JPH06121668A - Culture of microorganism and production of substance by microorganism - Google Patents

Culture of microorganism and production of substance by microorganism

Info

Publication number
JPH06121668A
JPH06121668A JP5077486A JP7748693A JPH06121668A JP H06121668 A JPH06121668 A JP H06121668A JP 5077486 A JP5077486 A JP 5077486A JP 7748693 A JP7748693 A JP 7748693A JP H06121668 A JPH06121668 A JP H06121668A
Authority
JP
Japan
Prior art keywords
culture
magnetic field
microorganism
gauss
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5077486A
Other languages
Japanese (ja)
Inventor
Masahiko Okuda
田 正 彦 奥
Kazunari Saito
藤 一 功 斎
Makoto Shoda
田 誠 正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5077486A priority Critical patent/JPH06121668A/en
Publication of JPH06121668A publication Critical patent/JPH06121668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To obtain a substance such as antibiotic surfactin from Bacillus subtilis, by culturing a microorganism in a magnetic field, collecting a substance produced by the microorganism, promoting multiplication of the microorganism and extremely raising productivity of the substance produced by the microorganism. CONSTITUTION:Two culture tanks 17 and 18 of double container structure composed of a heat insulating material are arranged on the same axial center separately in the right and left direction and reaction solutions 16 containing a nutrient medium and a microorganism (e.g. Bacillus subtilis) are added to the culture tanks 17 and 18. The culture tanks 17 and 18 are connected through communicating members 20 and 21 to a shaking mechanism 19 at the central part and reciprocated by the shaking mechanism 19. The culture tank 18 is arranged on the central axial center in the interior of a superconducting magnet 22 and the culture tank 17 is laid in a magnetic shield 23. The temperature of the culture tanks 17 and 18 is set at a culture temperature. On the other hand, the culture tank 18 is subjected to shaking culture in the magnetic field and the other culture tank 17 undergoes shaking culture in a nonmagnetic field. Products (e.g. surfactin) in the culture tanks are compared, the culture in the magnetic field has extremely raised productivity of the substance by the microorganism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁場、特に超電導電磁
石よって発生させられた均質磁場又は変動磁場の中で微
細生物を培養する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing microscopic organisms in a magnetic field, particularly a homogeneous magnetic field or a fluctuating magnetic field generated by a superconducting electromagnet.

【0002】[0002]

【発明が解決しようとする課題】本発明では微細生物を
短時間で大量に増殖させたり、微細生物が生産する物質
を短時間に大量に生産させることを目的としている。
The object of the present invention is to grow a large amount of fine organisms in a short time or to produce a large amount of a substance produced by a fine organism in a short time.

【0003】[0003]

【課題を解決するための手段】本発明は、磁場、特に超
電導電磁石によって発生させられた均質な磁場の中で、
あるいは磁場の強度を変化させながら微細生物を培養す
ることによって、微細生物を短時間に大量に増殖させた
り、微細生物が生産する物質を短時間を大量に生産させ
ることを可能としたものである。
SUMMARY OF THE INVENTION The present invention provides a magnetic field, particularly in a homogeneous magnetic field generated by a superconducting electromagnet,
Alternatively, by culturing microscopic organisms while changing the strength of the magnetic field, it is possible to grow a large amount of microscopic organisms in a short time or to mass-produce a substance produced by a microscopic organism in a short time. .

【0004】本発明における微細生物とは、細菌、か
び、酵母 などの微生物、動物細胞、植物細胞などすべ
ての微細生物を意味している。また、これら微細生物に
は各種抗生物質や各種酵素などの物質を生産する微細生
物や遺伝子操作した各種微細生物を包含している。
The term "microorganism" in the present invention means all microorganisms such as microorganisms such as bacteria, fungi, yeasts, animal cells, plant cells and the like. In addition, these microscopic organisms include microscopic organisms that produce substances such as various antibiotics and various enzymes, and various microscopic organisms that have been genetically engineered.

【0005】本発明においては、強度0.5ガウス〜2
0万ガウスの均質磁場あるいは0ガウス〜20万ガウス
変動磁場を印加しながら微細生物を培養する。
In the present invention, the strength is 0.5 gauss to 2
The microscopic organism is cultured while applying a homogeneous magnetic field of 0,000 gauss or a fluctuating magnetic field of 0 to 200,000 gauss.

【0006】本発明における均質磁場とは、場所によら
ず磁場強度が等しく、時間に依存して磁場強度が変化し
ない磁場を意味している。
The homogeneous magnetic field in the present invention means a magnetic field whose magnetic field strength is equal regardless of location and whose magnetic field strength does not change with time.

【0007】また、本発明における変動磁場とは、時間
に依存して磁場強度が変化する磁場を意味している。実
際には、培養容器に印加しつつある磁力を経時的に変化
させて変動磁場とすることができる。また、印加しつつ
ある同じ磁力であっても、電流のオン、オフによって磁
力を与えたり、与えなくしたりして変動磁場とすること
もできる。更に、磁力の変化とオン、オフを組合せるこ
とも可能である。また、磁場の強度は一定として、培養
容器の移動、例えば振とう培養などを行ったり、磁場そ
のものを移動させたりして、変動磁場とすることもでき
る。更に、磁場の強度の変化と培養容器の移動などを適
宜組合せて変動磁場とすることもできる。
The fluctuating magnetic field in the present invention means a magnetic field whose magnetic field strength changes with time. In practice, the magnetic force being applied to the culture vessel can be changed over time to produce a fluctuating magnetic field. Further, even if the same magnetic force is being applied, the magnetic field can be changed by turning the current on and off to give or not give the magnetic force. Further, it is also possible to combine the change of the magnetic force and the on / off. Further, it is also possible to make the fluctuating magnetic field by moving the culture vessel, for example, shaking culture or moving the magnetic field itself, with the strength of the magnetic field being constant. Further, it is also possible to form a fluctuating magnetic field by appropriately combining changes in the strength of the magnetic field and movement of the culture vessel.

【0008】本発明における磁場の印加は、強度0.5
ガウス〜1.5万ガウス程度であれば従来の電磁石でよ
いが、強度0.5ガウス〜20万ガウスの印加であれば
超電導電磁石によるのがよい。この磁場は均質磁場、変
動磁場のいずれにも適応できる。
The magnetic field applied in the present invention has an intensity of 0.5.
A conventional electromagnet may be used as long as it is about Gauss to 15,000 Gauss, but a superconducting electromagnet may be used if strength of 0.5 Gauss to 200,000 Gauss is applied. This magnetic field can be applied to both a homogeneous magnetic field and a varying magnetic field.

【0009】本発明に用いる超電導電磁石は、従来周知
のもので、内部は−269℃の冷媒のなかにニオブ合金
やニオブ化合物からなるコイルが入れられ、このコイル
に高圧の電流を通し、強度0.5ガウス〜20万ガウス
の磁場を作成する。
The superconducting electromagnet used in the present invention is well known in the art, and a coil made of a niobium alloy or a niobium compound is put in a refrigerant at -269 ° C., and a high-voltage current is passed through the coil to obtain 0 strength. Create a magnetic field of 0.5 Gauss to 200,000 Gauss.

【0010】本発明においては、培養槽をかこむように
作成された超電導電磁石を使用するのがよい。
In the present invention, it is preferable to use a superconducting electromagnet constructed so as to enclose the culture tank.

【0011】本発明において、磁場中で微細生物を培養
すれば微細生物体はよく増殖し、抗生物質等の生産性は
高まるのであるが、その理由の詳細は明らかではない。
しかし、微細生物が磁場の印加を受け、細胞膜に変化が
起り、栄養分の吸収速度が早くなって、微細生物体内の
各種物質の生産が増進し、増殖が活発になることは考え
られる。また、増殖が活発になれば、抗生物質等の物質
を生産する各遺伝子もそれにともなってふえることとな
り、物質の生産性が高まることは考えられる。
In the present invention, if microbes are cultured in a magnetic field, the microbes proliferate well and the productivity of antibiotics and the like increases, but the details of the reason are not clear.
However, it is conceivable that the microscopic organisms are subjected to the application of a magnetic field, the cell membrane is changed, the absorption rate of nutrients is accelerated, the production of various substances in the microscopic organisms is increased, and the proliferation is activated. Further, if the proliferation becomes active, each gene that produces a substance such as an antibiotic will increase accordingly, and it is considered that the productivity of the substance is increased.

