JPH06125768A - Manifestation of foreign protein by yeast and culture improved in production - Google Patents
Manifestation of foreign protein by yeast and culture improved in productionInfo
- Publication number
- JPH06125768A JPH06125768A JP8043592A JP8043592A JPH06125768A JP H06125768 A JPH06125768 A JP H06125768A JP 8043592 A JP8043592 A JP 8043592A JP 8043592 A JP8043592 A JP 8043592A JP H06125768 A JPH06125768 A JP H06125768A
- Authority
- JP
- Japan
- Prior art keywords
- yeast
- temperature
- culture
- low temperature
- plasmid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明において、栄養培地とはY
PD培地である。本発明は酵母による異種タンパク質の
発現及び生産量増大培養法にかかり、請求項1〜5から
なり、請求項1は温度シフト培養法に関し、請求項2は
低温前培養法に関し、請求項3は請求項1、2の発明の
異質タンパク質を高生産させる宿主の特定に関し、請求
項4は請求項1、2の発明の異種タンパク質を発現及び
生産するプロモーターの特定に関し、請求項5は請求項
1、2の発明の異種タンパク質を発現及び生産する酵母
ベクターの特定に関するもので、従来の培養法に比べ生
産量を数倍高くして酵素産業に貢献するものである。BACKGROUND OF THE INVENTION In the present invention, the nutrient medium is Y
PD medium. The present invention relates to a culture method for increasing expression and production of a heterologous protein by yeast, comprising claims 1 to 5, claim 1 relates to a temperature shift culture method, claim 2 relates to a low temperature preculture method, and claim 3 Claims 1 and 2 relate to the specification of a host that highly produces the heterologous protein, claim 4 relates to the specification of a promoter that expresses and produces the heterologous protein of the inventions 1 and 2, and claim 5 relates to the claim 1. The present invention relates to the identification of a yeast vector that expresses and produces the heterologous protein of the second aspect of the present invention, which contributes to the enzyme industry by increasing the production amount several times as compared with the conventional culture method.
【0002】[0002]
【従来の技術】従来、酵素産業において酵母等の形質転
換株の分泌生産性を向上させるため培地組成の検討等が
行なわれてきた。しかし従来法は培地のスクリーニング
に多大な時間を要し、生産性として僅か数%の向上がみ
られるのが限度であるから、より有効で簡単な培養法が
要求されている。2. Description of the Related Art Conventionally, in the enzyme industry, in order to improve the secretory productivity of transformed strains such as yeast, the medium composition has been studied. However, in the conventional method, it takes a long time to screen the medium and the productivity is limited to only a few percent improvement. Therefore, a more effective and simple culture method is required.
【0003】[0003]
【発明が解決しようとする課題】本発明者らは上記した
情況に鑑み、生産性が数倍向上する簡単な培養法を開発
することを解決する課題として研究した。この解決しよ
うとする課題は本発明の目的でもある。In view of the above situation, the present inventors have studied as a problem to be solved to develop a simple culture method that improves productivity several times. This problem to be solved is also an object of the present invention.
【0004】[0004]
【課題を解決するための手段】まず、本発明者らは構成
酵素のプロモーターをもつ酵母発現ベクター(YEp
型)に麹菌A.oryzaeのα−アミラーゼ(以後タカアミ
ラーゼAという)cDNAと、ヒトリゾチームcDNA
をそれぞれ別々につないだプラスミドを作製し酵母へ形
質転換した。この形質転換株を選択培地で前培養し、そ
の菌体ペレットを非選択培地に移植して低温で振とう培
養し、さらに適温で培養するすることにより、タカアミ
ラーゼA及びヒトリゾチームをともに長時間振とう培養
する従来の培養法よりも生産性が増大することを見出し
た。[Means for Solving the Problems] First, the present inventors have developed a yeast expression vector (YEp having a promoter for a constitutive enzyme).
Type) and the α-amylase (hereinafter referred to as takaamylase A) cDNA of Aspergillus oryzae and human lysozyme cDNA.
Plasmids were separately ligated with each other and transformed into yeast. This transformant is pre-cultured in a selective medium, the cell pellet is transplanted to a non-selective medium, shake-cultured at a low temperature, and further cultured at an appropriate temperature, so that both Taka-amylase A and human lysozyme can be used for a long time. It was found that the productivity is increased as compared with the conventional culture method of shaking culture.
【0005】また、YIp型ベクターにタカアミラーゼ
cDNAを連結したプラスミド、あるいはYCp型ベク
ターにヒトリゾチームcDNAを連結したプラスミドを
酵母に導入し、得られた形質転換株を上述と同様の温度
シフト培養方法で異種タンパク質の分泌生産を行なった
ところ生産量は増大した。構成酵素のプロモーターの支
配下に異種遺伝子をつないだYEp型、YIp型および
YCp型、又は同効型のいずれのプラスミドを形質導入
した株を用いても、従来の培養法より生産性が少なくと
も2倍向上した。Further, a plasmid in which a takapyl amylase cDNA is ligated to a YIp type vector or a plasmid in which a human lysozyme cDNA is ligated to a YCp type vector is introduced into yeast, and the obtained transformant is subjected to the same temperature shift culture method as described above. When the secretory production of a heterologous protein was performed, the production amount increased. Using a strain transduced with any of the YEp type, YIp type and YCp type plasmids in which a heterologous gene is connected under the control of a promoter of a constitutive enzyme, or the equivalent type plasmid, the productivity is at least 2 as compared with the conventional culture method. Doubled.
【0006】本発明は前記の研究結果を背景とするもの
で、請求項1の発明は、前記各形質転換株を選択培地で
十分に生育するまで前培養し、その菌体ペレットを栄養
培地に移植して低温で培養した後、さらに酵母がよく生
育する温度で振とう培養を行なうことを特徴とする温度
シフト培養法に係り、請求項2の発明は前記各形質転換
株を前記の選択培地で低い温度により十分生育するまで
前培養した後、その菌体ペレットを栄養培地に移植し、
前記選択培地以上の温度で振とう培養することを特徴と
する低温前培養法に係り、請求項3の発明は請求項1、
2の発明の異質タンパク質を高生産させる宿主の特定に
係り、請求項4の発は請求項1、2の発明の異種タンパ
ク質を発現及び生産するプロモーターの特定に係り、請
求項5の発明は請求項1、2の発明の異種タンパク質を
発現及び生産する酵母ベクターの特定に係るものであ
る。The present invention is based on the above-mentioned research results. The invention of claim 1 pre-incubates each of the transformed strains until it grows sufficiently in a selective medium, and the bacterial cell pellet is used as a nutrient medium. The present invention according to claim 2 relates to a temperature shift culture method, which comprises performing shaking culture at a temperature at which yeast is well grown after transplanting and culturing at low temperature. After pre-culturing at low temperature until it grows well, transplant the cell pellet into nutrient medium,
The invention according to claim 3 relates to a low temperature pre-culturing method, which comprises shaking culture at a temperature higher than that of the selective medium,
The invention of claim 2 relates to the identification of a host that highly produces a heterologous protein, the claim of claim 4 relates to the identification of a promoter that expresses and produces the heterologous protein of the invention of claims 1 and 2, and the invention of claim 5 claims The present invention relates to the identification of a yeast vector that expresses and produces a heterologous protein of the inventions of items 1 and 2.
【0007】本発明に用いた酵母発現ベクターは2μm
DNAをもつYEp型、染色体へ組込むYIp型及び酵
母セントロメアDNAをもつYCp型、または同効果型
の何れかのタイプである。また異種遺伝子を発現させる
ためのプロモーターは構成的に発現している酵素のアル
コールデヒドロゲナーゼ(ADH1)のプロモーターと
グリセルアルデヒド−3−リン酸デヒドロゲナーゼ(G
AP)のプロモーターである。宿主として酵母サッカロ
マイセス セレビジィエを用いた。The yeast expression vector used in the present invention has a size of 2 μm.
It is either YEp type having DNA, YIp type integrating into chromosome, YCp type having yeast centromere DNA, or the same effect type. The promoter for expressing a heterologous gene includes a promoter for alcohol dehydrogenase (ADH1) , which is a constitutively expressed enzyme, and a glyceraldehyde-3-phosphate dehydrogenase (G
AP) promoter. Yeast Saccharomyces cerevisiae was used as a host.
【0008】[0008]
【作用】本発明は後記の実施例(1)〜(3)について個々
に説明しているように、請求項1、請求項2の発明によ
り、酵母による異質タンパク質の発現及び生産量増大培
養法に貢献し、請求項3〜5の発明は請求項1及び2の
発明の作用を強化する。As described in the following Examples (1) to (3), the present invention provides a method for culturing a heterologous protein expression and production by yeast according to the inventions of Claims 1 and 2. In addition, the inventions of claims 3 to 5 enhance the actions of the inventions of claims 1 and 2.
【0009】[0009]
【実施例】本実施例の選択培地は、プラスミドA〜C、
E〜Fを形質導入した株については、0.67%イーストナ
イトロゲンベース w/o アミノ酸、2%グルコースを
主剤とし、20mg/l ヒスチジン、20mg/l ウラシル、30
mg/l ロイシン、20mg/lアデニン、30mg/l リジンを添
加したものとする。また、プラスミドDを形質導入した
株については、ウラシルの代わりに20mg/l トリプトフ
ァンを添加した。異種タンパク質生産のためのプラスミ
ド作成: プラスミドA〜プラスミドFの作製方法を例示
する。なおこれ等の酵母への形質転換はItoらの方法
(J.Ba-cteriol.,153,163(1983))に準
じた。また生産したタカアミラーゼAについてはAda
chiらの方法(J.Ferme-nt.Technol.,32,43
(1954))でα−アミラーゼ活性をヒトリゾチーム
についてはSuzukiらの方法(Mol.Gen.Genet.,
219,58(1989))で、リゾチーム活性を測定
し、生産したタンパク質量を算出した。[Example] The selective medium of this example was prepared by using plasmids A to C,
For strains transduced with E to F, 0.67% yeast
Itrogen base w / o amino acid, 2% glucose
As the main ingredient, 20 mg / l histidine, 20 mg / l uracil, 30
Add mg / l leucine, 20 mg / l adenine, 30 mg / l lysine
It is assumed to have been added. Also, plasmid D was transduced
For strains, instead of uracil, 20 mg / l tryptophan
The fan was added. Plasma for heterologous protein production
Preparation of plasmids: Examples of plasmid A to plasmid F preparation methods
To do. The transformation of these into yeast is carried out by the method of Ito et al.
(J. Ba-cteriol.,153, 163 (1983))
I started. For the produced Taka-amylase A, Ada
chi's method (J. Ferme-nt.Technol.,32, 43
(1954)).
For the method of Suzuki et al.Mol.Gen.Genet.,
219, 58 (1989)) for measuring lysozyme activity
Then, the amount of protein produced was calculated.
【0010】◎ プラスミドAの作成方法: 2μmDN
A、ADH1プロモーター、CYC1ターミネーターと
選択マーカーとしてTRP1をもつ酵母ベクターpYc
DE−1をEcoRIで消化した後、アルカリフォスファ
ターゼで脱リン酸を行なう。これにタカアミラーゼcD
NAを含む約1.8kbのEcoRI断片を前記プロモー
ターと方向性が一致するように連結し、酵母発現プラス
ミドpYTA−1を作製した。図1はプラスミドAの前
記した作製の模図である。◎ Method for preparing plasmid A: 2 μm DN
A, ADH1 promoter, CYC1 terminator and yeast vector pYc having TRP1 as a selectable marker
DE-1 is digested with Eco RI and then dephosphorylated with alkaline phosphatase. Taka amylase cD
An approximately 1.8 kb Eco RI fragment containing NA was ligated in the same direction as the above promoter to prepare a yeast expression plasmid pYTA-1. FIG. 1 is a schematic diagram of the above-described preparation of plasmid A.
【0011】◎ プラスミドBの作製方法: プラスミ
ドAの作製方法と同様に酵母ベクターpYcDEー1の
EcoRIサイトに、ヒトリゾチームcDNA約0.5kb
のEcoRI断片を連結し、pYHA−1を作製した。
図2はプラスミドBの前記した作製の模図である。◎ Method for preparing plasmid B: Similar to the method for preparing plasmid A, the yeast vector pYcDE-1 was prepared.
Human lysozyme cDNA approximately 0.5 kb at Eco RI site
The Eco RI fragment of was ligated to prepare pYHA-1.
FIG. 2 is a schematic diagram of the above-described preparation of plasmid B.
【0012】◎ プラスミドCの作製方法: TRP1
遺伝子を持つpTRP11をBamHIで消化した後、ア
ルカリフォスファターゼで脱リン酸を行なう。これにp
YTA−1よりBamHIで切り出した約3.4kbの断片
(ADH1プロモーターとタカアミラーゼcDNAを含
む)を連結し、酵母染色体組込み型プラスミドpTAT
−11を作製した。図3はプラスミドCの前記した作製
の模図である。◎ Method for preparing plasmid C: TRP1
After digesting pTRP11 carrying the gene with Bam HI, dephosphorylation is performed with alkaline phosphatase. P to this
Connecting the fragment of about 3.4kb was excised from YTA-1 with Bam HI (including ADH1 promoter and Taka-amylase cDNA), yeast chromosomal integrative plasmid pTAT
-11 was produced. FIG. 3 is a schematic diagram of the above-described preparation of plasmid C.
【0013】◎ プラスミドDの作製方法: CEN
6、ADH1プロモーター、CYC1ターミネーターと
選択マーカーとしてURA3をもつ酵母セントロメアベ
クターpRS316−ACをEcoRIで消化した後、ア
ルカリフォスファターゼで脱リン酸を行なう。これにヒ
トリゾチームcDNAを含む0.5kbのEcoRI断片を
前記プロモーターと方向性が一致するように連結し、酵
母セントロメアプラスミドpCHA−1を作製した。図
4はプラスミドDの前記した作製の模図である。◎ Method for preparing plasmid D: CEN
6. The yeast centromere vector pRS316-AC having ADH1 promoter, CYC1 terminator and URA3 as a selection marker is digested with Eco RI and then dephosphorylated with alkaline phosphatase. A 0.5 kb Eco RI fragment containing human lysozyme cDNA was ligated to the promoter so that the direction thereof was the same as that of the above promoter to prepare yeast centromere plasmid pCHA-1. FIG. 4 is a schematic diagram of the above-described preparation of plasmid D.
【0014】◎ プラスミドEの作製方法: 2μmD
NA、GAPプロモーター、PGKターミネーターと選
択マーカーとしてTRP1をもつ酵母ベクターpG−3
をBamHIで消化した後、平滑末端処理を行なう。こ
れに平滑末端にしたタカアミラーゼcDNAを含む約
1.8kbの断片を前記プロモーターと方向性が一致する
ように連結して、酵母発現プラスミドpYGTAAを作
製した。図5はプラスミドEの前記した作製の模図であ
る。◎ Method for preparing plasmid E: 2 μmD
Yeast vector pG-3 having NA, GAP promoter, PGK terminator and TRP1 as a selectable marker
Is digested with Bam HI and then blunt-ended. A fragment of about 1.8 kb containing the blunt-ended Taka amylase cDNA was ligated to the promoter so that the promoter and the direction thereof were aligned with each other to prepare a yeast expression plasmid pYGTAA. FIG. 5 is a schematic diagram of the above-described preparation of plasmid E.
【0015】◎ プラスミドFの作製方法: プラスミ
ドEの作製法と同様に、酵母ベクターpG−3のBamH
Iを平滑末端化したものに、平滑末端にしたヒトリゾチ
ームcDNA約0.5kbの断片を連結し、pYGHLY
を作製した。図6はプラスミドFの前記した作製の模図
である。◎ Method for constructing plasmid F: Similar to the method for constructing plasmid E, Bam H of yeast vector pG-3
The blunt-ended version of I was ligated to a blunt-ended human lysozyme cDNA fragment of about 0.5 kb to obtain pYGHLY.
Was produced. FIG. 6 is a schematic diagram of the above-described preparation of plasmid F.
【0016】◆ 異種タンパク質を生産させるための酵
母形質転換体の作製 タカアミラーゼA、ヒトリゾチームを分泌生産させる前
記のプラスミドA〜Fを前記Itoらの方法により形質
転換した。すなわち、酵母(YPH250)を10mlの
栄養培地(1%酵母エキス、2%ポリペプトン、2%グ
ルコース)中で30℃で振とう培養し、対数増殖期に遠
心分離により集菌した。TE緩衝液で洗浄後同じ緩衝液
に2x107 セル/mlの濃度で懸濁した。この0.5ml
を小試験管に移し、等容量の0.2M酢酸リチウム溶液
を添加し、30〜60分間30℃で振とうした。この中
から0.1mlを1.5mlのエッペンドルフチューブに移
し、プラスミドDNA溶液5μl(2μg/μl)を加え
30℃、30分間静置培養した。次に、殺菌した70%
PEG−4000、150μlを加えよく混合した。3
0℃で60分間静置した後、エッペンドルフチューブを
47℃の恒温槽で10分間静置後、菌体を直ちに室温ま
で冷却し、殺菌水で洗浄し、選択培地で生育させた形質
転換体を得た。プラスミドCについては制限酵素Stu
Iで処理し、直鎖状にしたDNA溶液10μl(5μg/
μl)について上述の形質転換を行なった。Preparation of Yeast Transformant for Producing Heterologous Protein Takaamylase A and the above-mentioned plasmids A to F for secreting and producing human lysozyme were transformed by the method of Ito et al. That is, yeast (YPH250) was shake-cultured at 30 ° C. in 10 ml of a nutrient medium (1% yeast extract, 2% polypeptone, 2% glucose) and collected by centrifugation in the logarithmic growth phase. After washing with TE buffer, the cells were suspended in the same buffer at a concentration of 2 × 10 7 cells / ml. This 0.5 ml
Was transferred to a small test tube, an equal volume of 0.2 M lithium acetate solution was added, and the mixture was shaken at 30 ° C. for 30 to 60 minutes. From this, 0.1 ml was transferred to a 1.5 ml Eppendorf tube, 5 μl (2 μg / μl) of a plasmid DNA solution was added, and static culture was carried out at 30 ° C. for 30 minutes. Next, sterilized 70%
150 μl of PEG-4000 was added and mixed well. Three
After standing at 0 ° C for 60 minutes, the Eppendorf tube was left standing at 47 ° C in a constant temperature bath for 10 minutes, and then the cells were immediately cooled to room temperature, washed with sterilized water, and transformed into a selective medium. Obtained. Restriction enzyme Stu for plasmid C
10 μl of a linear DNA solution treated with I (5 μg /
μl) was subjected to the transformation described above.
【0017】◆実施例(1) 酵母形質転換体による異種タンパク質の生産を増加させ
る培養法 プラスミドEおよびFを導入した形質転換株を選択培地
10mlで30℃24時間前培養した後集菌した。得られ
た菌体ペレットを栄養培地に移植し、10〜30℃で4
8時間さらに30℃40〜50時間、好ましくは48時
間振とう培養を行なった。培養液を遠心分離することに
より培養上清を得、それぞれについてα−アミラーゼ活
性、リゾチーム活性を測定し、タンパク質の生産量を調
べた。図7はタカアミラーゼ生産量及びヒトリゾチーム
生産量と低温培養時の温度℃の関係を示したグラフであ
る。Example (1) Culture Method for Increasing Production of Heterologous Protein by Yeast Transformant The transformants introduced with the plasmids E and F were precultured in 10 ml of a selective medium at 30 ° C. for 24 hours and then collected. The obtained bacterial cell pellet was transplanted to a nutrient medium, and the pellet was placed at 10 to 30 ° C for 4 hours.
Shaking culture was carried out for 8 hours at 30 ° C. for 40 to 50 hours, preferably for 48 hours. A culture supernatant was obtained by centrifuging the culture solution, and α-amylase activity and lysozyme activity were measured for each, and the amount of protein produced was examined. FIG. 7 is a graph showing the relationship between the production amount of takaamylase and the production amount of human lysozyme and the temperature in low temperature culture.
【0018】◆実施例(2) 温度シフト培養法及び低温前培養法を用いた異種タンパ
ク質の生産 プラスミドEおよびFを導入した形質転換株を選択培地
10ml、30℃で十分生育するまで前培養した後集菌
し、得られた菌体ペレットを栄養培地に移植した後、1
5℃で40〜50時間、好ましくは48時間培養し、さ
らに30℃で40〜50時間、好ましくは48時間振と
う培養を行なった。(温度シフト培養法:請求項1参照) 前記の形質転換株を選択培地10mlで15℃3日間ある
いは1日間十分生育するまで前培養した後集菌した。得
られた菌体ペレットを栄養培地に移植した後、30℃で
90〜100時間、好ましくは96時間振とう培養し
た。(低温前培養法:請求項2参照)Example (2) Production of heterologous protein using temperature shift culturing method and low temperature pre-culturing method The transformants introduced with the plasmids E and F were pre-cultured in a selective medium (10 ml) at 30 ° C. until sufficient growth. After collecting the cells, transplanting the obtained bacterial cell pellets into a nutrient medium, and then 1
The cells were cultured at 5 ° C for 40 to 50 hours, preferably 48 hours, and further at 30 ° C for 40 to 50 hours, preferably 48 hours with shaking. (Temperature shift culture method: see claim 1) The transformant was precultured in 10 ml of selective medium at 15 ° C for 3 days or for 1 day until sufficient growth, and then the cells were collected. The obtained bacterial cell pellet was transplanted to a nutrient medium and then shake-cultured at 30 ° C. for 90 to 100 hours, preferably 96 hours. (Cold preculture method: see claim 2)
【0019】以上の二培養法のそれぞれの培養液を遠心
分離することにより培養上清を得、それぞれについてα
−アミラーゼ活性、リゾチーム活性を測定し、タンパク
質の生産量を調べた。ここで対照として、プラスミドA
およびB形質転換株を前培養後、30℃96時間培養し
た培養上清を用いた。表1は温度シフト培養法及び低温
前培養法を用いた異種タンパク質の生産を示したもので
ある。A culture supernatant was obtained by centrifuging the culture solution of each of the above two culture methods.
-Amylase activity and lysozyme activity were measured to examine the amount of protein produced. Here, as a control, plasmid A
The culture supernatant obtained by pre-culturing the B and B transformants and culturing at 30 ° C. for 96 hours was used. Table 1 shows the production of heterologous proteins using the temperature shift culture method and the low temperature preculture method.
【表1】 [Table 1]
【0020】◆実施例(3) 温度シフト培養法を用いた異種タンパク質の生産に対す
る酵母発現ベクターの影響 プラスミドA〜Fを導入した形質転換株を選択培地で前
記の温度シフト培養法に準じて得られた培養上清のα−
アミラーゼ活性とリゾチーム活性を測定し生産量を調べ
た。ここで対照としては、各形質転換株を30℃で前培
養後、30℃90〜100時間、好ましくは96時間培
養した培養上清を用いた。表2は温度シフト培養法を用
いた異種タンパク質の生産に対する酵母発現ベクターの
影響を示したものである。Example (3) Effect of Yeast Expression Vector on Production of Heterologous Protein Using Temperature Shift Culture Method A transformant containing plasmids A to F was obtained in a selective medium according to the temperature shift culture method described above. Α- of the obtained culture supernatant
The amylase activity and lysozyme activity were measured and the production amount was investigated. Here, as a control, a culture supernatant obtained by pre-culturing each transformant at 30 ° C. and then culturing at 30 ° C. for 90 to 100 hours, preferably 96 hours was used. Table 2 shows the effect of yeast expression vectors on the production of heterologous proteins using the temperature shift culture method.
【表2】 [Table 2]
【0021】[0021]
【発明の効果】本発明の請求項1〜5の発明は酵母によ
る異種タンパク質の発現及び生産量増大により寄与し、
もしくは寄与効果を向上するもので、従来方法による生
産量の少なくとも2倍の生産量を挙げることができる顕
著な効果をもつ。EFFECTS OF THE INVENTION The inventions of claims 1 to 5 of the present invention contribute to the expression of a heterologous protein and the increase of the production amount by a yeast,
Alternatively, the contribution effect is improved, and there is a remarkable effect that the production amount at least twice as large as the production amount by the conventional method can be mentioned.
【図1】プラスミドA作製の模図FIG. 1 Schematic diagram of plasmid A production
【図2】プラスミドB作製の模図FIG. 2 Schematic diagram of plasmid B production
【図3】プラスミドC作製の模図[Fig. 3] Schematic diagram of plasmid C production
【図4】プラスミドD作製の模図FIG. 4 Schematic diagram of plasmid D production
【図5】プラスミドE作製の模図FIG. 5: Schematic diagram of plasmid E production
【図6】プラスミドF作製の模図FIG. 6 Schematic diagram of plasmid F production
【図7】実施例(1)のタカアミラーゼ生産量およびヒト
リゾチーム生産量とを、低温培養時の温度℃の関係を示
したグラフFIG. 7 is a graph showing the relationship between the production amount of takaamylase and the production amount of human lysozyme in Example (1) and the temperature at the time of low temperature culture.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C12N 15/62 // C12N 15/56 (C12N 1/16 C12R 1:865) (C12N 9/30 C12R 1:865) (C12N 9/36 C12R 1:865) (72)発明者 五味 勝也 東京都北区滝野川2−6−30 国税庁醸造 試験所内 (72)発明者 山本 綽 愛知県安城市昭和町19番10号 新日本化学 工業株式会社内 (72)発明者 長島 直 愛知県安城市昭和町19番10号 新日本化学 工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication C12N 15/62 // C12N 15/56 (C12N 1/16 C12R 1: 865) (C12N 9/30 (C12R 1: 865) (C12N 9/36 C12R 1: 865) (72) Inventor Katsuya Gomi 2-6-30, Takinogawa, Kita-ku, Tokyo Metropolitan Tax Bureau Brewing Test Center (72) Inventor Yamamoto So 19 19 Showa-cho, Anjo City, Aichi Prefecture No. 10 Shin-Nippon Chemical Industry Co., Ltd. (72) Inventor Nao Nagashima 19-10 Showa-cho, Anjo City, Aichi Prefecture Shin-Nippon Chemical Industry Co., Ltd.
Claims (5)
ース w/o アミノ酸、グルコースを主剤とし、これに
要求栄養素を添加した選択培地(以下単に選択培地とい
う)で十分に生育するまで適温で前培養し、その菌体ペ
レットを栄養培地に移植して低温で培養した後、さらに
酵母がよく生育する温度で振とう培養を行なうことを特
徴とする温度シフト培養法。1. A transformant strain is pre-cultured at a suitable temperature until it grows sufficiently in a selective medium (hereinafter simply referred to as selective medium) in which yeast nitrogen base w / o amino acid and glucose are the main ingredients, and required nutrients are added to this. Then, the cell pellet is transplanted to a nutrient medium, cultivated at a low temperature, and then shake culturing is performed at a temperature at which yeast grows well, which is a temperature shift culturing method.
で低温で前培養した後、その菌体ペレットを栄養培地に
移植し、前記選択培地による前培養以上の温度で振とう
培養することを特徴とする低温前培養法。2. The transformant strain is pre-cultured at a low temperature until it grows sufficiently in a selection medium, and then the cell pellet is transplanted to a nutrient medium and shake-cultured at a temperature higher than the pre-culture in the selection medium. Characterizing low temperature preculture method.
生物中の酵母とすることを特徴とする請求項1の温度シ
フト培養法又は請求項2の低温前培養法。3. The temperature shift culturing method according to claim 1 or the low temperature pre-culturing method according to claim 2, wherein the host that highly produces the heterologous protein is yeast in a microorganism.
モーターを、構成的に発現している酵素のプロモーター
とすることを特徴とする請求項1の温度シフト培養法又
は請求項2の低温前培養法。4. The temperature shift culture method according to claim 1 or the low temperature preculture method according to claim 2, wherein the promoter that expresses and produces the heterologous protein is a promoter of an enzyme that is constitutively expressed.
産するための酵母ベクターを2μmDNAをもつYEp
型又は染色体に組込むYIp型若しくは酵母セントロメ
アDNAをもつYCp型若しくは同効型の何れか1種と
することを特徴とする請求項1の温度シフト培養法又は
請求項2の低温前培養法。5. A yeast vector for expressing and producing a heterologous protein in yeast, YEp having 2 μm DNA.
The temperature-shift culture method according to claim 1 or the low-temperature preculture method according to claim 2, wherein the type is YIp type or YCp type having yeast centromere DNA to be integrated into the chromosome, or the same-effect type.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8043592A JPH0783709B2 (en) | 1992-03-02 | 1992-03-02 | Culture method for increasing expression and production of heterologous protein by yeast |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8043592A JPH0783709B2 (en) | 1992-03-02 | 1992-03-02 | Culture method for increasing expression and production of heterologous protein by yeast |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06125768A true JPH06125768A (en) | 1994-05-10 |
JPH0783709B2 JPH0783709B2 (en) | 1995-09-13 |
Family
ID=13718190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8043592A Expired - Lifetime JPH0783709B2 (en) | 1992-03-02 | 1992-03-02 | Culture method for increasing expression and production of heterologous protein by yeast |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0783709B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0737546A2 (en) * | 1995-04-10 | 1996-10-16 | Matsushita Electric Industrial Co., Ltd. | Apparatus for holding substrate to be polished and apparatus and method for polishing substrate |
US6739958B2 (en) | 2002-03-19 | 2004-05-25 | Applied Materials Inc. | Carrier head with a vibration reduction feature for a chemical mechanical polishing system |
JP2005538711A (en) * | 2002-09-13 | 2005-12-22 | コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー | Method for screening lipase having improved enzyme activity using yeast surface display vector and lipase thereof |
-
1992
- 1992-03-02 JP JP8043592A patent/JPH0783709B2/en not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0737546A2 (en) * | 1995-04-10 | 1996-10-16 | Matsushita Electric Industrial Co., Ltd. | Apparatus for holding substrate to be polished and apparatus and method for polishing substrate |
EP0737546A3 (en) * | 1995-04-10 | 1997-01-29 | Matsushita Electric Ind Co Ltd | Apparatus for holding substrate to be polished and apparatus and method for polishing substrate |
US6739958B2 (en) | 2002-03-19 | 2004-05-25 | Applied Materials Inc. | Carrier head with a vibration reduction feature for a chemical mechanical polishing system |
JP2005538711A (en) * | 2002-09-13 | 2005-12-22 | コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー | Method for screening lipase having improved enzyme activity using yeast surface display vector and lipase thereof |
JP4927332B2 (en) * | 2002-09-13 | 2012-05-09 | コリア リサーチ インスティチュート オブ バイオサイエンス アンド バイオテクノロジー | Method for screening lipase having improved enzyme activity using yeast surface display vector and lipase thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0783709B2 (en) | 1995-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI107939B (en) | Kluyveromyces as a host strain | |
US6602682B1 (en) | Kluyveromyces as a host strain | |
Garí et al. | A set of vectors with a tetracycline‐regulatable promoter system for modulated gene expression in Saccharomyces cerevisiae | |
JP3437850B2 (en) | Pichia pastoris acid phosphatase gene | |
JPS61141888A (en) | Glucoamylase gene | |
EP0305216A1 (en) | Recombinant Humicola lipase and process for the production of recombinant humicola lipases | |
JP2002514049A (en) | Production of auxotrophic mutants of Pichia methanolica | |
JPH04117291A (en) | Hetero dna arrangement and transformation of industrial yeast yarrowia genus using its arrangement | |
JPH0751067A (en) | Promoter of aspergillus yeast | |
JPS61185190A (en) | Promotors for developing heterogenous gene in yeasts, plasmids comprising said promotors and production of polypeptides | |
JPH0481428B2 (en) | ||
Strasser et al. | Analysis of the α‐amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera | |
CA1340101C (en) | Amylolytic enzymes producing microorganisms, constructed by recombinant dna technology and their use for fermentation processes | |
JP3153234B2 (en) | DNA sequence, vector, and fusion polypeptide for amplifying secretion of polypeptide of interest from filamentous fungus | |
JPH06125768A (en) | Manifestation of foreign protein by yeast and culture improved in production | |
JPH02419A (en) | Control of glycosylation of protein | |
CN113249241A (en) | Construction and application of saccharomyces cerevisiae protease deletion strain | |
CA2169377C (en) | Glucoamylase promoter obtained from neurospora crassa and its use in the production of heterologous polypeptides | |
AU640654B2 (en) | Albumin gene-containing plasmid, transformant carrying same, production of such transformant and production of albumin | |
CN108085332B (en) | Recombinant yeast with cell surface displaying bean hull peroxidase and construction method and application thereof | |
EP0519829A1 (en) | Cloning and/or expressionvectors, preparation and use | |
JPH07114689B2 (en) | Auxotrophic brewer's yeast | |
JP2607509B2 (en) | Method for producing alcohol by glucoamylase-producing transformed yeast | |
EP1409664A2 (en) | Yeast alpha-amylase promoter and uses thereof | |
US6900305B2 (en) | Isolated yeast promoter sequence and a method of regulated heterologous expression |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |