JPH06123608A - Wheel measuring device - Google Patents

Wheel measuring device

Info

Publication number
JPH06123608A
JPH06123608A JP27283192A JP27283192A JPH06123608A JP H06123608 A JPH06123608 A JP H06123608A JP 27283192 A JP27283192 A JP 27283192A JP 27283192 A JP27283192 A JP 27283192A JP H06123608 A JPH06123608 A JP H06123608A
Authority
JP
Japan
Prior art keywords
wheel
light
image
tread surface
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27283192A
Other languages
Japanese (ja)
Inventor
Hideyuki Takechi
秀行 武知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27283192A priority Critical patent/JPH06123608A/en
Publication of JPH06123608A publication Critical patent/JPH06123608A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To perform measurement within a short time while moving a vehicle by grasping the shape of the tread surface of a wheel and the shape of the inner side surface of the wheel as image signals and calculating the shape of the tread surface of the wheel and the diameter of the wheel from respective images. CONSTITUTION:The tread surface 4 of a wheel 1 is irradiated with a fine strip like light emitted from the light source 5 arranged on the ground and the inner side surface of the wheel 1 is irradiated with a fine strip like light emitted from a light source 6 arranged on the ground. The image of the part irradiated with light of the tread surface 4 is taken by the imaging device 7 arranged on the ground and the image of the part irradiated with light of the inner side surface of the wheel is taken by an imaging device 8. The image signals outputted from the devices 7, 8 are sent to an image signal processor 9. The processor 9 calculates the diameter of the wheel, the gradient of the tread surface of the wheel and the flange thickness and height of the wheel on the basis of the image signals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、たとえば鉄道車両の
車輪の寸法を測定する車輪寸法測定装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wheel size measuring device for measuring the size of a wheel of a railway vehicle, for example.

【0002】[0002]

【従来の技術】鉄道車両の車輪の形状や車輪径寸法、車
輪幅寸法は、従来はその形状に応じて作られた測定治具
を用いて測定されている。このため、これら測定治具を
用いた測定では停止した車両の車輪しか測定できず、測
定に際しては多くの人手を要するとともに測定する人に
よる差が生じやすいという問題がある。
2. Description of the Related Art Conventionally, the shape, diameter and width of a wheel of a railway vehicle are measured by using a measuring jig made according to the shape. Therefore, in the measurement using these measuring jigs, only the wheels of the stopped vehicle can be measured, which requires a lot of manpower in the measurement, and there is a problem in that a difference easily occurs depending on a person who measures.

【0003】[0003]

【発明が解決しようとする課題】この発明は上記問題を
解決した車輪測定装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a wheel measuring device that solves the above problems.

【0004】[0004]

【課題を解決するための手段】この発明に係る車輪測定
装置は車輪踏面と車輪内側側面に細帯状光を照射する光
源、車輪踏面および車輪内側側面で光が照射された部分
を撮像する撮像装置、各撮像装置からの映像信号を入力
し車輪踏面の形状や車輪径寸法、車輪幅寸法や内側側面
の形状を測定する画像信号処理装置により構成されるこ
とを特徴とする。
A wheel measuring device according to the present invention is a light source for irradiating a wheel tread surface and a wheel inner side surface with thin strip light, and an image pickup device for picking up an image of a portion irradiated with light on the wheel tread surface and the wheel inner side surface. The image signal processing device is characterized in that it is configured by an image signal processing device which inputs a video signal from each image pickup device and measures a shape of a wheel tread, a wheel diameter dimension, a wheel width dimension and an inner side surface shape.

【0005】[0005]

【作用】この発明に係る車輪測定装置は車輪踏面の形状
と車輪内側側面の形状を映像信号としてとらえ、それぞ
れの画像から車輪踏面の形状や車輪径寸法、車輪間の寸
法を算出することができるため、移動中に短時間で測定
することが可能になる。
The wheel measuring device according to the present invention can grasp the shape of the wheel tread surface and the shape of the wheel inner side surface as video signals, and calculate the shape of the wheel tread surface, the wheel diameter dimension, and the inter-wheel dimension from the respective images. Therefore, it becomes possible to measure in a short time while moving.

【0006】[0006]

【実施例】【Example】

実施例1.図1は車輪1の踏面及び内側側面2の輪郭を
示している。車輪1の形状は、車輪径α、踏面勾配ψ、
フランジ厚さβおよびフランジ高さγによって表され
る。図において、点A、点Bおよび点Cは測定基準位置
であり、以下の様に決められている。すなわち、点A
は、内側側面2から車輪厚さ方向に所定距離l、たとえ
ば65mm離れた踏面3上の点である。点Bは、点Aから車
輪径方向に所定距離m、たとえば12mm離れた踏面4上の
点である。点Cは、フランジ3の頂点である。車輪径α
は、点Aを通る車輪の直径である。踏面勾配ψは、点A
における踏面の勾配である。フランジ厚さβは、点Bか
ら内側側面2までの車輪厚さ方向の距離である。フラン
ジ高さγは、点Aから点Cまでの車輪径方向の距離であ
る。なお、フランジ内側側面にはD点に車輪の基準径N
を読取ることのできる基準線、たとえばφ780 mmの基準
線が彫り込まれている。
Example 1. FIG. 1 shows the contours of the tread surface and the inner side surface 2 of the wheel 1. The shape of the wheel 1 is wheel diameter α, tread slope ψ,
It is represented by the flange thickness β and the flange height γ. In the figure, points A, B and C are measurement reference positions and are determined as follows. That is, point A
Is a point on the tread 3 which is separated from the inner side surface 2 by a predetermined distance 1 in the wheel thickness direction, for example, 65 mm. The point B is a point on the tread 4 which is separated from the point A in the radial direction of the wheel by a predetermined distance m, for example, 12 mm. The point C is the apex of the flange 3. Wheel diameter α
Is the diameter of the wheel passing through point A. The tread slope ψ is at point A
Is the slope of the tread in. The flange thickness β is the distance from the point B to the inner side surface 2 in the wheel thickness direction. The flange height γ is the distance from the point A to the point C in the wheel radial direction. On the inner side surface of the flange, at the point D, the wheel reference diameter N
Is engraved with a reference line that can be read, for example, a φ780 mm reference line.

【0007】図2は本発明に係る車輪測定装置構成図、
図3は車輪部に細帯状光が照射されている状態を示す説
明図、図4は各構成機器の配置の一実施例を示す説明図
である。地上に設置された光源5から出射された細帯状
光は、車輪1の踏面4に照射され、地上に設置された光
源6から照射された細帯状光は車輪1の内側側面2に照
射される。車輪踏面4に光が照射されている部分は、地
上に設置された撮像装置7により撮像され、車輪内側側
面2の光が照射されている部分は内側側面から撮像装置
8により撮像される。撮像装置7,8から出力される映
像信号は、画像信号処理装置9に送られる。画像信号処
理装置9は、入力された映像信号にもとづいて、車輪径
α、踏面勾配ψ、フランジ厚さβおよびフランジ高さγ
を算出する。なお、光源5、光源6から照射される2本
の細帯状光は、図3に示すように車輪の中心と踏面とを
結ぶ直線上に一致していることが必要であり、光電スイ
ッチ10により車輪が検出されたタイミングに従い撮像装
置7,8により映像入力が行なわれる。車輪1が測定ポ
イントに到来したことを光電スイッチにより検出し、検
出したタイミングに従い撮像装置7,8により映像入力
が行なわれるため、車輪径が変化しても車輪踏面4に照
射される第1の光と内側側面に照射される第2の光と
が、踏面と車輪の中心軸を結ぶ直線からずれることはな
い。
FIG. 2 is a block diagram of a wheel measuring device according to the present invention,
FIG. 3 is an explanatory view showing a state where the wheel portion is irradiated with the strip-shaped light, and FIG. 4 is an explanatory view showing an example of the arrangement of the respective constituent devices. The strip-shaped light emitted from the light source 5 installed on the ground is applied to the tread surface 4 of the wheel 1, and the strip-shaped light emitted from the light source 6 installed on the ground is applied to the inner side surface 2 of the wheel 1. . The part where the wheel tread 4 is illuminated is imaged by the imaging device 7 installed on the ground, and the part of the wheel inner side surface 2 that is illuminated is imaged by the imaging device 8 from the inner side. The video signals output from the image pickup devices 7 and 8 are sent to the image signal processing device 9. The image signal processing device 9 determines the wheel diameter α, the tread slope ψ, the flange thickness β, and the flange height γ based on the input video signal.
To calculate. The two strips of light emitted from the light source 5 and the light source 6 need to coincide with the straight line connecting the center of the wheel and the tread as shown in FIG. Video is input by the imaging devices 7 and 8 in accordance with the timing when the wheels are detected. The photoelectric switch detects that the wheel 1 has arrived at the measurement point, and the image pickup devices 7 and 8 input images in accordance with the detected timing. Therefore, even if the wheel diameter changes, the first wheel tread 4 is illuminated. The light and the second light applied to the inner side surface do not deviate from the straight line connecting the tread surface and the central axis of the wheel.

【0008】また、車輪径の変化により第1の光と第2
の光との線が車輪中心と踏面とを結ぶ直線からずれると
いう現象が生じ、これが測定誤差の要因となるが、図4
に示した機器の位置配置では、図5に示すように誤差分
は微小であり測定精度に影響を与えるものではない。た
とえば、図5に示すように車輪径が700 mmから900 mmま
で変化するとした場合、車輪踏面に向けて45度の仰角で
帯状光を照射し、車輪の真下で車輪踏面の映像を撮像し
たとすれば、車輪の中心と踏面とを結ぶ直線と細帯状光
のラインとのズレは約4度で、これにより生じる寸法誤
差は車輪のフランジ高さ方向に対して約0.3 %となり、
かつ、本測定装置では車輪内側の基準溝から求められた
基準径寸法にフランジ高さ寸法を加算し車輪径寸法を算
出する方式を採用しているため、車輪径全体の寸法で考
えれば車輪径変化による角度ズレから生じる測定誤差は
十分小さく、必要とされる測定精度に対して十分無視で
きるものである。その他、装置が屋外に設置される場合
には太陽光の影響による誤差を除去するため撮像装置に
光源の波長のみを透過するフィルタを付加することも行
なわれる。
Further, the first light and the second light are changed by the change of the wheel diameter.
The phenomenon that the line with the light of is shifted from the straight line connecting the center of the wheel and the tread surface causes a measurement error.
In the positional arrangement of the equipment shown in FIG. 5, the error amount is minute as shown in FIG. 5 and does not affect the measurement accuracy. For example, if the wheel diameter changes from 700 mm to 900 mm as shown in FIG. 5, it is assumed that a belt-shaped light is emitted at an elevation angle of 45 degrees toward the wheel tread, and an image of the wheel tread is captured directly below the wheel. If this is done, the deviation between the straight line connecting the center of the wheel and the tread and the line of narrow strip light is about 4 degrees, and the resulting dimensional error is about 0.3% with respect to the wheel flange height direction.
In addition, this measuring device uses a method of calculating the wheel diameter by adding the flange height dimension to the reference diameter dimension obtained from the reference groove on the inside of the wheel. The measurement error caused by the angle deviation due to the change is sufficiently small, and can be sufficiently ignored with respect to the required measurement accuracy. In addition, when the device is installed outdoors, a filter that transmits only the wavelength of the light source may be added to the image pickup device to remove an error due to the influence of sunlight.

【0009】図6は車輪測定装置のブロック図を示して
いる。撮像装置7,8から出力される映像信号はそれぞ
れA/D変換器13,14に送られ、ディジタル信号に変換
される。ディジタル信号に変換された画像データはCP
U15によりフレームメモリ16に格納され、2値化処理や
エッジ成分抽出処理が行なわれ車輪各部の形状や寸法が
算出される。また、フレームメモリ16に格納された画像
データは必要に応じてD/A変換器17を介して出力さ
れ、モニタ18に表示される。
FIG. 6 shows a block diagram of the wheel measuring device. Video signals output from the image pickup devices 7 and 8 are sent to A / D converters 13 and 14, respectively, and converted into digital signals. The image data converted to digital signals is CP
It is stored in the frame memory 16 by U15, and binarization processing and edge component extraction processing are performed to calculate the shape and dimensions of each part of the wheel. The image data stored in the frame memory 16 is output via the D / A converter 17 as needed and displayed on the monitor 18.

【0010】フレームメモリ16に格納された画像データ
をモニタ18に表示した車輪踏面の輪郭像を図7に、車輪
内側側面部の画像を図8にそれぞれ示す。図7において
フランジ端面から一定距離だけ離れたポイントをAm 点
とし、Am 点からある一定距離mm だけ離れたポイント
をBm 点とする。また、フランジの先端部をCm 点す
る。Am 点の勾配を算出することによりψm を、フラン
ジ端面からBm 迄の距離を算出することによりβm を、
フランジ先端部Cm からAm までの距離を算出すること
によりγm をそれぞれ算出することができる。
FIG. 7 shows a contour image of a wheel tread in which the image data stored in the frame memory 16 is displayed on the monitor 18, and FIG. 8 shows an image of the wheel inner side surface. In FIG. 7, the point apart from the flange end surface by a fixed distance is designated as Am point, and the point separated from the Am point by a fixed distance in mm is designated as Bm point. The tip of the flange is pointed to Cm. Ψm is calculated by calculating the gradient of the Am point, and βm is calculated by calculating the distance from the flange end surface to Bm.
Γm can be calculated by calculating the distance from the flange tip portion Cm to Am.

【0011】次に、図8においてフランジ先端から基準
線までの距離δm を算出することができる。車輪内側側
面で照射される細帯状光のラインと車輪踏面で照射され
る細帯状光のラインとが車輪中心と車輪外周面とを結ぶ
直線上に一致するよう光軸を一致させ、車輪内側側面の
画像入力タイミングと車輪踏面の画像入力タイミングと
を一致させているため車輪径算出においては、図7で算
出したδm から図8で算出したγm を引き、車輪の基準
径Nを加算することにより車輪径αm を算出することが
できる。ただし、図7、図8に示したように、フレーム
メモリに格納された画像データにおいては、照明装置と
撮像装置および車輪との位置関係により実際の踏面形状
に比べて歪んだ画像となっており、上記の形状測定にお
いてはこの歪を補正することが必要となる。撮像装置に
より入力された踏面部の画像データをもとに実際の車輪
各部の寸法に補正する方法を以下に示す。
Next, in FIG. 8, the distance δm from the flange tip to the reference line can be calculated. The optical axes are aligned so that the line of the strip-shaped light emitted from the inner side surface of the wheel and the line of the strip-shaped light emitted from the tread surface of the wheel coincide with the straight line connecting the wheel center and the outer peripheral surface of the wheel. Since the image input timing of is matched with the image input timing of the wheel tread, the wheel diameter is calculated by subtracting γm calculated in FIG. 8 from δm calculated in FIG. 7 and adding the reference diameter N of the wheel. The wheel diameter αm can be calculated. However, as shown in FIGS. 7 and 8, in the image data stored in the frame memory, the image is distorted compared to the actual tread shape due to the positional relationship between the illumination device, the imaging device, and the wheels. In the above shape measurement, it is necessary to correct this distortion. A method for correcting the actual dimensions of each part of the wheel based on the image data of the tread portion input by the imaging device will be described below.

【0012】図9は車輪踏面の画像撮像用の機器配置を
示しており、細帯状光の作る平面をL、撮像装置7の中
心軸に垂直な平面をC、平面Lと平面Cとのなす角度、
すなわち撮像装置7の傾斜角をθとする。フレームメモ
リ上の座標Xf,Yf平面、平面L上の座標をXl,Y
l座標、平面C上座標をXc,Yc平面とすると、フレ
ームメモリ上の座標xf,yfから平面C上の座標x
c,ycへの変換は数式1および数式2によって行なわ
れる。
FIG. 9 shows the arrangement of equipment for imaging an image of the tread surface of a wheel. The plane formed by the strip light is L, the plane perpendicular to the central axis of the image pickup device 7 is C, and the planes L and C are formed. angle,
That is, the inclination angle of the imaging device 7 is θ. The coordinates on the frame memory are Xf and Yf planes, and the coordinates on the plane L are Xl and Y.
If the l coordinate and the coordinates on the plane C are the Xc and Yc planes, the coordinates xf and yf on the frame memory are converted to the coordinates x on the plane C.
The conversion into c and yc is performed by the formulas 1 and 2.

【0013】[0013]

【数1】 [Equation 1]

【0014】[0014]

【数2】 [Equation 2]

【0015】ここで、xm0,ym0はXc,Yc座標
の原点座標に対応するXm,Ym座標のx,y座標であ
る。また、Mx,Myはそれぞれフレームメモリ画面に
おけるXf,Yf方向の1画素あたりの長さmm)を表し
ている。C平面上の座標(xc,yc)のL平面上の座
標(xl,yl)への変換は数式3および数式4によっ
て行なわれる。
Here, xm0 and ym0 are x and y coordinates of Xm and Ym coordinates corresponding to origin coordinates of Xc and Yc coordinates. Further, Mx and My represent the length (mm) per pixel in the Xf and Yf directions in the frame memory screen, respectively. The conversion of the coordinates (xc, yc) on the C plane to the coordinates (xl, yl) on the L plane is performed by Expressions 3 and 4.

【0016】[0016]

【数3】 [Equation 3]

【0017】[0017]

【数4】 [Equation 4]

【0018】ここで、hはC平面の座標の原点から撮像
装置までの距離である。数式1〜数式4より、フレーム
メモリ上の座標から実際の車輪踏面の座標を求める式は
数式5および数式6となる。
Here, h is the distance from the origin of the coordinates of the C plane to the image pickup device. From Equations 1 to 4, Equations 5 and 6 are used to obtain the actual coordinates of the wheel tread from the coordinates on the frame memory.

【0019】[0019]

【数5】 [Equation 5]

【0020】[0020]

【数6】 [Equation 6]

【0021】図10は車輪内側側面部の画像撮像用の機器
配置を示しており、車輪の方線軸方向と撮像装置の軸と
を同一とした場合にはフレームメモリ上の画像データの
座標と実際の車輪上の座標とは単純にMh倍されている
に過ぎず、画像データ上のδm の値と車輪上のδの値と
の関係は数式7で示される。
FIG. 10 shows the arrangement of equipment for image pickup on the inner side surface of the wheel. When the direction of the wheel axis and the axis of the image pickup device are the same, the coordinates of the image data on the frame memory and the actual coordinates are shown. The coordinates on the wheel are simply multiplied by Mh, and the relationship between the value of δm on the image data and the value of δ on the wheel is expressed by Equation 7.

【0022】[0022]

【数7】 [Equation 7]

【0023】ここで、Mhは車輪上の単位長と画像メモ
リ上の単位長との比較係数である。次に上記車輪測定装
置を左右の車輪用にそれぞれ設置し、両側の車輪間隔寸
法を測定する方法について示す。図11は左右の車輪用に
それぞれ車輪測定装置を配置した一実施例を示す構成図
で、左右の車輪に対して上記測定装置により内側端面の
座標を測定し、それぞれの車輪の内側端面の座標をもと
に車輪の間隔寸法を求めることができる。また、設置後
の両側の装置の位置ズレを校正するため、車輪間幅が既
知の車輪により定期的に校正することも必要である。
Here, Mh is a comparison coefficient between the unit length on the wheel and the unit length on the image memory. Next, a method of installing the above wheel measuring device for each of the left and right wheels and measuring the distance between the wheels on both sides will be described. FIG. 11 is a configuration diagram showing an embodiment in which a wheel measuring device is arranged for each of the left and right wheels, and the coordinates of the inner end surface of the left and right wheels are measured by the measuring device, and the coordinates of the inner end surface of each wheel are measured. The distance between the wheels can be calculated based on Further, in order to calibrate the positional deviation of the devices on both sides after installation, it is also necessary to periodically calibrate the wheels with a wheel width known.

【0024】[0024]

【発明の効果】以上のように、この発明によれば、車輪
踏面の形状と車輪の内側側面の形状を映像信号としてと
らえ、それぞれの画像から車輪踏面の形状や車輪径寸
法、あるいは車輪間の寸法を算出するので、車両を移動
させながら測定できる。
As described above, according to the present invention, the shape of the wheel tread surface and the shape of the inner side surface of the wheel are captured as a video signal, and the shape of the wheel tread surface, the wheel diameter dimension, or the distance between the wheels is determined from each image. Since the dimensions are calculated, it is possible to measure while moving the vehicle.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施に係る車輪の踏面および内側側
面の要部を示す車輪の正面図である。
FIG. 1 is a front view of a wheel showing essential parts of a tread surface and an inner side surface of a wheel according to an embodiment of the present invention.

【図2】この発明の一実施例を示す車輪測定装置の構成
図である。
FIG. 2 is a configuration diagram of a wheel measuring device showing an embodiment of the present invention.

【図3】図2に係る車輪に照射される細帯状光の照射位
置を示す説明図である。
FIG. 3 is an explanatory diagram showing irradiation positions of strip-shaped light that is irradiated onto the wheels according to FIG.

【図4】図2に係る各機器の配置を示す説明図である。FIG. 4 is an explanatory diagram showing an arrangement of each device according to FIG.

【図5】図2に係る車輪径変化により発生する誤差の説
明図である。
5 is an explanatory diagram of an error caused by a change in wheel diameter according to FIG.

【図6】図2の要部を示すブロック図である。FIG. 6 is a block diagram showing a main part of FIG.

【図7】図2に係る細帯状光が照射された踏面の画像を
示す説明図である。
FIG. 7 is an explanatory diagram showing an image of the tread surface irradiated with the strip-shaped light according to FIG.

【図8】図2に係る細帯状光が照射された車輪の内側側
面の画像を示す説明図である。
FIG. 8 is an explanatory diagram showing an image of the inner side surface of the wheel irradiated with the strip-shaped light according to FIG. 2;

【図9】図2に係る実平面とフレームメモリ上の平面と
の関係を示す説明図である。
9 is an explanatory diagram showing a relationship between a real plane according to FIG. 2 and a plane on a frame memory.

【図10】図2に係る車輪の内側側面の画像を撮像する
撮像装置と光源、車輪との位置関係を示す説明図であ
る。
FIG. 10 is an explanatory diagram showing a positional relationship between an imaging device that captures an image of the inner side surface of the wheel according to FIG. 2, a light source, and the wheel.

【図11】他の発明の一実施例を示す構成図である。FIG. 11 is a configuration diagram showing an embodiment of another invention.

【符号の説明】[Explanation of symbols]

1 車輪 2 車輪内側側面 3 フランジ 4 踏面 5 車輪踏面を細帯状光で照射する光源 6 車輪内側側面を細帯状光で照射する光源 7 車輪踏面の映像を入力する撮像装置 8 車輪内側側面の映像を入力する撮像装置 9 画像信号処理装置 10 光電スイッチ 11 レール 12 車両の台車 13,14 A/D変換器 15 CPU 16 フレームメモリ 17 D/A変換器 18 モニタ表示器 1 wheel 2 wheel inner side surface 3 flange 4 tread surface 5 light source that illuminates the wheel tread surface with strip light 6 light source that illuminates the wheel inner surface with strip light 7 image pickup device that inputs the image of the wheel tread surface 8 image of the wheel inner surface Input imaging device 9 Image signal processing device 10 Photoelectric switch 11 Rail 12 Vehicle bogie 13,14 A / D converter 15 CPU 16 Frame memory 17 D / A converter 18 Monitor display

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 車輪の踏面と上記車輪の中心軸とを結ぶ
線上に細帯状の第1の光を照射する第1の光源と、上記
車輪の内側の側面に上記踏面と上記車輪の中心軸とを結
ぶ線上に細帯状の第2の光を照射する第2の光源と、上
記第1の光により照射された上記踏面の像を撮像する第
1の撮像装置と、上記第2の光により照射された上記車
輪の内側の側面を撮像する第2の撮像装置と、上記両撮
像装置により得られる映像信号をもとに上記車輪の踏面
の寸法及び上記車輪の直径を算出する車輪径測定装置。
1. A first light source for irradiating a first strip-shaped light on a line connecting a tread surface of a wheel and a central axis of the wheel, and a tread surface and a central axis of the wheel on an inner side surface of the wheel. A second light source that irradiates a strip-shaped second light on a line connecting the line, a first imaging device that captures an image of the tread surface that is illuminated by the first light, and a second light. A second image pickup device for picking up an image of the irradiated inner side surface of the wheel, and a wheel diameter measuring device for calculating the dimension of the tread surface of the wheel and the diameter of the wheel based on video signals obtained by the both image pickup devices. .
【請求項2】 第1の光および第2の光の照射位置にあ
わせて上記第1の光および第2の光とは波長の異なる光
電スイッチを設置し、上記光電スイッチからの車輪検出
信号に同期して踏面に照射される第1の光と内側側面に
照射される第2の光が車輪上で一直線になる地点に車輪
が来たことを検出して車輪の画像を入力することを特徴
とする請求項1に記載の車輪測定装置。
2. A photoelectric switch having a wavelength different from that of the first light and the second light is installed in accordance with the irradiation position of the first light and the second light, and a wheel detection signal from the photoelectric switch is provided. A feature is that the wheel image is input by detecting that the wheel arrives at a point where the first light radiated on the tread surface and the second light radiated on the inner side surface are aligned on the wheel in synchronization. The wheel measuring device according to claim 1.
【請求項3】 レール上を移動する車輪の踏面と車輪の
中心軸を結ぶ線上に細帯状の第1の光を照射する第1の
光源と、上記車輪の内側の側面に上記踏面と上記車輪の
中心軸とを結ぶ線上に細帯状の第2の光を照射する第2
の光源と、上記レールの直下に配置され上記レールのス
リットを通して上記第1の光により上記踏面の像を撮像
する上記第1の光により照射された上記踏面の像を撮像
する第1の撮像装置と、上記第2の光により照射された
上記車輪の内側の側面を撮像する第2の撮像装置と、上
記両撮像装置により得られる映像信号をもとに上記車輪
の踏面の寸法及び上記車輪の直径を算出する車輪測定装
置。
3. A first light source for emitting a first strip-shaped light on a line connecting a tread surface of a wheel moving on a rail and a central axis of the wheel, and the tread surface and the wheel on an inner side surface of the wheel. The second strip-shaped second light is radiated on the line connecting the central axis of the
Image pickup device for picking up the image of the tread surface illuminated by the first light, which image is taken for the tread surface by the first light through the light source and the slit of the rail, which is arranged immediately below the rail. A second image pickup device for picking up an image of the inner side surface of the wheel illuminated by the second light, and the dimensions of the tread surface of the wheel and the wheel based on the video signals obtained by the two image pickup devices. Wheel measuring device that calculates the diameter.
【請求項4】 上記車輪測定装置を左右両側に設置し、
両側の車輪のフランジ端面の位置座標を測定することに
より、両側の車輪の間隔を算出することを特徴とする車
輪測定装置。
4. The wheel measuring device is installed on both left and right sides,
A wheel measuring device, characterized in that the distance between the wheels on both sides is calculated by measuring the position coordinates of the flange end faces of the wheels on both sides.
JP27283192A 1992-10-12 1992-10-12 Wheel measuring device Pending JPH06123608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27283192A JPH06123608A (en) 1992-10-12 1992-10-12 Wheel measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27283192A JPH06123608A (en) 1992-10-12 1992-10-12 Wheel measuring device

Publications (1)

Publication Number Publication Date
JPH06123608A true JPH06123608A (en) 1994-05-06

Family

ID=17519382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27283192A Pending JPH06123608A (en) 1992-10-12 1992-10-12 Wheel measuring device

Country Status (1)

Country Link
JP (1) JPH06123608A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003232A (en) * 1996-08-22 1999-12-21 Patentes Talgo,S.A. Installation for measuring the wheel offset of railway vehicles
JP2006248480A (en) * 2005-03-14 2006-09-21 Railway Technical Res Inst Program, information recording medium, and contacting characteristic evaluating device
CN100449259C (en) * 2006-12-18 2009-01-07 杭州电子科技大学 On-line detection method and device for vehicle wheel set diameter
JP2009537837A (en) * 2006-05-23 2009-10-29 ヘーゲンシャイト−エムエフデー ゲー・エム・ベー・ハー ウント コー カー・ゲー Measuring equipment for detecting wheel shaft status
WO2013052100A1 (en) * 2011-10-03 2013-04-11 International Electronic Machines Corporation Brake component monitoring
CN104482870A (en) * 2014-12-18 2015-04-01 成都铁安科技有限责任公司 Locomotive wheel diameter detection method
CN104494645A (en) * 2014-12-18 2015-04-08 西南交通大学 Detecting system and detecting unit thereof
AU2018200755B2 (en) * 2017-02-02 2019-05-30 Vale S.A. The railway wheels monitoring system and method
CN107677849B (en) * 2017-10-11 2019-11-22 唐智科技湖南发展有限公司 A kind of wheel wheel footpath modification method, device and equipment
CN112985341A (en) * 2021-02-07 2021-06-18 中国第一汽车股份有限公司 Portable passenger car approach angle, departure angle and rim height combined measuring instrument

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6003232A (en) * 1996-08-22 1999-12-21 Patentes Talgo,S.A. Installation for measuring the wheel offset of railway vehicles
JP2006248480A (en) * 2005-03-14 2006-09-21 Railway Technical Res Inst Program, information recording medium, and contacting characteristic evaluating device
JP4657767B2 (en) * 2005-03-14 2011-03-23 財団法人鉄道総合技術研究所 Program, information storage medium and contact characteristic evaluation device
JP2009537837A (en) * 2006-05-23 2009-10-29 ヘーゲンシャイト−エムエフデー ゲー・エム・ベー・ハー ウント コー カー・ゲー Measuring equipment for detecting wheel shaft status
CN100449259C (en) * 2006-12-18 2009-01-07 杭州电子科技大学 On-line detection method and device for vehicle wheel set diameter
WO2013052100A1 (en) * 2011-10-03 2013-04-11 International Electronic Machines Corporation Brake component monitoring
US9945652B2 (en) 2011-10-03 2018-04-17 International Electronic Machines Corporation Brake component monitoring
CN104482870A (en) * 2014-12-18 2015-04-01 成都铁安科技有限责任公司 Locomotive wheel diameter detection method
CN104494645A (en) * 2014-12-18 2015-04-08 西南交通大学 Detecting system and detecting unit thereof
AU2018200755B2 (en) * 2017-02-02 2019-05-30 Vale S.A. The railway wheels monitoring system and method
CN107677849B (en) * 2017-10-11 2019-11-22 唐智科技湖南发展有限公司 A kind of wheel wheel footpath modification method, device and equipment
CN112985341A (en) * 2021-02-07 2021-06-18 中国第一汽车股份有限公司 Portable passenger car approach angle, departure angle and rim height combined measuring instrument

Similar Documents

Publication Publication Date Title
US20040095585A1 (en) Wheel profile inspection apparatus and method
CN108725511B (en) Real-time position correction method for rail corrugation measuring point
IT201700002416A1 (en) AUTOMATED MOBILE EQUIPMENT FOR DETECTION AND CLASSIFICATION OF BODY DAMAGE
JPH06123608A (en) Wheel measuring device
JP3099691B2 (en) Object position measurement method on traveling road
JP3107628B2 (en) Optical shape recognition device
JP2001357488A (en) Vehicle dimension measuring device
JP3320858B2 (en) Imaging range detection method in surface inspection
JP3019901B2 (en) Vehicle specification automatic measurement device
JP3958566B2 (en) Measuring equipment for railway vehicles
JP3094051B2 (en) Wheel measuring device
JP4671527B2 (en) Mounting component inspection method and inspection device
JP2974223B2 (en) Optical shape recognition device
JP2918788B2 (en) Shape measuring device
JP3723881B2 (en) Orbit spacing measurement method and orbit spacing measuring apparatus
WO2013051624A1 (en) Velocity measurement device
JP2017215823A (en) Inspection image creation device
JP2009042978A (en) Print identification apparatus and print identification method
JPH10288517A (en) Wafer measuring method
JPH06307812A (en) Method and device for measuring three-dimensional position on curved surface
JPH0560559A (en) Height measuring apparatus
JP3013254B2 (en) Shape measurement method
JP2879357B2 (en) Shape judgment method
JPH0894318A (en) Optical position measuring method
JP2690431B2 (en) Shape measuring device