【0012】次に、本発明の実施例を図面を参照しなが
ら説明する。
Next, embodiments of the present invention will be described with reference to the drawings.

【0013】[0013]

【実施例1】図1は本実施例に用いた装置(バイオリア
クター)を示す。
Example 1 FIG. 1 shows an apparatus (bioreactor) used in this example.

【0014】図1のバイオリアクターにおいて、絶縁性
の材料を二重容器構造としてなる二つの培養槽17、1
8が、同一軸芯上で左右方向に離間して配設されてお
り、この各培養槽17、18の内部には、それぞれ反応
液16、16が収容されている。上記培養槽17、18
は、その中央部分で共通の振とう機構19と絶縁性の材
料からなる連結部材20、21を介して連結されてお
り、この振とう機構19により上記軸芯上において水平
往復振とうされる。一方の上記培養槽18は、超電導電
磁石(以下電磁石という)22内部の中心軸上に位置し
ており、他方の上記培養槽17は、磁気シールド23に
て覆われている。
In the bioreactor of FIG. 1, two culture tanks 17 and 1 having a double container structure made of an insulating material are used.
8 are arranged on the same axis and separated from each other in the left-right direction, and the reaction solutions 16 and 16 are housed in the culture tanks 17 and 18, respectively. The above culture tanks 17 and 18
Is connected to a common shaking mechanism 19 at its central portion via connecting members 20 and 21 made of an insulating material, and is shaken horizontally and reciprocally on the shaft center by the shaking mechanism 19. One of the culture tanks 18 is located on the central axis inside a superconducting electromagnet (hereinafter referred to as an electromagnet) 22, and the other culture tank 17 is covered with a magnetic shield 23.

【0015】図2は超電導電磁石において、最大中心磁
場が7万ガウスのときの磁場分布を示す。中心から半径
15cmの円までは磁場強度が7万ガウスであるが、中
心から距離が遠ざかるに従って磁場強度が弱くなってい
る。従って、培養槽が中心から半径15cmの円内で振
とう培養されるときは均質磁場が印加されることにな
る。
FIG. 2 shows a magnetic field distribution in the superconducting electromagnet when the maximum central magnetic field is 70,000 gauss. The magnetic field strength is 70,000 gauss from the center to a circle with a radius of 15 cm, but the magnetic field strength weakens as the distance from the center increases. Therefore, when the culture tank is shake-cultured within a circle having a radius of 15 cm from the center, a homogeneous magnetic field is applied.

【0016】しかし、図2に示すようにこの中心から半
径15cmより遠ざかると急激に磁場強度は低下する。
図2において5万ガウス〜6万ガウスの勾配磁場のある
ところは中心から25〜30cmの位置にあることにな
る。従って、培養槽の中心を電磁石の中心から25〜3
0cmずらしてセットし、その位置で振とう培養すれば
培養物には磁場強度5万ガウスから6万ガウスの変動磁
場が印加されることになる。これ以上大きな巾で振とう
すれば最大0ガウスから7万ガウスの範囲の変動磁場も
印加可能である。
However, as shown in FIG. 2, the magnetic field strength sharply decreases when the radius is more than 15 cm away from the center.
In FIG. 2, a place having a gradient magnetic field of 50,000 gauss to 60,000 gauss is located 25 to 30 cm from the center. Therefore, the center of the culture tank should be 25 to 3 from the center of the electromagnet.
If they are set with a shift of 0 cm and shake-cultured at that position, a varying magnetic field with a magnetic field strength of 50,000 to 60,000 gauss will be applied to the culture. If it is shaken with a larger width than this, it is possible to apply a varying magnetic field in the range of 0 gauss to 70,000 gauss at maximum.

【0017】上記電磁石22の内部では、最大12万ガ
ウス〜最小500ガウスの均質磁場が発生させられ、こ
の時上記磁気シールド23の内部では、磁場の強さが
0.5ガウス以下(地磁気の強さ0.2ガウス〜0.5
ガウスである。)の値となるように配慮がなされてい
る。
A homogeneous magnetic field of maximum 120,000 gauss to minimum 500 gauss is generated inside the electromagnet 22, and at this time, the magnetic field strength is 0.5 gauss or less (the strength of the earth's magnetism) inside the magnetic shield 23. 0.2 Gauss ~ 0.5
Gauss. ) Is taken into consideration.

【0018】従って、上記培養槽17、18は、振とう
機構19により水平往復振とうさせられながら、この培
養槽17の内部では磁場を印加しない状態において微細
生物の培養が図られ、上記培養槽18を中心から少くと
も15cmずらしてセットしておけば、その内部で変動
磁場を印加した状態において微細生物の増殖が図られ
る。
Therefore, while the culture tanks 17 and 18 are horizontally reciprocally shaken by the shaking mechanism 19, the culture of the fine organisms is achieved in the culture tank 17 without applying a magnetic field. If 18 is set so as to be displaced from the center by at least 15 cm, the growth of microscopic organisms can be achieved in the state in which a fluctuating magnetic field is applied.

【0019】更に、上記培養槽17、18は、その二重
構造部分に循環水が満たされており、この部分と外部に
配設された一組の加熱・冷却装置24とは、ポンプ25
を介してチューブ26、27にて閉ループの状態にて接
続されている。上記チューブ26、27は同一仕様の絶
縁性材料からなり、このチューブ26、27内を流通さ
れる循環水にて、上記培養槽17、18内部の各反応液
16、16が例えば−5℃〜75℃の設定値となるよう
に温度調節される。尚この場合の温度情報は、上記培養
槽17、18に取り付けられた温度センサ28、29に
て取り込まれる。
Furthermore, the culture tanks 17 and 18 have their double-structured parts filled with circulating water, and this part and a pair of heating / cooling devices 24 arranged outside are provided with a pump 25.
The tubes 26 and 27 are connected to each other in a closed loop state. The tubes 26 and 27 are made of an insulating material having the same specifications, and the reaction liquids 16 and 16 in the culture tanks 17 and 18 are, for example, at −5 ° C. or higher with circulating water circulating in the tubes 26 and 27. The temperature is adjusted so that the set value is 75 ° C. The temperature information in this case is captured by the temperature sensors 28 and 29 attached to the culture tanks 17 and 18.

【0020】本実施例では、このバイオリアクターを用
いて微生物を培養することにより、均質磁場を印加した
時の抗生物質の生産と均質磁場を印加しない対照の生産
とを同時に可能とし、磁場の印加による抗生物質の生産
速度の変化を精度良く把握できる。
In this example, by culturing microorganisms using this bioreactor, it is possible to simultaneously produce an antibiotic when a homogeneous magnetic field is applied and a control without applying a homogeneous magnetic field. It is possible to accurately grasp changes in the production rate of antibiotics due to.

【0021】上述のバイオリアクターを用いて、7万ガ
ウスの均質磁場を印加した培養槽18と対照(地磁気レ
ベル)の培養槽17内での、枯草菌(Bacillus
subtilis)の抗生物質サーファクチンの生産
速度を比較した。
Using the bioreactor described above, Bacillus subtilis (Bacillus subtilis) in a culture tank 18 to which a homogenous magnetic field of 70,000 gauss was applied and a control (geomagnetic level) culture tank 17 were used.
subtilis) antibiotic surfactin production rates were compared.

【0022】枯草菌はサーファクチンの生産に関係した
遺伝子を保持するプラスミドpC112を遺伝子操作に
より導入したものと導入しないものを用いた。生産条件
として液体培養の場合と固体培養の場合について調ベ
た。それぞれの培地組成および温度条件、振とう条件は
以下のとおりである; 1.液体培養の場合 液体培養:10g ポリペプトン、10g グルコー
ス、1g KH2PO47H2O、0.5g MgSO4
2O、蒸留水1リットル(pH=7)、温度:30
℃、振とう速度:120rpm 2.固体培養の場合 固体培地:15g ふすま、蒸留水1.5ミリリット
ル、枯草菌液 3ミリリットル、温度:25℃、振とう
なし
As Bacillus subtilis, a plasmid pC112 carrying a gene related to the production of surfactin and a plasmid pC112 introduced by gene manipulation were used and those not introduced. The production conditions were set for liquid culture and solid culture. The composition of each medium, temperature conditions, and shaking conditions are as follows: In case of liquid culture Liquid culture: 10 g polypeptone, 10 g glucose, 1 g KH 2 PO 4 7H 2 O, 0.5 g MgSO 4 7
H 2 O, distilled water 1 liter (pH = 7), temperature: 30
° C, shaking speed: 120 rpm 2. In the case of solid culture Solid medium: 15 g Bran, 1.5 ml of distilled water, 3 ml of Bacillus subtilis liquid, temperature: 25 ° C, no shaking

【0023】図3は液体培養の場合のサーファクチンの
生産量を比較した図である。遺伝子操作しない枯草菌を
均質磁場を印加せず培養する対照培養でのサーファクチ
ンの生産量、遺伝子操作を行い均質磁場を印加しない場
合のサーファクチンの生産量、および遺伝子操作を行い
均質磁場を印加した場合のサーファクチンの生産量の培
養日数に対する変化を示している。生産量は液体培地の
容量当たりのサーファクチンの生産量である。いずれの
場合も日数が経つにつれ生産量が増大し十分日数が経つ
と一定になる傾向がある。また、培養の初期で遺伝子操
作した菌を均質磁場を印加しないで培養した時の生産量
は対照の生産量よりも大きく短時間で定常値に達してい
る。遺伝子操作した菌を均質磁場を印加して培養した時
は、さらに短時間で高い定常値に達している。
FIG. 3 is a diagram comparing the amount of surfactin produced in liquid culture. Bacillus subtilis that is not genetically manipulated is cultivated without applying a homogenous magnetic field, the amount of surfactin produced in a control culture, the amount of surfactin that is genetically manipulated without applying a homogenous magnetic field, and the genetic manipulation is applied The change in the amount of surfactin produced with respect to the number of culture days is shown. The production amount is the production amount of surfactin per volume of liquid medium. In either case, the production amount tends to increase as the number of days passes, and tends to become constant after a sufficient number of days have passed. In addition, the production amount of the gene-engineered bacterium in the initial stage of culturing was higher than that of the control and reached a steady value in a short time, when the strain was cultured without applying a homogeneous magnetic field. When the genetically engineered bacterium was cultured by applying a homogeneous magnetic field, it reached a high steady value in a shorter time.

【0024】図4は固体培養の場合のサーファクチンの
生産量を比較した図である。生産量は固体培地の乾燥重
量当たりに生産されたサーファクチンの重量を示してい
る。この場合も液体培養の場合と同様であり、遺伝子操
作した菌のサーファクチンの生産量は、対照よりも短時
間で高い定常値に達しており、均質磁場の印加によりさ
らに短時間で定常値に達している。
FIG. 4 is a diagram comparing the amount of surfactin produced in solid culture. The production amount indicates the weight of surfactin produced per dry weight of the solid medium. In this case as well, as in the case of liquid culture, the amount of surfactin produced by the genetically engineered bacterium reached a higher steady-state value in a shorter time than the control, and it reached a steady-state value in a shorter time by applying a homogeneous magnetic field. Has reached

【0025】これらの結果は、遺伝子操作により抗生物
質の生産速度が高まることを示しており、短時間で抗生
物質を生産でき、生産効率が増すことを示している。ま
た、遺伝子操作した菌に均質磁場を印加することにより
さらに生産速度および生産量が増し生産効率が向上する
ことを意味している。
These results show that genetic engineering increases the production rate of antibiotics, indicating that antibiotics can be produced in a short time and the production efficiency is increased. Further, it means that the production rate and the production amount are further increased and the production efficiency is improved by applying the homogenous magnetic field to the genetically modified bacteria.

【0026】[0026]

【実施例2】前述のバイオリアクターを用いて、5万〜
6万ガウスの変動磁場を印加した培養槽18と対照(地
磁気レベル)の培養槽17内での、大腸菌(E.col
iB(pBR322)株)の増殖速度を比較した。培地
組成、温度条件、振とう条件は次のとおりである。 液体培地(L培地):10g ポリペフトン、10g
グルコース、1g KH2PO47H2O、0.5g M
gSO47H2O、蒸留水1リットル(pH=7)、温
度:30℃、振とう速度:120rpm
Example 2 Using the bioreactor described above,
E. coli (E. col.) In the culture tank 18 to which a variable magnetic field of 60,000 gauss was applied and the control (geomagnetic level) culture tank 17 was used.
The growth rates of iB (pBR322) strain were compared. The medium composition, temperature conditions, and shaking conditions are as follows. Liquid medium (L medium): 10 g Polypefton, 10 g
Glucose, 1 g KH 2 PO 4 7H 2 O, 0.5 g M
gSO 4 7H 2 O, distilled water 1 liter (pH = 7), temperature: 30 ° C., shaking speed: 120 rpm

【0027】培養の結果、変動磁場の印加によるものは
非磁場の菌数を1として、10時間は2.13倍の菌数
が測定された。再現性確認のために、再度同条件で培養
を行ったところ、やはり非磁場の2.45倍の菌数が測
定された。
As a result of culturing, in the case of applying a fluctuating magnetic field, the number of bacteria in the non-magnetic field was set to 1, and the number of bacteria was 2.13 times for 10 hours. When the culture was performed again under the same conditions to confirm reproducibility, the number of bacteria was 2.45 times that in the non-magnetic field.

【0028】対照として、同じ装置を用いて、培養槽を
磁場の中心部にセットして均質磁場を印加しながら振と
う培養したものは、非磁場の菌数を1として、10時間
後は、1.66倍の菌数が測定されたに過ぎなかった。
同条件で追試したところ非磁場の1.55倍であった。
As a control, using the same device, the culture tank was set at the center of the magnetic field and shake-cultured while applying a homogeneous magnetic field. The number of non-magnetic field bacteria was 1, and after 10 hours, Only 1.66 times the number of bacteria was measured.
When the test was repeated under the same conditions, it was 1.55 times the non-magnetic field.

【0029】これらの結果は次の表1に示される。The results are shown in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】この表から、変動磁場の印加により均質磁
場印加に比べて微細生物の培養速度を増すことが明らか
である。
From this table, it is clear that the application of the fluctuating magnetic field increases the culture rate of the microscopic organisms as compared with the application of the homogeneous magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いたバイオリアクターの説
明図である。
FIG. 1 is an explanatory diagram of a bioreactor used in an example of the present invention.

【図2】超電導電磁石の中心からの距離と磁場強度の関
係を示す図である。
FIG. 2 is a diagram showing the relationship between the distance from the center of a superconducting electromagnet and the magnetic field strength.

【図3】実施例1における液体培養の場合のサーファク
チンの生産量を比較した図である。
FIG. 3 is a diagram comparing the amount of surfactin produced in liquid culture in Example 1.

【図4】実施例1おける固体培養の場合のサーファクチ
ンの生産量を比較した図である。
FIG. 4 is a diagram comparing the amount of surfactin produced in the case of solid culture in Example 1.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 磁場中で微細生物を培養することを特徴
とする微細生物の培養法。
1. A method for culturing a microbe, which comprises culturing the microbe in a magnetic field.
【請求項2】 強度0.5ガウス〜20万ガウスの均質
磁場又は強度0ガウス〜20万ガウスの変動磁場中で微
細生物を培養することを特徴とする微細生物の培養法。
2. A method for culturing a fine organism, which comprises culturing the fine organism in a homogeneous magnetic field having an intensity of 0.5 Gauss to 200,000 Gauss or in a varying magnetic field having an intensity of 0 Gauss to 200,000 Gauss.
【請求項3】 磁場が超電導電磁石によって発生させら
れたものであることを特徴とする請求項1又は2の微細
生物の培養法。
3. The method for culturing micro organisms according to claim 1, wherein the magnetic field is generated by a superconducting electromagnet.
【請求項4】 磁場中で微細生物を培養し、該微細生物
の生産する物質を生産せしめることを特徴とする微細生
物による物質生産法。
4. A method for producing a substance by a micro organism, which comprises culturing the micro organism in a magnetic field to produce a substance produced by the micro organism.
【請求項5】 強度0.5ガウス〜20万ガウスの均質
磁場又は強度0ガウス〜20万ガウス変動磁場中で微細
生物を培養し、該微細生物の生産する物質を生産せしめ
ることを特徴とする微細生物による物質生産法。
5. A microscopic organism is cultured in a homogenous magnetic field having an intensity of 0.5 Gauss to 200,000 Gauss or a varying magnetic field having an intensity of 0 Gauss to 200,000 Gauss to produce a substance produced by the microscopic organism. A method of producing substances by microscopic organisms.
【請求項6】 磁場が超電導電磁石によって発生させら
れたものであることを特徴とする請求項4又は5の微細
生物による物質生産法。
6. The method for producing a substance by a microscopic organism according to claim 4, wherein the magnetic field is generated by a superconducting electromagnet.
JP5077486A 1992-08-27 1993-03-12 Culture of microorganism and production of substance by microorganism Pending JPH06121668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5077486A JPH06121668A (en) 1992-08-27 1993-03-12 Culture of microorganism and production of substance by microorganism

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25045492 1992-08-27
JP4-250454 1992-08-27
JP5077486A JPH06121668A (en) 1992-08-27 1993-03-12 Culture of microorganism and production of substance by microorganism

Publications (1)

Publication Number Publication Date
JPH06121668A true JPH06121668A (en) 1994-05-06

Family

ID=26418557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5077486A Pending JPH06121668A (en) 1992-08-27 1993-03-12 Culture of microorganism and production of substance by microorganism

Country Status (1)

Country Link
JP (1) JPH06121668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011969B2 (en) 2000-09-29 2006-03-14 Showa Denko K.K. Production process of surfactin
EP2074208A2 (en) * 2006-08-21 2009-07-01 Emtech LLC Method and apparatus for magnetic fermentation
CN110217936A (en) * 2018-03-01 2019-09-10 中国农业大学 Utilize the biomembrane magnetic field device and method of photosynthetic organism processing sewage
US10961275B2 (en) 2012-01-27 2021-03-30 Global Bioprotect Ip Pty Ltd Poultry farm practices

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7011969B2 (en) 2000-09-29 2006-03-14 Showa Denko K.K. Production process of surfactin
EP2074208A2 (en) * 2006-08-21 2009-07-01 Emtech LLC Method and apparatus for magnetic fermentation
EP2074208A4 (en) * 2006-08-21 2011-12-21 Emtech Llc Method and apparatus for magnetic fermentation
US10961275B2 (en) 2012-01-27 2021-03-30 Global Bioprotect Ip Pty Ltd Poultry farm practices
CN110217936A (en) * 2018-03-01 2019-09-10 中国农业大学 Utilize the biomembrane magnetic field device and method of photosynthetic organism processing sewage

Similar Documents

Publication Publication Date Title
US4167450A (en) Method and apparatus for the production of secondary metabolites by the maintenance-state cultivation of microorganisms
Adler et al. Miniature Escherichia coli cells deficient in DNA
Liu et al. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density
Weiss Protoplast formation in Escherichia coli
Proper et al. Mass culture of the protozoa Colpoda steinii
Tsuchiya et al. Effect of homogeneous and inhomogeneous high magnetic fields on the growth of Escherichia coli
KR19990013007A (en) Transformed Escherichia Coli S373 (BTCC 8818 P) and Production Method of Succinic Acid Using the Same
US6649408B2 (en) Microdroplet cell culture technique
Nakamura et al. Effect of high magnetic field on the growth of Bacillus subtilis measured in a newly developed superconducting magnet biosystem
Velizarov Electric and magnetic fields in microbial biotechnology: possibilities, limitations, and perspectives
US6593128B1 (en) Method for culturing ciliates
Votruba et al. Physicochemical factors affecting actinomycete growth and secondary metabolism
Chang Studies on Entamoeba histolytica: IV. The relation of oxidation-reduction potentials to the growth, encystation and excystation of Entamoeba histolytica in culture
JPH06121668A (en) Culture of microorganism and production of substance by microorganism
Kiy et al. Continuous high-cell-density fermentation of the ciliated protozoon Tetrahymena in a perfused bioreactor
CN117821555A (en) Alcohol-resistant flora directional screening method based on stepped concentration culture
He High cell density production of Deinococcus radiodurans under optimized conditions
Mori et al. Growth behavior of immobilized acetic acid bacteria
Hedén et al. The electron microscopy of heated bacteria
Lewis A note on the continuous flow culture of mixed populations of lactobacilli and streptococci
Williams et al. Genetic transformation in Methylococcus capsulatus
JPH06261740A (en) Culture of microorganism in magnetic field and production of substance by microorganism
HATTORI Further analysis of plate count data of bacteria
CN106434468A (en) Culture method of magnetotactic bacteria AMB-1
Gerencser et al. Inhibition of bacterial growth in fields of high paramagnetic strength

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees