JPH06120190A - Processing method of semiconductor substrate - Google Patents

Processing method of semiconductor substrate

Info

Publication number
JPH06120190A
JPH06120190A JP26447092A JP26447092A JPH06120190A JP H06120190 A JPH06120190 A JP H06120190A JP 26447092 A JP26447092 A JP 26447092A JP 26447092 A JP26447092 A JP 26447092A JP H06120190 A JPH06120190 A JP H06120190A
Authority
JP
Japan
Prior art keywords
pure water
added
semiconductor substrate
oxide film
rinse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26447092A
Other languages
Japanese (ja)
Other versions
JP2884948B2 (en
Inventor
Yoshitoku Muramatsu
良徳 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26447092A priority Critical patent/JP2884948B2/en
Publication of JPH06120190A publication Critical patent/JPH06120190A/en
Application granted granted Critical
Publication of JP2884948B2 publication Critical patent/JP2884948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PURPOSE:To improve an preventive effect of metal ion deposition by adding a specific range of hydrogen fluoride and a specific value range of hydrogen peroxide or ozone to pure water in case, after a semiconductor substrate is subjected to chemical liquid processing, this semiconductor substrate is rinsed with pure water. CONSTITUTION:A semiconductor substrate is dipped into a noble HF solution of 1% so as to remove a silicon oxide film on the substrate surface. Later, rinse is performed with pure water, in which HF and hydrogen peroxide (H2O2) are added by 10 to 50ppm respectively (hereinafter referred to HF/H2O2 added pure water), for 5 to 20min followed by drying. When the HF/H2O2 added pure water is used, growth of a natural oxide film is suppressed as compared with the non-added and CO2-added pure water. An increase in an effective film thickness is suppressed by using rinse processing immediately before gate thermal oxidation while allowing it to suppress growth of the natural oxidation film deteriorating the insulating pressure resistance of a gate oxidation film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体基板の処理方法に
関し、特に薬液により処理した半導体基板の純水による
リンス方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a semiconductor substrate, and more particularly to a method for rinsing a semiconductor substrate treated with a chemical solution with pure water.

【0002】[0002]

【従来の技術】従来の純水による半導体基板のリンス方
法は、純水に10〜50ppmのフッ化水素(HF)を
添加(以下HF添加純水と記す)している。このように
極微量のHFを添加することにより、無添加の純水に比
べ、半導体基板上の自然酸化膜の成長抑制、殺菌、微粒
子付着防止、金属イオンの沈積防止の効果が得られてい
る。
2. Description of the Related Art In a conventional method of rinsing a semiconductor substrate with pure water, 10 to 50 ppm of hydrogen fluoride (HF) is added to pure water (hereinafter referred to as HF-added pure water). By adding a very small amount of HF in this way, the effects of suppressing the growth of the natural oxide film on the semiconductor substrate, sterilizing, preventing the adhesion of fine particles, and preventing the deposition of metal ions are obtained as compared with pure water without addition. .

【0003】また、より大きな微粒子付着防止効果を得
るために、純水中へのCO2 の添加(以下CO2 添加純
水と記す)も実施されている。
Further, in order to obtain a larger effect of preventing the adhesion of fine particles, CO 2 is added to pure water (hereinafter referred to as CO 2 -added pure water).

【0004】[0004]

【発明が解決しようとする課題】この従来のHF添加純
水による半導体基板の処理方法は、無添加の純水よりは
優れるものの金属イオン沈積防止効果は不十分である。
Although this conventional method for treating a semiconductor substrate with pure water containing HF is superior to pure water without addition, the effect of preventing metal ion deposition is insufficient.

【0005】また、従来のCO2 添加純水は、金属イオ
ン沈積防止効果が全く無く、半導体基板の連続処理によ
り純水中に蓄積される金属不純物のイオンが半導体基板
表面に付着し易いという問題点があった。
Further, the conventional CO 2 -added pure water has no effect of preventing metal ion deposition, and ions of metal impurities accumulated in pure water due to continuous treatment of the semiconductor substrate tend to adhere to the surface of the semiconductor substrate. There was a point.

【0006】[0006]

【課題を解決するための手段】本発明の半導体基板の処
理方法は、半導体基板を薬液処理したのちこの半導体基
板を純水でリンスする半導体基板の処理方法において、
前記純水中に10〜50ppmのフッ化水素と10〜5
0ppmの過酸化水素またはオゾンを添加するものであ
る。
A method for treating a semiconductor substrate according to the present invention is a method for treating a semiconductor substrate, wherein the semiconductor substrate is chemically treated and then rinsed with pure water.
10 to 50 ppm of hydrogen fluoride and 10 to 5 in the pure water
0 ppm of hydrogen peroxide or ozone is added.

【0007】[0007]

【実施例】次に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0008】半導体基板を1%の希HF溶液に浸漬し、
基板表面のシリコン酸化膜を除去した後、HFと過酸化
水素(H2 2 )をそれぞれ10〜50ppm添加した
純水(以下HF/H2 2 添加純水と記す)で、5〜2
0分リンスを行い、乾燥する。一般に用いられる洗浄液
HF、HCl/H2 2 などは、比較的濃い酸やアルカ
リであるため、半導体基板表面に洗浄液に起因するイオ
ンが吸着し、デバイス特性を劣化させることが知られて
おり、その処理後には純水によるリンスが行われる。第
1の実施例におけるHF/H2 2 添加純水は、このリ
ンス用純水にあらたな付加価値を追加するものである。
The semiconductor substrate is immersed in a 1% dilute HF solution,
After removing the silicon oxide film on the surface of the substrate, HF and hydrogen peroxide (H 2 O 2 ) are added to pure water (hereinafter referred to as HF / H 2 O 2 added pure water) in an amount of 10 to 50 ppm to 5-2.
Rinse for 0 minutes and dry. It is known that generally used cleaning liquids HF, HCl / H 2 O 2 and the like are relatively concentrated acids and alkalis, so that ions derived from the cleaning liquid are adsorbed on the surface of the semiconductor substrate, which deteriorates device characteristics. After the treatment, rinse with pure water is performed. The HF / H 2 O 2 added pure water in the first embodiment adds a new added value to this rinse pure water.

【0009】図1は、本実施例のリンス工程後、半導体
基板を大気中に放置した時の、自然酸化膜成長の経時変
化をX線光電子分光法で測定したものである。リンス処
理に無添加の純水、CO2 添加純水、HF添加純水をそ
れぞれ用いた例A,B,Cも同時に示す。HF/H2
2 添加純水を用いた実施例では、無添加およびCO2
加純水に比べ自然酸化膜の成長が抑制されており、HF
添加純水とほぼ同等であることが分かる。従って、ゲー
ト熱酸化の直前に本実施例のリンス処理を用いることに
より、実効膜厚の増加を抑制し、ゲート酸化膜の絶縁耐
圧を劣化させる自然酸化膜の成長を抑性することが可能
である。この効果は、処理方法C,DにおけるHF及び
2 2 の添加濃度が10ppm以下では少くなる。
FIG. 1 shows a change over time in natural oxide film growth measured by X-ray photoelectron spectroscopy when the semiconductor substrate was left in the atmosphere after the rinsing step of this example. Examples A, B and C in which pure water without addition, pure water with CO 2 and pure water with HF were respectively used for the rinse treatment are also shown. HF / H 2 O
In the example using the pure water with 2 added, the growth of the natural oxide film was suppressed as compared with the pure water without added and the pure water with CO 2 added.
It can be seen that it is almost equivalent to the added pure water. Therefore, by using the rinse treatment of this embodiment immediately before the gate thermal oxidation, it is possible to suppress the increase in the effective film thickness and suppress the growth of the natural oxide film that deteriorates the withstand voltage of the gate oxide film. is there. This effect is small when the addition concentration of HF and H 2 O 2 in the processing methods C and D is 10 ppm or less.

【0010】図2は、本実施例のリンス工程後、MOS
ダイオードを作成し酸化膜絶縁破壊特性を評価したもの
であり、リンスに無添加純水、CO2 添加純水、HF添
加純水を用いた例A〜Cも同時に示す。HF/H2 2
添加純水は、低電界での絶縁破壊が最も少ない良い特性
が得られた。半導体基板表面への添加薬品のイオン吸着
によるデバイス特性の劣化は無いことが分かる。ただ
し、C,D処理におけるHF及びH2 2 の添加濃度が
50ppmをこえると、低電界での絶縁破壊が増加する
ため50ppm以下が望ましい。
FIG. 2 shows the MOS after the rinsing process of this embodiment.
The diode was prepared and the dielectric breakdown characteristics of the oxide film were evaluated. Examples A to C in which pure water containing no additive, pure water containing CO 2 and pure water containing HF were used for the rinse are also shown. HF / H 2 O 2
With the added pure water, good characteristics with minimum dielectric breakdown in a low electric field were obtained. It can be seen that the device characteristics are not deteriorated by the ion adsorption of the additive chemical on the surface of the semiconductor substrate. However, if the addition concentration of HF and H 2 O 2 in the C and D treatments exceeds 50 ppm, the dielectric breakdown in a low electric field increases, so 50 ppm or less is desirable.

【0011】また、本実施例では殺菌効果もHF添加純
水の場合と同様である。
In this embodiment, the bactericidal effect is the same as that of the HF-added pure water.

【0012】図3は、本実施例のリンス工程でそれぞれ
の純水に1ppbの銅を添加し、リンス処理を行った後
の、半導体基板表面の銅濃度を示す。HF/H2 2
加純水処理Dでは、最も銅濃度が低く、金属イオンの沈
積防止効果に優れることが分かる。
FIG. 3 shows the copper concentration on the surface of the semiconductor substrate after adding 1 ppb of copper to each pure water in the rinsing step of this embodiment and performing the rinsing process. It is understood that the HF / H 2 O 2 added pure water treatment D has the lowest copper concentration and is excellent in the effect of preventing the deposition of metal ions.

【0013】図4は、本実施例のリンス工程後の、半導
体基板表面の0.3μmの以上の微粒子付着量を示す。
HF/H2 2 添加純水処理Dでは、微粒子付着量が最
も少ないことが分かる。
FIG. 4 shows the amount of deposited fine particles of 0.3 μm or more on the surface of the semiconductor substrate after the rinsing step of this embodiment.
It is understood that in the HF / H 2 O 2 added pure water treatment D, the amount of adhering fine particles is the smallest.

【0014】以上述べたように、HF/H2 2 添加純
水は、従来用いられていた純水のリンス効果に機能を付
加したものであり、従来の純水が利用されていたほとん
どの工程に利用可能である。
As described above, HF / H 2 O 2 added pure water has a function added to the rinse effect of pure water that has been used in the past, and most of the conventional pure water has been used. It is available for the process.

【0015】次に本発明の第2の実施例について説明す
る。本第2の実施例では、H2 2の代わりに、10〜
50ppmのオゾンを純水に添加して用いるものであ
る。得られる効果は、第1の実施例と全く同様である。
オゾンは、オゾン水または、オゾンのバブリングにより
供給される。バブリングは洗浄層内で行うため、濃度を
モニターすることにより、より安定なオゾンの供給が可
能である。
Next, a second embodiment of the present invention will be described. In the second embodiment, instead of H 2 O 2 , 10 to 10
It is used by adding 50 ppm of ozone to pure water. The obtained effect is exactly the same as that of the first embodiment.
Ozone is supplied by ozone water or by bubbling ozone. Since bubbling is performed in the cleaning layer, it is possible to supply ozone more stably by monitoring the concentration.

【0016】尚、上記実施例においては室温の純水にH
F、H2 2 またはオゾンを添加したが、純水の温度を
50〜80℃として処理してもよい。この場合、HF、
22 またはオゾンの濃度は、5〜50ppmであれ
ば、第1,第2の実施例と同様の効果が得られる。
It should be noted that in the above embodiment, H 2 was added to pure water at room temperature.
Although F, H 2 O 2 or ozone was added, the treatment may be performed with the temperature of pure water at 50 to 80 ° C. In this case, HF,
If the concentration of H 2 O 2 or ozone is 5 to 50 ppm, the same effect as in the first and second embodiments can be obtained.

【0017】[0017]

【発明の効果】以上説明したように本発明は、10〜5
0ppmのフッ化水素と10〜50ppmの過酸化水素
(またはオゾン)を添加した純水を用いて薬液処理後の
半導体基板を処理することにより、純水によるリンス効
果に加え、デバイス特性を劣化させること無く、酸化膜
成長抑制,殺菌,微粒子付着防止及び金属イオンの沈積
防止に優れた効果が得られる。
As described above, the present invention is 10 to 5
By treating the semiconductor substrate after the chemical treatment with pure water to which 0 ppm hydrogen fluoride and 10 to 50 ppm hydrogen peroxide (or ozone) are added, in addition to the rinse effect of pure water, the device characteristics are deteriorated. In this way, it is possible to obtain excellent effects in suppressing oxide film growth, sterilization, preventing adhesion of fine particles, and preventing deposition of metal ions.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の効果を説明するための自然酸化膜圧と
放置時間との関係を示す図。
FIG. 1 is a diagram showing a relationship between a natural oxide film pressure and a standing time for explaining an effect of an embodiment.

【図2】実施例の効果を説明するための不良率と電界と
の関係を示す図。
FIG. 2 is a diagram showing a relationship between a defective rate and an electric field for explaining the effect of the embodiment.

【図3】実施例の効果を説明するための表面銅濃度と処
理方法との関係を示す図。
FIG. 3 is a diagram showing a relationship between a surface copper concentration and a treatment method for explaining the effect of the embodiment.

【図4】実施例の効果を説明するための付着微量子数と
処理方法との関係を示す図。
FIG. 4 is a diagram showing a relationship between the number of adhering trace particles and a treatment method for explaining the effect of the embodiment.

【符号の説明】[Explanation of symbols]

A 無添加純水処理 B CO2 添加純水処理 C HF添加純水処理 D HF/H2 2 添加純水処理A Additive-free pure water treatment B CO 2 -added pure water treatment C HF-added pure water treatment D HF / H 2 O 2 -added pure water treatment

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板を薬液処理したのちこの半導
体基板を純水でリンスする半導体基板の処理方法におい
て、前記純水中に10〜50ppmのフッ化水素と10
〜50ppmの過酸化水素またはオゾンを添加すること
を特徴とする半導体基板の処理方法。
1. A method of treating a semiconductor substrate, which comprises treating the semiconductor substrate with a chemical solution and then rinsing the semiconductor substrate with pure water.
A method for treating a semiconductor substrate, characterized in that hydrogen peroxide or ozone of ˜50 ppm is added.
JP26447092A 1992-10-02 1992-10-02 Semiconductor substrate processing method Expired - Fee Related JP2884948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26447092A JP2884948B2 (en) 1992-10-02 1992-10-02 Semiconductor substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26447092A JP2884948B2 (en) 1992-10-02 1992-10-02 Semiconductor substrate processing method

Publications (2)

Publication Number Publication Date
JPH06120190A true JPH06120190A (en) 1994-04-28
JP2884948B2 JP2884948B2 (en) 1999-04-19

Family

ID=17403673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26447092A Expired - Fee Related JP2884948B2 (en) 1992-10-02 1992-10-02 Semiconductor substrate processing method

Country Status (1)

Country Link
JP (1) JP2884948B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
US5806544A (en) * 1997-02-11 1998-09-15 Eco-Snow Systems, Inc. Carbon dioxide jet spray disk cleaning system
KR19990039400A (en) * 1997-11-12 1999-06-05 윤종용 Cleaning solution for semiconductor device manufacturing process and removing photoresist and polymer using same
US6092538A (en) * 1996-09-25 2000-07-25 Shuzurifuresher Kaihatsukyodokumiai Method for using high density compressed liquefied gases in cleaning applications
JP2013016594A (en) * 2011-07-01 2013-01-24 Tokyo Electron Ltd Substrate cleaning method, substrate cleaning device and memory medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09255998A (en) * 1996-03-27 1997-09-30 Furontetsuku:Kk Cleaning method and apparatus
US6092538A (en) * 1996-09-25 2000-07-25 Shuzurifuresher Kaihatsukyodokumiai Method for using high density compressed liquefied gases in cleaning applications
US5806544A (en) * 1997-02-11 1998-09-15 Eco-Snow Systems, Inc. Carbon dioxide jet spray disk cleaning system
KR19990039400A (en) * 1997-11-12 1999-06-05 윤종용 Cleaning solution for semiconductor device manufacturing process and removing photoresist and polymer using same
JP2013016594A (en) * 2011-07-01 2013-01-24 Tokyo Electron Ltd Substrate cleaning method, substrate cleaning device and memory medium

Also Published As

Publication number Publication date
JP2884948B2 (en) 1999-04-19

Similar Documents

Publication Publication Date Title
JP2581268B2 (en) Semiconductor substrate processing method
JP3789083B2 (en) Method for removing contaminants from integrated circuit board using cleaning solution
US6767409B2 (en) Method for cleaning semiconductor wafer after chemical mechanical polishing on copper wiring
US6348157B1 (en) Cleaning method
US20080156349A1 (en) Method for cleaning silicon wafer
JPH04113620A (en) Cleaning method for semiconductor substrate
JPH08316187A (en) Washing method
JPH09246221A (en) Cleaning solution for semiconductor substrate and cleaning method using this solution
JPH06120190A (en) Processing method of semiconductor substrate
IE53902B1 (en) Process for fabricating a semiconductor device having a phosphosilicate glass layer
JP2984348B2 (en) Semiconductor wafer processing method
JP2956347B2 (en) Semiconductor substrate cleaning method
JPH10183185A (en) Cleansing liquid, its formulation and production, cleansing, and production of semiconductor substrate
JPH07335608A (en) Method and device for removal of metal impurities
JPH03120719A (en) Processing solution for semiconductor substrate and method for processing
KR100914606B1 (en) Method for manufacturing gate oxide film on semiconductor wafer by wet process
JP3109083B2 (en) Etching solution for silicon oxide film and method for etching silicon oxide film
JP3416716B2 (en) Method for forming oxide film on semiconductor substrate surface
JPH07240394A (en) Surface cleaning method of semiconductor wafer
JP3091210B2 (en) Method of forming oxide film
KR0171983B1 (en) Wafer cleaning method
JPH0750281A (en) Cleaning method for silicon wafer
JPH07321080A (en) Method for cleaning silicon wafer
JPH05343380A (en) Method for cleaning semiconductor substrate
JP3489329B2 (en) Silicon wafer surface treatment method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990112

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees