JPH06123656A - Contactless measuring method of temperature of tunnel kiln - Google Patents

Contactless measuring method of temperature of tunnel kiln

Info

Publication number
JPH06123656A
JPH06123656A JP29936092A JP29936092A JPH06123656A JP H06123656 A JPH06123656 A JP H06123656A JP 29936092 A JP29936092 A JP 29936092A JP 29936092 A JP29936092 A JP 29936092A JP H06123656 A JPH06123656 A JP H06123656A
Authority
JP
Japan
Prior art keywords
temperature
sheath
furnace
slit
ccd camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29936092A
Other languages
Japanese (ja)
Inventor
Asuka Matsushita
明日佳 松下
Masaharu Tateyama
正治 立山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP29936092A priority Critical patent/JPH06123656A/en
Publication of JPH06123656A publication Critical patent/JPH06123656A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure the temperature of a baked object or the like accurately by processing a black body to the side wall of a sheath, detecting the luminance by a slit CCD camera, combining thermal images obtained through the slit and obtaining the total image of the baked object. CONSTITUTION:A CCD camera 6 is set to the outer face of a slit 5 of a narrow width formed in a kiln wall 1. The luminance and thermal images of a sheath 4 transferring a baked object 3 are continuously caught and detected. The temperature of the baked object 3 is measured by correcting the influences of the other reflecting light on the basis of the temperature data obtained from the CCD luminance of a point of a black body preliminarily processed at the side wall of the sheath 4. The shape and temperature distribution of the baked object 3 are measured in a manner whereby the strips of thermal images obtained through the slit 5 are combined in conformity with the moving speed of the sheath 4 and displayed in pseudo colors as a total image onto an ITV monitor. Therefore, if the temperature measuring mechanism is installed at each of a plurality of points in the longitudinal direction of a tunnel kiln, a highly reliable heat pattern within the furnace can be formed from the obtained temperature data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トンネル炉内を移動す
る被測定物の温度および温度分布を非接触状態で精度よ
く測定することができるトンネル炉の非接触測温方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact temperature measuring method for a tunnel furnace which is capable of accurately measuring the temperature and temperature distribution of an object moving in the tunnel furnace in a non-contact state.

【0002】[0002]

【従来の技術】トンネル炉を用いて焼成処理をおこなう
場合には、通常、被焼成物を鞘と呼ばれる焼成用皿に載
置し、この鞘を複数段に積み重ねた状態でトンネル炉内
を緩徐に搬送させながら加熱する方法が採られる。各ト
ンネル炉には入口から出口までの温度分布を示すヒート
パターンがあり、焼成物の品質は操業時にこの加熱プロ
グラムにどれだけ近付けることができるかに大きく左右
される。また、鞘の上段から下段までの間には炉内温度
に差がつき易いため、焼成品質に変動を招くことも多
い。
2. Description of the Related Art When performing a firing process using a tunnel furnace, the material to be fired is usually placed on a firing dish called a pod, and the pods are slowly stacked in a stack in a plurality of stages. A method of heating while being transported to the container is adopted. Each tunnel furnace has a heat pattern that shows the temperature distribution from the inlet to the outlet, and the quality of the fired product depends largely on how close this heating program can be to the operation. In addition, since the temperature inside the furnace tends to be different between the upper and lower stages of the sheath, the firing quality often changes.

【0003】これら不都合な要因を制御するためには、
炉内の搬送速度と発熱体の温度設定をそれぞれ適切に調
整する必要があるが、焼成物は長い密閉状のトンネル炉
内を移動しているため、その温度を直接的に測定するこ
とができない。このようなことから、従来は炉壁を貫通
するように挿着した熱電対によって測定した炉内雰囲気
温度と炉出し後における焼成物の温度などを基に、長年
の経験から最適と思われるヒートパターンを推測的に設
定していた。しかしながら、近時、例えば半導体基板の
ような精密部品を焼成処理する目的にトンネル炉を用い
るケースが増えるに伴い、熱電対によって間接的に測定
された炉内雰囲気温度に基づいてヒートパターンを推定
する方法では十分な信頼性と安定した焼成特性を得るこ
とができなくなってきている。
In order to control these inconvenient factors,
It is necessary to properly adjust the transport speed in the furnace and the temperature setting of the heating element, but the temperature cannot be directly measured because the burned material is moving in a long closed tunnel furnace. . Therefore, based on the temperature of the atmosphere inside the furnace measured by a thermocouple inserted through the furnace wall and the temperature of the fired product after leaving the furnace, it has been considered that the heat that has been considered optimal from many years of experience. The pattern was set speculatively. However, recently, as the number of cases in which a tunnel furnace is used for the purpose of baking a precision component such as a semiconductor substrate increases, a heat pattern is estimated based on an in-furnace ambient temperature indirectly measured by a thermocouple. It is becoming difficult to obtain sufficient reliability and stable firing characteristics by the method.

【0004】これに代わる非接触型の炉内測温方式とし
て放射温度計やCCDカメラによる方法もあるが、測温
時に様々な迷光が入射してデータ誤差を与えるため、そ
のままで精度のよい測温を期待することは不可能であ
る。
As a non-contact type in-furnace temperature measuring method instead of this, there is a method using a radiation thermometer or a CCD camera. It is impossible to expect warmth.

【0005】[0005]

【発明が解決しようとする課題】本発明はこのような実
情に鑑みて開発されたもので、その目的は、炉壁に設け
たスリットを介して移動する被焼成物の温度状態を輝度
および熱画像として捉えることによりその物の温度や温
度分布を精度よく測定し、よって炉操業における条件制
御化の信頼性を向上させることができるトンネル炉の非
接触測温方法を提供することにある。
SUMMARY OF THE INVENTION The present invention was developed in view of such circumstances, and an object thereof is to control the temperature state of an object to be fired moving through a slit provided in a furnace wall to the brightness and the heat. It is an object of the present invention to provide a non-contact temperature measuring method for a tunnel furnace, which can accurately measure the temperature and temperature distribution of the object by capturing it as an image and thus improve the reliability of condition control in the furnace operation.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるトンネル炉の非接触測温方法は、被焼
成物を搬送する鞘の側壁部分に黒体加工を施し、該鞘の
側壁部分に相当するトンネル炉の炉壁に形成したスリッ
トからCCDカメラにより輝度を検知し、測定点に入射
する炉内反射光の影響を補正除去して温度変換すること
により焼成物の温度を測定し、前記スリットから得られ
る短冊状の温度画像を鞘の移動速度に合わせて合成する
ことによりITVモニターに焼成物の全体像として現出
し、焼成物の温度分布を測定することを構成上の特徴と
する。
A non-contact temperature measuring method for a tunnel furnace according to the present invention for achieving the above object is to perform a blackbody process on a side wall portion of a sheath for carrying an object to be fired, The temperature of the burned material is measured by detecting the brightness with a CCD camera from the slit formed in the furnace wall of the tunnel furnace corresponding to the side wall part, correcting and removing the influence of the reflected light in the furnace entering the measurement point, and converting the temperature. Then, a strip-shaped temperature image obtained from the slit is synthesized according to the moving speed of the sheath to be displayed on the ITV monitor as a whole image of the fired product, and the temperature distribution of the fired product is measured. And

【0007】[0007]

【作用】本発明による非接触測温方法は、CCDカメラ
を用いて被焼成物を搬送するための鞘の輝度から反射光
の影響を除去して焼成物の温度に変換し、同時に断片的
に得られる熱画像を合成して温度分布を検知する点に特
徴付けられる。一般にトンネル炉内の状態を知るために
は、温度変動を避けるために可及的に小さな孔を開けて
覗く必要があるが、焼成温度が高い場合には放射光が強
烈なために肉眼で内部を観察することは殆ど不可能であ
る。本発明によれば、炉壁に形成した幅の狭いスリット
の外面にCCDカメラが設置され、このCCDカメラに
より移動する鞘の輝度と熱画像が連続的に捕捉検知され
る。
The non-contact temperature measuring method according to the present invention uses the CCD camera to remove the influence of reflected light from the brightness of the sheath for transporting the object to be burned and convert it to the temperature of the object to be burned. It is characterized in that the obtained thermal images are combined to detect the temperature distribution. Generally, in order to know the condition inside the tunnel furnace, it is necessary to open as small a hole as possible in order to avoid temperature fluctuations, but when the firing temperature is high, the synchrotron radiation is intense and the inside can be seen with the naked eye. Is almost impossible to observe. According to the present invention, the CCD camera is installed on the outer surface of the narrow slit formed in the furnace wall, and the brightness and thermal image of the moving sheath are continuously captured and detected by the CCD camera.

【0008】焼成物の測温は、鞘の側壁部分に予め形成
した黒体加工点のCCD輝度から得た温度データを基に
して他の反射光の影響を補正することによりおこなわ
れ、焼成物の形状や温度分布は、スリットを介して得ら
れる熱画像を搬送速度に合わせて合成し、全体像として
現出する方法で測定される。この際の全体像はITVに
より疑似カラー表示ができるため、炉の外壁を外して直
接観察していると同等に再現させることができる。
The temperature of the fired product is measured by correcting the influence of other reflected light on the basis of the temperature data obtained from the CCD brightness of the black body processing point previously formed on the side wall of the sheath. The shape and the temperature distribution of are measured by a method in which a thermal image obtained through the slit is combined according to the transport speed and is displayed as a whole image. Since the entire image at this time can be displayed in pseudo color by ITV, it can be reproduced in the same way as when directly observing with the outer wall of the furnace removed.

【0009】したがって、トンネル炉の長さ方向に複数
箇所に亘って本発明の測温機構を設置することにより、
焼成物の正確な測温が可能となるうえ、得られた温度デ
ータから信頼性の高い炉内のヒートパターンを作成する
ことができる。
Therefore, by installing the temperature measuring mechanism of the present invention at a plurality of points in the length direction of the tunnel furnace,
Accurate temperature measurement of the fired product is possible, and a highly reliable heat pattern in the furnace can be created from the obtained temperature data.

【0010】[0010]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0011】図1は本発明によるトンネル炉の非接触測
温方法の実施状態を示した断面略図で、1はトンネル炉
の炉壁、2は炉内の上下位置に設置された発熱体、4は
被焼成物3を載置して炉内を搬送する2段重ね構造の
鞘、5は鞘4の側壁部分に相当するトンネル炉の炉壁に
形成されたスリット、そして6は減光フィルター7を介
して前記スリット5の前面炉外にセットされたCCDカ
メラである。CCDカメラ6に接続する画像装置のメモ
リーには、基準とする黒体炉温度とその反射光から得ら
れるCCD輝度データを対応させて製作した輝度−温度
変換機構が組み込まれている。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a non-contact temperature measuring method for a tunnel furnace according to the present invention. 1 is a furnace wall of the tunnel furnace, 2 is a heating element installed at a vertical position in the furnace, 4 Is a sheath with a two-stage structure for placing the material to be fired 3 and transporting it inside the furnace, 5 is a slit formed in the furnace wall of the tunnel furnace corresponding to the side wall of the sheath 4, and 6 is a neutral density filter 7 It is a CCD camera set outside the front furnace of the slit 5 via. The memory of the image device connected to the CCD camera 6 has a built-in brightness-temperature conversion mechanism produced by associating the reference blackbody furnace temperature with CCD brightness data obtained from the reflected light.

【0012】図1のような加熱状態では、鞘上の一点に
おいて次の (1)式が成り立つ。 P(T)=εP(Ts)+(1−ε)P(Tw) … (1) 但し、P(T)はTKにおける黒体の放射エネルギー、
εは鞘の放射率、Tは鞘の温度(見掛け上の温度)、T
sは鞘の真温度、Twは測定点に入射する外光を一点に
代表させた温度である。
In the heating state as shown in FIG. 1, the following equation (1) is established at one point on the sheath. P (T) = εP (Ts) + (1-ε) P (Tw) (1) where P (T) is the radiant energy of the blackbody in TK,
ε is the emissivity of the sheath, T is the temperature of the sheath (apparent temperature), T
s is the true temperature of the sheath, and Tw is the temperature in which the external light incident on the measurement point is represented by one point.

【0013】CCDカメラ6は、完全黒体を測定対象と
した場合にはその温度が正確な測定値となるが、被焼成
物は完全黒体ではないため様々な反射光の影響を受け
る。反射光には、図1の矢印で示されるような発熱体か
らの直接光、その壁面反射光、測定点以外の鞘部分から
の反射光(最も大きな迷光原因)など複雑な要素の迷光
が含まれる。しかし、前述したように黒体についてはC
CD輝度から正確な温度が得られるから、測定部分を黒
体と同じにすれば輝度からの測温が可能となる。本発明
では、この際の温度データを基に他の反射光の影響を除
去する補正をおこなう。
The temperature of the CCD camera 6 is an accurate measured value when a perfect blackbody is the object of measurement, but since the object to be fired is not a perfect blackbody, it is affected by various reflected lights. The reflected light includes stray light of complex elements such as direct light from the heating element as shown by the arrow in FIG. 1, reflected light on the wall surface, reflected light from the sheath other than the measurement point (the largest cause of stray light). Be done. However, as mentioned above, C
Since the accurate temperature can be obtained from the CD brightness, the temperature can be measured from the brightness by making the measurement portion the same as that of a black body. In the present invention, the correction for removing the influence of other reflected light is performed based on the temperature data at this time.

【0014】すなわち、図2のように鞘4の側壁部分
(A点を含む斜線部分)に予め黒体加工を施す。黒体加
工は、例えば炭化珪素を塗布形成するような手段でおこ
なう。炭化珪素の放射率は0.8〜0.9であるため完
全黒体とは言えないが、この放射率差から生じる誤差は
許容範囲であるため問題はない。操業時、鞘4は緩徐な
速度で炉内を移動(左方向)する。この過程でCCDカ
メラは鞘間の壁部分W、鞘側壁の黒体加工点A、鞘の黒
体加工点以外の側壁B、Cの各輝度を順次に検知する。
黒体加工点Aにおいては輝度から正確な温度が得られる
が、黒体加工が施されていないB、C点では多様な迷光
の影響を含めた輝度データとなる。
That is, as shown in FIG. 2, a black body is preliminarily applied to the side wall portion (hatched portion including point A) of the sheath 4. The black body processing is performed by means of coating and forming silicon carbide, for example. Since the emissivity of silicon carbide is 0.8 to 0.9, it cannot be said to be a perfect black body, but there is no problem because the error caused by this emissivity difference is within the allowable range. During operation, the sheath 4 moves (leftward) in the furnace at a slow speed. In this process, the CCD camera sequentially detects the brightness of the wall portion W between the sheaths, the black body processing point A on the side wall of the sheath, and the side walls B and C other than the black body processing point on the sheath.
An accurate temperature can be obtained from the brightness at the blackbody processing point A, but the brightness data including the influence of various stray light is obtained at points B and C where the blackbody processing is not performed.

【0015】上記した (1)式において、W,A,B各点
の輝度データをそれぞれTW,TA およびTB とすれば、
鞘の放射率 (ε) は次の (2)式によって求まる。 このときのεは、W点から全ての迷光が出ていると考
え、AとBを同じ点とした場合の放射率である。同一鞘
上においてこの値を有効とし、任意の点Cの輝度をTC
とすると、その温度TCSは (3)式の関係となる。
In the above equation (1), if the luminance data at each point of W, A and B are TW, TA and TB, respectively,
The emissivity (ε) of the sheath is obtained by the following equation (2). At this time, ε is the emissivity when it is considered that all the stray light is emitted from the point W and A and B are the same point. This value is valid on the same sheath, and the brightness of any point C is TC
Then, the temperature TCS has a relation of the equation (3).

【0016】鞘4が通過すると、それまでの計算操作は
初期化され、次の鞘が搬送されると再び同一の計算が繰
り返される。このようにして鞘ごとの補正計算が反復さ
れる結果、搬送速度や発熱体温度の設定変動に伴う最新
の外光影響をリアルタイムで補正することが可能とな
る。
When the sheath 4 passes, the calculation operation up to that point is initialized, and when the next sheath is conveyed, the same calculation is repeated again. As a result of repeating the correction calculation for each sheath in this way, it becomes possible to correct in real time the latest influence of external light that accompanies fluctuations in the setting of the conveyance speed and the temperature of the heating element.

【0017】一方、CCDカメラ6で捉えた温度画像
は、スリット幅に沿った短冊状のものであるが、鞘4の
移動速度に合わせて画像を繋ぎ合わせることによりIT
Vモニターに焼成物の全体像として現出させることがで
きる。図3は、鞘画像の合成例を示した模式図である。
まず、トンネル炉8の内部を搬送する鞘4の側壁をCC
Dカメラに映し、スリット幅に相当する最初の画像9を
得る。この場合の取り込み画像領域は、スリット端の乱
光を避けるためにスリット幅よりも狭い範囲を指定す
る。鞘4の移動により次のスリット幅の画像が完全に現
れたら、その画像を取り込む。このようにして各画像を
合成することにより焼成物の全体像をITVモニターに
映し出すことができ、これを繰り返すことで炉内の状態
を系外に再現することができる。したがって、焼成物の
形状および温度分布の連続的なチェックが可能となる。
On the other hand, the temperature image captured by the CCD camera 6 is a strip-shaped image along the slit width, but by combining the images in accordance with the moving speed of the sheath 4, IT
The V monitor can be made to appear as an overall image of the fired product. FIG. 3 is a schematic diagram showing an example of combining sheath images.
First, the side wall of the sheath 4 that conveys the inside of the tunnel furnace 8 is CC
The first image 9 corresponding to the slit width is obtained by projecting on the D camera. In this case, the captured image area is specified to be narrower than the slit width in order to avoid irregular light at the slit edge. When the image of the next slit width appears completely due to the movement of the sheath 4, the image is captured. By thus combining the respective images, the entire image of the fired product can be displayed on the ITV monitor, and by repeating this, the state inside the furnace can be reproduced outside the system. Therefore, it is possible to continuously check the shape and temperature distribution of the fired product.

【0018】各点の放射はCCDカメラで電圧に変換さ
れ、画像装置に取り込まれて8ビットのデジタル値とし
たのち、輝度−温度変換式により温度データとなる。こ
の演算操作は、次のような順序で図2のW、A、Bの各
点でおこなう。 測定位置に壁があるときに、その1点の輝度を取って
W点の温度を得る。この際、壁のサンプリング位置は迷
光が代表できるような位置を予め実験によって定めてお
く。 鞘が搬送され、A点の位置でその温度を算出する。 B点に至ったところで、その温度を算出する。この時
点でW、A、B各点の温度が得られるので、これら温度
データを放射エネルギーとして (2)式に代入して鞘の放
射率 (ε) を得る。
The radiation at each point is converted into a voltage by a CCD camera, taken into an image device and converted into an 8-bit digital value, and then converted into temperature data by a brightness-temperature conversion formula. This calculation operation is performed at each point of W, A and B in FIG. 2 in the following order. When there is a wall at the measurement position, the brightness at that point is taken to obtain the temperature at point W. At this time, the sampling position of the wall is determined in advance by experiments so that stray light can be represented. The sheath is transported and its temperature is calculated at the position of point A. When the point B is reached, the temperature is calculated. At this point, the temperatures at W, A, and B points are obtained, and these temperature data are substituted into the equation (2) as radiant energy to obtain the sheath emissivity (ε).

【0019】これより計測が開始される。前記〜
で得られたデータのうちP(Tw )およびεは同一鞘上
において有効であるから定数と見做せる。したがって、
(3)式は下記 (4)式に変形される。 P(Tcs)=f〔P(Tc)〕 … (4) B点以降、右側のC点ほか各点の見掛け温度が指定時間
ごとに取り込まれ、(4) 式に代入して補正後の温度とし
て得られる。この温度データは画像装置からコンピュー
ターに転送され、時間−温度のプロットグラフ、または
カメラ位置(回路)−温度のヒートパターンとして表示
される。後者の場合には、同時に目的とするヒートパタ
ーンとのずれを検知し、ヒーターの制御、搬送速度の調
整をおこなう。 鞘の全体が通過し壁が見えた時点で、再度の段階に
戻る。からまでの間は計測ができないため、に戻
る時点での温度データを表示することとする。
Measurement is started from this. The above
Since P (Tw) and ε of the data obtained in step 1 are valid on the same sheath, they can be regarded as constants. Therefore,
Equation (3) is transformed into equation (4) below. P (Tcs) = f [P (Tc)] (4) After B point, the apparent temperature of each point such as C point on the right side is taken in every designated time, and it is substituted into the equation (4) and corrected temperature. Obtained as. This temperature data is transferred from the imager to the computer and displayed as a time-temperature plot graph or a camera position (circuit) -temperature heat pattern. In the latter case, the deviation from the target heat pattern is detected at the same time, and the heater is controlled and the conveyance speed is adjusted. When the entire sheath has passed and the wall is visible, return to the next stage. Since it is not possible to measure from to, the temperature data at the time of returning to will be displayed.

【0020】図4は、本発明を用いてトンネル炉の連続
操業をおこなう場合の構成図を示したものである。トン
ネル炉8の側壁に複数個のスリットを穿設し、各スリッ
トの前面にCCDカメラ6をセットする。各CCDカメ
ラ6は画像処理装置10に接続しており、画像処理装置10
はITVモニター11およびコンピューター(CRT) と連結
している。操業時、画像処理装置10で検知して画像を基
に合成した画像情報をITVモニター11に現出し、輝度
として得られたデータは温度に変換される。同時に画像
処理装置10の信号は発熱体制御装置13および移送制御装
置14に入り、炉内の処理条件が調整される。この機構に
おいて、設定条件の異常時には警報を発するように設計
しておくと、オペレーターは不良焼成のチェックやヒー
トパターンの検討をおこなうことができる。
FIG. 4 is a block diagram showing a case where a tunnel furnace is continuously operated using the present invention. A plurality of slits are formed in the side wall of the tunnel furnace 8, and the CCD camera 6 is set in front of each slit. Each CCD camera 6 is connected to the image processing device 10, and the image processing device 10
Is connected to ITV monitor 11 and computer (CRT). At the time of operation, the image information detected by the image processing device 10 and synthesized based on the image is displayed on the ITV monitor 11, and the data obtained as the brightness is converted into the temperature. At the same time, the signal from the image processing device 10 enters the heating element control device 13 and the transfer control device 14, and the processing conditions in the furnace are adjusted. If this mechanism is designed so that an alarm is issued when the set conditions are abnormal, the operator can check defective firing and examine the heat pattern.

【0021】[0021]

【発明の効果】以上のとおり、本発明によればスリット
を介してCCDカメラで炉内を移動する鞘の輝度および
熱画像を捉えることにより非接触状態でトンネル炉内の
温度状況を精度よく検知することができ、炉操業条件の
信頼性を著しく向上させることが可能となる。そのう
え、熱画像表示により焼成物の微妙な温度分布をビジュ
アルに再現できるため、異常を即座に判定することもで
きる。したがって、トンネル炉を用いて精密部材の焼成
処理をおこなう目的に対して極めて有用である。
As described above, according to the present invention, the temperature condition in the tunnel furnace is accurately detected in a non-contact state by capturing the brightness and thermal image of the sheath moving in the furnace with the CCD camera through the slit. Therefore, the reliability of the furnace operating conditions can be significantly improved. Moreover, since the delicate temperature distribution of the fired product can be visually reproduced by the thermal image display, the abnormality can be immediately determined. Therefore, it is extremely useful for the purpose of firing the precision member using a tunnel furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるトンネル炉の非接触測温状態を示
した断面略図である。
FIG. 1 is a schematic cross-sectional view showing a non-contact temperature measurement state of a tunnel furnace according to the present invention.

【図2】黒体加工を施した鞘の斜視説明図である。FIG. 2 is a perspective explanatory view of a sheath subjected to black body processing.

【図3】鞘画像の合成例を示した模式図である。FIG. 3 is a schematic diagram showing an example of combining sheath images.

【図4】本発明を用いてトンネル炉の連続操業をおこな
う場合の構成図である。
FIG. 4 is a configuration diagram when a tunnel furnace is continuously operated using the present invention.

【符号の説明】[Explanation of symbols]

1 トンネル炉の炉壁 2 発熱体 3 被焼成物 4 鞘 5 スリット 6 CCDカメラ 7 減光フィルター 8 トンネル炉 9 画像 10 画像処理装置 11 ITVモニター 12 コンピューター 13 発熱体制御装置 14 移送制御装置 1 Tunnel Wall of Tunnel Furnace 2 Heating Element 3 Burned Object 4 Sheath 5 Slit 6 CCD Camera 7 Dimming Filter 8 Tunnel Furnace 9 Image 10 Image Processing Device 11 ITV Monitor 12 Computer 13 Heating Element Control Device 14 Transfer Control Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被焼成物を搬送する鞘の側壁部分に黒体
加工を施し、該鞘の側壁部分に相当するトンネル炉の炉
壁に形成したスリットからCCDカメラにより輝度を検
知し、測定点に入射する炉内反射光の影響を補正除去し
て温度変換することにより焼成物の温度を測定し、前記
スリットから得られる短冊状の温度画像を鞘の移動速度
に合わせて合成することによりITVモニターに焼成物
の全体像として現出し、焼成物の温度分布を測定するこ
とを特徴とするトンネル炉の非接触測温方法。
1. A black body is applied to a side wall portion of a sheath that conveys a material to be fired, and a brightness is detected by a CCD camera from a slit formed in a furnace wall of a tunnel furnace corresponding to the side wall portion of the sheath. The temperature of the fired product is measured by correcting and removing the effect of the reflected light in the furnace incident on the ITV, and the strip-shaped temperature image obtained from the slit is synthesized according to the moving speed of the sheath to produce the ITV. A non-contact temperature measurement method for a tunnel furnace, which is characterized by displaying the entire image of the fired product on a monitor and measuring the temperature distribution of the fired product.
JP29936092A 1992-10-12 1992-10-12 Contactless measuring method of temperature of tunnel kiln Pending JPH06123656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29936092A JPH06123656A (en) 1992-10-12 1992-10-12 Contactless measuring method of temperature of tunnel kiln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29936092A JPH06123656A (en) 1992-10-12 1992-10-12 Contactless measuring method of temperature of tunnel kiln

Publications (1)

Publication Number Publication Date
JPH06123656A true JPH06123656A (en) 1994-05-06

Family

ID=17871553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29936092A Pending JPH06123656A (en) 1992-10-12 1992-10-12 Contactless measuring method of temperature of tunnel kiln

Country Status (1)

Country Link
JP (1) JPH06123656A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949278B2 (en) 2002-09-13 2005-09-27 3M Innovative Properties Company Water-repellent sheet with protective film, sheet for preventing snow adhesion and method for producing water-repellent board
WO2013100069A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Method of picking up image inside furnace, system for picking up image inside furnace, and method of manufacturing glass goods
JP2017024983A (en) * 2011-02-28 2017-02-02 コーニング インコーポレイテッド Method for manufacturing porous ceramic articles with reduced shrinkage
JP2020513529A (en) * 2016-12-08 2020-05-14 ランド インスツルメンツ インターナショナル リミテッド Furnace control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949278B2 (en) 2002-09-13 2005-09-27 3M Innovative Properties Company Water-repellent sheet with protective film, sheet for preventing snow adhesion and method for producing water-repellent board
JP2017024983A (en) * 2011-02-28 2017-02-02 コーニング インコーポレイテッド Method for manufacturing porous ceramic articles with reduced shrinkage
WO2013100069A1 (en) * 2011-12-27 2013-07-04 旭硝子株式会社 Method of picking up image inside furnace, system for picking up image inside furnace, and method of manufacturing glass goods
JP2020513529A (en) * 2016-12-08 2020-05-14 ランド インスツルメンツ インターナショナル リミテッド Furnace control system
US11312648B2 (en) 2016-12-08 2022-04-26 Land Instruments International Limited Control system for furnace

Similar Documents

Publication Publication Date Title
DE69112184T2 (en) Calibration for two-channel radiation measurement.
US5334251A (en) Method of and apparatus for controlling temperature in the processing of a substrate
JPS63298101A (en) Non-contact determination method and apparatus for position of linear feature of article
US20190114755A1 (en) Semiconductor chip inspection device
US9696210B2 (en) Extended temperature range mapping process of a furnace enclosure using various device settings
EP2653843A1 (en) Method and system for measuring surface temperature
CN107462345A (en) Temperature measuring apparatus
US20150355030A1 (en) Equipment and method for intensity-temperature transformation of imaging system
US20050286608A1 (en) Method and apparatus for obtaining a temperature measurement using an InGaAs detector
CN105890873A (en) Apparatus and method for blind pixel detection of thermal infrared hyperspectral imager
Firago et al. High-temperature three-colour thermal imager
US6786634B2 (en) Temperature measuring method and apparatus
JPH06123656A (en) Contactless measuring method of temperature of tunnel kiln
US9664568B2 (en) Extended temperature mapping process of a furnace enclosure with multi-spectral image-capturing device
US20030107724A1 (en) Temperature distribution measuring method and apparatus
Kosonocky et al. Multiwavelength imaging pyrometer
IL147788A (en) Emissivity-independent silicon surface temperature measurement
Kaplinsky et al. Recent advances in the development of a multiwavelength imaging pyrometer
US11481888B2 (en) Method for inspecting the coating of an electronic component
JP4016113B2 (en) Two-wavelength infrared image processing method
JP3236132B2 (en) Radiation thermometry for tunnel furnaces
DE68916102T2 (en) Method and device for measuring the temperature of a distant object.
JP2012233797A (en) Method for measuring temperature of material to be processed, method for manufacturing processed product, and apparatus for heating the material to be processed
RU2238529C1 (en) Method of contactless measuring of surface temperature
JP3559870B2 (en) Temperature measuring method and temperature measuring device