御することにより、吸収
塔横断面内の排ガス流量分布を均等化でき、偏流を防止
できる。このような作用は、小流路26に補助ノズル2
4を配することによって、初めて確実に起こし得ること
である。小流路26の壁面が、補助ノズル24近傍の渦
流域31を安定に保持する役目を担っており、壁面がな
い場合には隣接する補助ノズル24の渦流どうしが干渉
し合って極めて不安定な流れとなり、偏流防止の機能は
大幅に減じられる。
According to the present invention, the exhaust gas flow flowing in the divided small flow passages is dragged by the liquid droplets sprayed from the auxiliary nozzle 24 so as to substantially face the gas flow, as shown in FIG. , Its rapid flow is hindered. The droplet immediately after being sprayed from the auxiliary nozzle 24 has a high speed and a large momentum, so that the exhaust gas is caused to flow in the same direction as the droplet, and a swirl region is usually generated in the vicinity of the auxiliary nozzle 24.
The magnitude of the flow inhibition is closely related to the momentum of the spray flow, that is, the flow rate and the flow velocity. By changing the spray flow rate from the auxiliary nozzle 24, it is possible to change the flow rate of the exhaust gas flowing through each small flow path 26. it can. In other words, by controlling the spray flow rate of the auxiliary nozzle in the small flow path, the exhaust gas flow rate distribution in the cross section of the absorption tower can be equalized and uneven flow can be prevented. Such an operation is performed by the auxiliary nozzle 2 in the small flow path 26.
It is possible to surely happen by arranging 4. The wall surface of the small flow path 26 has a role of stably holding the vortex flow region 31 near the auxiliary nozzle 24, and when there is no wall surface, the vortex flows of the adjacent auxiliary nozzles 24 interfere with each other and are extremely unstable. It becomes a flow, and the function of preventing drift is greatly reduced.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明になる湿式排ガス脱硫装置を図1〜図4に
示す。本実施例の吸収塔1は竪型で、その内部にガス吸
収部10を擁し、底部は吸収液貯留槽2となっている。
排ガス入口3は吸収液貯留槽2の吸収液液面より上部に
位置するように吸収塔側壁に配されている。ガス吸収部
10の上部には主ノズル8が配され、吸収液抜き出し管
5、ポンプ6、主ノズル配管7等からなる吸収液循環系
から吸収液12が噴霧され、液滴11となってガス吸収
部10を落下する。排ガス出口4は主ノズル8の上部す
なわち排ガスの流れから見て下流に設けられる。排ガス
入口3の下流でガス吸収部10の上流にあたる位置に、
吸収塔流路断面を複数小流路26に分割する流路分割部
材21を配し、該小流路26には補助ノズル24を配す
る。各補助ノズル24には前記吸収液循環系から補助ノ
ズル配管22(複数本)、噴霧液量を調整するための流
量調整弁23を介して吸収液が供給される。小流路26
は、例えば図4に示すように、平板または波板状の流路
分割部材21a、21bを格子状に組んで構成する。小
流路26の排ガス流動方向距離Lは、小流路26の水力
直径(4×小流路断面積÷小流路周長)の約3倍以上と
するのが望ましい。流量調整分23は、複数の補助ノズ
ル24を数ブロックに分け、各ブロックに一個ずつ配す
ればよい。排ガス入口3の下流にて吸収塔流路断面を複
数小流路に分割し、各小流路内にそれぞれ補助ノズル2
4を配置し、補助ノズル24ごとに流量調整弁を設ける
ことも考えられるが、そこまでしなくても、装置設置時
に補助ノズル24の流量間に著しい偏差がないように調
整しておけば、流量調整弁を省略することもできる。
Embodiments of the present invention will be described below with reference to the drawings. A wet exhaust gas desulfurization apparatus according to the present invention is shown in FIGS. The absorption tower 1 of the present embodiment is a vertical type, has a gas absorption part 10 inside thereof, and has a bottom part serving as an absorption liquid storage tank 2.
The exhaust gas inlet 3 is arranged on the side wall of the absorption tower so as to be located above the liquid surface of the absorbing liquid in the absorbing liquid storage tank 2. A main nozzle 8 is arranged above the gas absorbing section 10, and an absorbing liquid 12 is sprayed from an absorbing liquid circulation system including an absorbing liquid withdrawing pipe 5, a pump 6, a main nozzle pipe 7 and the like to form droplets 11 into gas. The absorber 10 is dropped. The exhaust gas outlet 4 is provided above the main nozzle 8, that is, downstream from the flow of the exhaust gas. At a position downstream of the exhaust gas inlet 3 and upstream of the gas absorption unit 10,
A flow path dividing member 21 for dividing the absorption tower flow path cross section into a plurality of small flow paths 26 is arranged, and an auxiliary nozzle 24 is arranged in the small flow path 26. The absorption liquid is supplied to each auxiliary nozzle 24 from the absorption liquid circulation system through auxiliary nozzle pipes 22 (a plurality of lines) and a flow rate adjusting valve 23 for adjusting the amount of spray liquid. Small channel 26
For example, as shown in FIG. 4, it is configured by assembling flat or corrugated flow path dividing members 21a and 21b in a lattice shape. The distance L of the small flow path 26 in the exhaust gas flow direction is preferably about 3 times or more the hydraulic diameter of the small flow path 26 (4 × small flow path cross-sectional area ÷ small flow path perimeter). The flow rate adjustment amount 23 may be obtained by dividing the plurality of auxiliary nozzles 24 into several blocks and disposing one in each block. The cross section of the absorption tower channel is divided into a plurality of small channels downstream of the exhaust gas inlet 3, and the auxiliary nozzles 2 are provided in the respective small channels.
4 may be arranged and a flow rate adjusting valve may be provided for each auxiliary nozzle 24. However, even if it is not so far, if the flow rate of the auxiliary nozzle 24 is adjusted so that there is no significant deviation when installing the device, The flow rate adjusting valve can be omitted.

【0010】本発明はかかる構成であり、以下のように
作用する。排ガス入口3から導入された硫黄酸化物を含
む排ガス流は、流動方向の急激な変化により前述したよ
うに著しく偏流したまま本発明になる補助ノズル24を
擁した小流路26に流入する。各補助ノズル24から
は、吸収液12の液滴が噴霧される。すなわち、排ガス
流量の多い小流路26には多量の液滴を噴霧し、排ガス
流量の少ない小流路26には少量の液滴を噴霧する。小
流路26内を流れる排ガス流は、図6に示すように、液
滴に引きずられて、その速やかな流動が阻害される。流
動阻害の程度は噴霧流の運動量すなわち流量、流速と密
接に関係しており、補助ノズル24からの噴霧流量を流
量調整弁23により変化させて、各小流路26を流れる
排ガスの流量を均等化させる。これにより、ガス吸収部
10に流入する排ガスの断面内流量分布を均等化できる
ので、高い吸収性能すなわち高脱硫率を得ることができ
る。
The present invention has such a structure and operates as follows. The exhaust gas flow containing the sulfur oxides introduced from the exhaust gas inlet 3 flows into the small flow path 26 having the auxiliary nozzle 24 according to the present invention while being significantly biased as described above due to the abrupt change in the flow direction. From each auxiliary nozzle 24, a droplet of the absorbing liquid 12 is sprayed. That is, a large amount of droplets are sprayed on the small flow path 26 with a large exhaust gas flow rate, and a small amount of droplets are sprayed on the small flow path 26 with a small exhaust gas flow rate. As shown in FIG. 6, the exhaust gas flow flowing in the small flow path 26 is dragged by the liquid droplets, and its rapid flow is obstructed. The degree of flow inhibition is closely related to the momentum of the spray flow, that is, the flow rate and the flow velocity, and the flow rate of the spray from the auxiliary nozzle 24 is changed by the flow rate adjusting valve 23 so that the flow rate of the exhaust gas flowing through each small flow path 26 is equalized. Turn into This makes it possible to equalize the cross-sectional flow rate distribution of the exhaust gas flowing into the gas absorption unit 10, so that a high absorption performance, that is, a high desulfurization rate can be obtained.

【0011】なお、補助ノズル24から噴霧する液は吸
収液に限ることはなく、冷却、除塵をかねた水でもよい
が、本実施例のように吸収液を用いれば、ここでも硫黄
酸化物の吸収が起こるため、主ノズル8に供給する吸収
液量の低減や、ガス吸収部10の縮小すなわち吸収塔高
の短縮等を図ることができ、実施例特有の効果をも奏す
るものである。
The liquid sprayed from the auxiliary nozzle 24 is not limited to the absorbing liquid, and may be water that also serves as a cooling and dust removing agent. Since absorption occurs, the amount of absorbing liquid supplied to the main nozzle 8 can be reduced, the gas absorbing portion 10 can be reduced, that is, the height of the absorption tower can be shortened, and the effect peculiar to the embodiment can be achieved.

【0012】小流路26を構成する流路分割部材の配置
は格子状に限られることはなく、図5に示すように、吸
収塔断面の排ガス流量分布の偏りが大きい一方向だけを
分割してもよい。本実施例は構造が簡略化されるため、
設備費の低下につながる。補助ノズル配管群は同一段に
配置する必要はなく、図7に示すように、複数段に分割
してもよい。ここで、分割された一方の段の補助ノズル
配管22aと他方の段の補助ノズル配管22bとが、互
いに略直交するような配置とすれば、流量調整弁23
a、23bによる排ガス流量分布の調整をよりきめ細か
く行なうことができる。
The arrangement of the flow path dividing members forming the small flow paths 26 is not limited to the grid shape, and as shown in FIG. 5, the flow path dividing members are divided only in one direction where the deviation of the exhaust gas flow rate distribution in the cross section of the absorption tower is large. May be. Since the structure of this embodiment is simplified,
This will lead to lower equipment costs. The auxiliary nozzle pipe group does not have to be arranged in the same stage, and may be divided into a plurality of stages as shown in FIG. 7. Here, if the split auxiliary nozzle pipe 22a of one stage and the split auxiliary nozzle pipe 22b of the other stage are arranged so as to be substantially orthogonal to each other, the flow rate adjusting valve 23
The exhaust gas flow rate distribution can be adjusted more finely with a and 23b.

【0013】図8に示すように、平板または波板状の流
路分割部材28aを吸収塔流路断面に櫛状に配し、その
上流または下流に前記流路分割部材28aの配置方向に
略直交するように、流路分割部材28bを櫛状に配し
て、小流路26を構成してもよい。本実施例は、流路分
割部材の組立や補助ノズルの取付加工が容易となる。流
路分割部材は平板状に限られることはなく、図9に示す
ように、複数の筒状部材33を用いて小流路26を構成
することができ、流路分割部材の組立が簡便化される。
なお、上記実施例では吸収液貯留槽を吸収塔内底部に設
置した例を示したが、本発明においては吸収液貯留槽を
吸収塔外に設置することもできる。
As shown in FIG. 8, a flat plate or corrugated flow path dividing member 28a is arranged in a comb shape in the cross section of the absorption tower flow path, and the flow path dividing member 28a is arranged substantially upstream or downstream thereof in the arrangement direction. The small channels 26 may be formed by arranging the channel dividing members 28b in a comb shape so as to be orthogonal to each other. In this embodiment, the assembly of the flow path dividing member and the mounting process of the auxiliary nozzle are facilitated. The flow path dividing member is not limited to a flat plate shape, and as shown in FIG. 9, the small flow path 26 can be configured by using a plurality of tubular members 33, which simplifies the assembly of the flow path dividing member. To be done.
In addition, although the example in which the absorbent storage tank is installed at the bottom of the absorption tower is shown in the above-mentioned embodiment, the absorbent storage tank may be installed outside the absorption tower in the present invention.

【0014】[0014]

【発明の効果】本発明は、多孔板等の構造物による圧力
降下を利用した偏流防止ではなく、液滴の運動により排
ガスの流れを直接変化させる方法であるため、多孔板等
を用いる方法に比較して、非常に効率よく、すなわち低
い圧力損失で吸収塔内における排ガスの偏流を防ぎ、脱
硫性能の低下を防止できる。
INDUSTRIAL APPLICABILITY The present invention is a method of directly changing the flow of exhaust gas by the movement of droplets, rather than the prevention of uneven flow utilizing pressure drop due to a structure such as a perforated plate. In comparison, it is possible to prevent the exhaust gas from drifting in the absorption tower very efficiently, that is, with a low pressure loss, and prevent the desulfurization performance from decreasing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明になる湿式排ガス脱硫装置の実施例図。FIG. 1 is an embodiment diagram of a wet exhaust gas desulfurization apparatus according to the present invention.

【図2】図1のA−A´断面図。FIG. 2 is a sectional view taken along the line AA ′ of FIG.

【図3】図1のB−B´断面図。FIG. 3 is a sectional view taken along line BB ′ of FIG.

【図4】本発明になる流路分割部材の実施例図。FIG. 4 is a diagram showing an embodiment of a flow path dividing member according to the present invention.

【図5】本発明になる流路分割部材の他の実施例図。FIG. 5 is a diagram of another embodiment of the flow path dividing member according to the present invention.

【図6】本発明における小流路内の排ガスの流れを説明
する図。
FIG. 6 is a diagram illustrating a flow of exhaust gas in a small flow path according to the present invention.

【図7】、[FIG. 7]

【図8】、FIG. 8

【図9】本発明の他の実施例を示す図。FIG. 9 is a diagram showing another embodiment of the present invention.

【図10】従来の湿式排ガス脱硫装置を示す図。FIG. 10 is a diagram showing a conventional wet exhaust gas desulfurization device.

【図11】従来の湿式排ガス脱硫装置吸収塔内の排ガス
の流れを説明する図。
FIG. 11 is a diagram illustrating a flow of exhaust gas in a conventional wet exhaust gas desulfurization apparatus absorption tower.

【図12】図11のC−C´断面の速度分布を示した
図。
FIG. 12 is a diagram showing a velocity distribution in a CC ′ cross section of FIG. 11.

【図13】従来の湿式排ガス脱硫装置の別の例を示す
図。
FIG. 13 is a diagram showing another example of a conventional wet exhaust gas desulfurization device.

【符号の説明】[Explanation of symbols]

1…吸収塔、2…吸収液貯留槽、3…排ガス入口、4…
排ガス出口、5…吸収液抜き出し管、6…ポンプ、7…
主ノズル配管、8…主ノズル、10…ガス吸収部、11
…液滴、12…吸収液、13…空気注入管、14…気
泡、15…攪拌機、16…排ガス、17…浄化ノズル、
21、21a、21b…流路分割部材、22、22a、
22b…補助ノズル配管、23、23a、23b…流量
調整弁、24…補助ノズル、26…小流路。
1 ... Absorption tower, 2 ... Absorption liquid storage tank, 3 ... Exhaust gas inlet, 4 ...
Exhaust gas outlet, 5 ... Absorbing liquid extraction pipe, 6 ... Pump, 7 ...
Main nozzle piping, 8 ... Main nozzle, 10 ... Gas absorption section, 11
... Droplets, 12 ... Absorption liquid, 13 ... Air injection pipe, 14 ... Bubbles, 15 ... Stirrer, 16 ... Exhaust gas, 17 ... Purification nozzle,
21, 21a, 21b ... Flow path dividing members, 22, 22a,
22b ... Auxiliary nozzle piping, 23, 23a, 23b ... Flow control valve, 24 ... Auxiliary nozzle, 26 ... Small flow path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高本 成仁 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 吉川 博文 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigehito Takamoto 3 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Research Institute (72) Hirofumi Yoshikawa 3 36 36 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Stock Company Kure Research Institute (72) Inventor Shigeru Nozawa 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd. Kure Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 吸収塔側壁に設けた導入口より排ガスを
導入し、導入された排ガスを吸収塔内吸収部に導き、こ
れに吸収液を噴霧して気液接触させ排ガス中の硫黄酸化
物を吸収液中に吸収し、処理された排ガスを吸収塔排出
口より排出し、吸収液は貯留槽に回収して、回収した吸
収液を前記吸収部に再循環して噴霧する湿式排ガス脱硫
方法において、前記排ガス導入口より下流で、かつ吸収
部より上流域の吸収塔内排ガス通路を分割部材により複
数個の小流路に分割して排ガスを分流させ、各小流路内
には流体を噴霧して、この噴霧流体流量を調整すること
により小流路内排ガス流量を調整することを特徴とする
湿式排ガス脱硫方法。
1. Sulfur oxides in exhaust gas introduced by introducing exhaust gas from an inlet provided on the side wall of the absorption tower, guiding the introduced exhaust gas to an absorption section in the absorption tower, spraying the absorption liquid on the absorption part, and making gas-liquid contact therewith. In the absorption liquid, the treated exhaust gas is discharged from the absorption tower discharge port, the absorption liquid is collected in a storage tank, and the collected absorption liquid is recirculated to the absorption part and sprayed to obtain a wet exhaust gas desulfurization method. In the downstream of the exhaust gas inlet, and the exhaust gas passage in the absorption tower in the upstream region from the absorption part is divided into a plurality of small channels by a dividing member to divide the exhaust gas, and the fluid is in each small channel. A wet exhaust gas desulfurization method characterized in that the flow rate of exhaust gas in a small flow path is adjusted by spraying and adjusting the flow rate of the sprayed fluid.
【請求項2】 排ガス導入口と排出口とを備え導入口よ
り導入された排ガスに吸収液を噴霧して排ガス中の硫黄
酸化物を吸収除去する吸収部を有する吸収塔と、前記吸
収部で噴霧した吸収液を回収して貯留する吸収塔内また
は吸収塔外に設けられた吸収液貯留槽と、貯留槽内の吸
収液を前記吸収部に再循環する吸収液循環系とを備えた
湿式排ガス脱硫装置において、吸収塔内の排ガス導入口
下流で、かつ吸収部上流域に、吸収塔内排ガス通路を複
数の小流路に分割する部材と、分割された小流路内に流
体を噴霧する補助ノズルとを設けたことを特徴とする湿
式排ガス脱硫装置。
2. An absorption tower having an exhaust gas introduction port and an exhaust port, the absorption tower having an absorption unit for absorbing and removing sulfur oxides in the exhaust gas by spraying an absorption liquid on the exhaust gas introduced from the introduction port, and the absorption unit. A wet type including an absorption liquid storage tank provided inside or outside the absorption tower for collecting and storing the sprayed absorption liquid, and an absorption liquid circulation system for recirculating the absorption liquid in the storage tank to the absorption unit. In the exhaust gas desulfurization device, a member that divides the exhaust gas passage in the absorption tower into a plurality of small flow paths downstream of the exhaust gas introduction port in the absorption tower and upstream of the absorption section, and a fluid is sprayed into the divided small flow paths. A wet exhaust gas desulfurization apparatus, which is provided with an auxiliary nozzle for
JP4274549A 1992-10-13 1992-10-13 Method and apparatus for wet desulfurization of exhaut gas Pending JPH06126128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4274549A JPH06126128A (en) 1992-10-13 1992-10-13 Method and apparatus for wet desulfurization of exhaut gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4274549A JPH06126128A (en) 1992-10-13 1992-10-13 Method and apparatus for wet desulfurization of exhaut gas

Publications (1)

Publication Number Publication Date
JPH06126128A true JPH06126128A (en) 1994-05-10

Family

ID=17543272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4274549A Pending JPH06126128A (en) 1992-10-13 1992-10-13 Method and apparatus for wet desulfurization of exhaut gas

Country Status (1)

Country Link
JP (1) JPH06126128A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177930B2 (en) * 2006-12-21 2012-05-15 Lafarge Process of production and structural element
CN103463961A (en) * 2013-09-09 2013-12-25 武汉钢铁(集团)公司 Airflow uniform distribution type wet-method smoke desulfurization and absorption tower
CN106000061A (en) * 2016-07-11 2016-10-12 浙江浙能嘉华发电有限公司 Limestone slurry supply device for wet desulphurization

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8177930B2 (en) * 2006-12-21 2012-05-15 Lafarge Process of production and structural element
CN103463961A (en) * 2013-09-09 2013-12-25 武汉钢铁(集团)公司 Airflow uniform distribution type wet-method smoke desulfurization and absorption tower
CN103463961B (en) * 2013-09-09 2015-05-06 武汉钢铁(集团)公司 Airflow uniform distribution type wet-method smoke desulfurization and absorption tower
CN106000061A (en) * 2016-07-11 2016-10-12 浙江浙能嘉华发电有限公司 Limestone slurry supply device for wet desulphurization

Similar Documents

Publication Publication Date Title
KR100355506B1 (en) A wet gas processing method and the apparatus using the same
CN100434141C (en) Method and device for separating sulphur dioxide from a gas
JP2009240908A (en) Wet two step flue gas desulfurization apparatus and operation method of wet two step flue gas desulfurization apparatus
CA2446171C (en) Flue gas desulfurization system with a stepped tray
WO2007116714A1 (en) Wet-type exhaust gas desulfurizer
KR100652856B1 (en) Exhaust gas processing device
KR20130001281A (en) Wet flue gas desulfurization device
US5651948A (en) Low pressure drop, turbulent mixing zone dry scrubber
EP0640373B1 (en) Spray tower and method for cooling, moistening and/or purifying gas
US4255168A (en) Turbulent transport contactor and method of operation
JPH06126128A (en) Method and apparatus for wet desulfurization of exhaut gas
SG178748A1 (en) Exhaust gas desulfurizer
JPH1147538A (en) Absorption tower
CN101791518B (en) Denitration system in favor of blowing deposited ash and catalyst arrangement method of denitration system
JPH09206550A (en) Wet stack gas desulfurizer
JP3519498B2 (en) Wet flue gas desulfurization equipment
JP2003103139A (en) Wet process flue gas desulfurizer
JPH07155536A (en) Wet type flue gas desulfurization apparatus
CN108686493B (en) Flue gas dust removal desulfurization tower and dust removal desulfurization process
JPH09141048A (en) Wet flue gas desulfurizing method and device therefor
US20220134272A1 (en) Compact venturi scrubber and method to treat gas streams utilizing the compact venturi scrubber
KR20190090569A (en) Wet flue gas desulfurization apparatus
CN204247064U (en) A kind of smoke absorption tower of gas-liquid bidirectional guide
JPH11290646A (en) Method and device for wet flue gas desulfurization
CN1724120A (en) Flue gas desulfurization absorption tower with gas liquid coupling balanced absorption area and its design process